Vol. 19, No. 2, 1966

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 330: 1
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Vol. 324: 1  2
Vol. 323: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Restricted bipartite partitions

L. Carlitz and David Paul Roselle

Vol. 19 (1966), No. 2, 221–228
Abstract

Let πk(n,m) denote the number of partitions

n = n1 + n2 + + nk
m = m1 + m2 + + mk
subject to the conditions «««< Updated upstream
min(nj,mj) ≧ max (nj+1,mj+1 ) (j = 1,2,⋅⋅⋅ ,k− 1).

Put

           ∑∞
ξ(k)(x,y) =     πk(n,m )xnym
n,m=0

We show that

 (k)       ∏k ---------1−-x2j−-1y2j−1---------
ξ  (x,y) =   (1− xjyj)(1 − xjyj−1)(1− xj−1yj),
j=1

 ∑∞           n  m            ∑∞  k (k)
π(n,m; λ)x  y  = 1+ (1− λ)   λ ξ  (x,y),
n,m=0                         k=1

 ∞∑                ∑∞
ψ(n,m)xnym =     xnynξ(n)(x2,y2),
n,m=0              n=0

where π(n,m;λ) denotes the number of “weighted” partitions of (n,m) and ψ(n,m) is the number of partitions into odd parts (nj, mj all odd).

Mathematical Subject Classification
Primary: 10.48
Milestones
Received: 20 March 1965
Published: 1 November 1966
Authors
L. Carlitz
David Paul Roselle