Vol. 19, No. 2, 1966

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On representations of certain semigroups

Michael Friedberg

Vol. 19 (1966), No. 2, 269–274
Abstract

A theory of representations for compact semigroups has been lacking due in large part to the absence of a translation-invariant carrying measure that exists for compact groups. The object in this paper is to show that for a compact, group-extremal affine semigroup there is a sufficient system of representations by linear operators on finite-dimensional complex linear spaces; in the abelian case, a sufficient system of affine semicharacters is obtained. As a result, a compact group-extremal affine semigroup is the inverse limit of compact, finite-dimensional, group-extremal affine semigroups.

Mathematical Subject Classification
Primary: 22.05
Milestones
Received: 2 August 1965
Published: 1 November 1966
Authors
Michael Friedberg