AN INEQUALITY FOR THE DENSITY OF THE SUM OF SETS OF VECTORS IN n-DIMENSIONAL SPACE

ALLEN ROY FREEDMAN
AN INEQUALITY FOR THE DENSITY OF THE SUM OF SETS OF VECTORS IN n-DIMENSIONAL SPACE

ALLEN R. FREEDMAN

A Schnirelmann type density is defined for sets of “nonnegative” lattice points. If A, B and $C = A + B$ are such sets with densities α, β and γ respectively, then it is shown that $\gamma \geq \beta/(1 - \alpha)$ provided $\alpha + \beta < 1$.

1. Let n be a positive integer and let Q be the set of all vectors $r = (\rho_1, \cdots, \rho_n)$ where each ρ_i is a nonnegative integer and at least one ρ_i is positive. We define a partial order relation $<$ on Q where $r < s$ if and only if $\rho_i \leq \sigma_i$ ($i = 1, 2, \cdots, n$) with strict inequality holding for at least one index. Denote by $L(r)$ the set of all x in Q for which either $x < r$ or $x = r$.

A nonempty finite subset F of Q is called fundamental if, whenever $r \in F$, then $L(r) \subseteq F$. For $A, X \subseteq Q$ with X finite, let $A(X)$ denote the number of vectors in $A \cap X$. Then the (Kvarda) density of A is

$$\alpha = \text{glb} \frac{A(F)}{Q(F)}$$

where F ranges over all fundamental subsets of Q.

Let $B \subseteq Q$ and define $A + B = \{a, b, a + b | a \in A, b \in B\}$ where addition of vectors is done coordinatewise. Let β and γ be the densities of B and $C = A + B$ respectively. Kvarda [1] has proved the inequality $\gamma = \alpha + \beta - \alpha\beta$ which for $n = 1$ was first proved by Landau and Schnirelmann. In this paper we prove $\gamma \geq \beta/(1 - \alpha)$ provided $\alpha + \beta < 1$. For $n = 1$, this has been proved by Schur [2].

2. Main results.

Lemma 1. Let \bar{C} denote the complement of C in Q and suppose $\bar{C} \neq \emptyset$. For a fundamental set F let F^* denote the set of maximal vectors of F with respect to the partial ordering $<$. Then

$$\gamma = \text{glb} \frac{C(F)}{Q(F)}$$

where F ranges over all fundamental sets with $F^* \subseteq \bar{C}$.

Proof. Let γ' denote this glb. Clearly $\gamma \leq \gamma'$. Let G be any fundamental set. If $C(G) = Q(G)$ then $C(G)/Q(G) = 1 > \gamma'$. If $C(G) < Q(G)$ then $\bar{C} \cap G \neq \emptyset$. In this case let F be the union of all...
sets $L(g)$ where $g \in \bar{C} \cap G$. Evidently F is a fundamental set, $F \subseteq G$, and $F^* \subseteq \bar{C}$. Thus,

$$\frac{C(G)}{Q(G)} = \frac{C(F) + C(G - F)}{Q(F) + Q(G - F)} = \frac{C(F)}{Q(F)} + \frac{Q(G - F)}{Q(F)} \geq \frac{C(F)}{Q(F)} \geq \gamma',$$

and so $\gamma \geq \gamma'$.

Lemma 2. If F is a fundamental set with $F^* \subseteq \bar{C}$, then $C(F) \geq \alpha C(F) + B(F)$.

Proof. Let g_1, g_2, \ldots, g_k be the vectors of $\bar{C} \cap F$, indexed in such a way that

(1) $g_i < g_j$ implies $i < j$.

Define $H_i = L(g_i)$ and $H_{i+1} = L(g_{i+1}) - \bigcup_{j<i} H_j$. Then

(2) the H_i are disjoint,

(3) the union of the H_i is F, and

(4) for each i, $g_i \in H_i$.

Now (2) follows immediately by definition, and (3) from the fact that since $F^* \subseteq \bar{C}$, we have for each $x \in F$, that $x \in L(g_i)$ for some i. To prove (4), notice that $g_i \in H_i$ implies $g_i \in \bigcup_{j<i} H_j$, which in turn implies $g_i \in L(g_{j_i})$ for some $j_i < i$, contrary to (1).

For each i let tH_i be the set of all vectors $g_i - x$ where x ranges over $H_i - \{g_i\}$. Then

(5) tH_i is either empty or is a fundamental set, and

(6) $Q(tH_i) = Q(H_i) - 1$.

To show (5) let z be an arbitrary vector in tH_i and let $y \in L(z)$. We have $g_i - z \leq g_i - y < g_i$. Thus $g_i - y \in L(g_i) - \{g_i\}$ and, since $g_i - z \in H_i$, we have $g_i - y \in H_i - \{g_i\}$. Hence $g_i - (g_i - y) = y \in tH_i$ and so $L(z) \subseteq tH_i$. Equation (6) is immediate.

Now, for each $a \in A \cap tH_i$, there exists a unique $x \in H_i - \{g_i\}$ such that $a = g_i - x$. Thus $x \in \bar{B}$. Also, by (4), we have $g_i \in \bar{B} \cap H_i$ and so

$$\bar{B}(H_i) \geq A(tH_i) + 1$$

$$\geq \alpha Q(tH_i) + 1 \quad \text{(from (5) and the definition of } \alpha)$$

$$= \alpha(Q(H_i) - 1) + 1 \quad \text{(from (6)).}$$

Summing over i, using (2) and (3), we obtain

$$\bar{B}(F) \geq \alpha(Q(F) - k) + k$$

$$= \alpha C(F) + \bar{C}(F)$$

that is,
THEOREM. If $\alpha + \beta < 1$ then $\gamma \geq \beta/(1 - \alpha)$.

Proof. Since $\beta < 1 - \alpha$ and $\alpha < 1$, then $\beta/(1 - \alpha) < 1$. Hence if $\gamma = 1$, the theorem follows. If $\gamma < 1$, then $C \neq \emptyset$ and for any fundamental set F with $F^* \subseteq C$ we have by Lemma 2

$$C(F) \geq \alpha C(F) + B(F) .$$

Hence,

$$\frac{C(F)}{Q(F)} \geq \alpha \frac{C(F)}{Q(F)} + \frac{B(F)}{Q(F)} \geq \alpha \gamma + \beta .$$

By Lemma 1 $\gamma \geq \alpha \gamma + \beta$ that is, $\gamma \geq \beta/(1 - \alpha)$.

3. Remark. A result of Kvarda [1] states that if $\alpha + \beta \geq 1$ then $\gamma = 1$. This result and the above theorem can be used to prove quickly that if $\alpha > 0$ then A is a basis for Q, that is, $nA = Q$ for some n, where $iA = (i - 1)A + A$ for $i \geq 2$. Thus let γ_i denote the density of iA and assume that $nA \neq Q$ for all n. Then, for all $k, \gamma_k + \alpha < 1$, and so

$$\gamma_{k+1} \geq \frac{\gamma_k}{1 - \alpha} \geq \frac{\gamma_{k-1}}{(1 - \alpha)^2} \geq \cdots \geq \frac{\gamma_1}{(1 - \alpha)^k} = \frac{\alpha}{(1 - \alpha)^k} .$$

But, for k sufficiently large, $(\alpha/(1 - \alpha)^k) \geq 1$, a contradiction.

REFERENCES

Received June 12, 1965. This paper is part of the author's Ph. D. thesis, written at Oregon State University under the direction of Professor Robert Stalley.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Leonard Daniel Baumert, *Extreme copositive quadratic forms* 197
Fred James Bellar, Jr., *Pointwise bounds for the second initial-boundary value problem of parabolic type* 205
L. Carlitz and David Paul Roselle, *Restricted bipartite partitions* 221
Robin Ward Chaney, *On the transformation of integrals in measure space* ... 229
Colin W. Clark, *An embedding theorem for function spaces* 243
Edwin Duda, *A theorem on one-to-one mappings* 253
Ben Fitzpatrick, Jr. and Donald Reginald Traylor, *Two theorems on metrizability of Moore spaces* .. 259
Allen Roy Freedman, *An inequality for the density of the sum of sets of vectors in n-dimensional space* .. 265
Michael Friedberg, *On representations of certain semigroups* 269
Robert William Gilmer, Jr., *The pseudo-radical of a commutative ring* ... 275
Hikosaburo Komatsu, *Fractional powers of operators* 285
Daniel Rider, *Transformations of Fourier coefficients* 347
David Alan Sánchez, *Some existence theorems in the calculus of variations* ... 357
Howard Joseph Wilcox, *Pseudocompact groups* 365
William P. Ziemer, *Some lower bounds for Lebesgue area* 381