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A definition of fractional (or complex) powers A°>, a e C, is
given for closed linear operators A in a Banach space X with
the resolvent set containing the negative real ray (—oo, 0) and
such that {λ(λ + A)"1; 0 < λ < oo} is bounded; fundamental pro-
perties such as additivity (A*Aβ = Aa+P), coincidence with the
iterations A* = An for integers a = n, and analytic dependence
on a are discussed. Since the fractional powers A* are
generally unbounded in both of the cases Re a > 0 and Re a < 0,
attention is paid to the domains D{Aω), which are related to
the spaces Dσ and Rτ of xeX defined by the regularity of
(Λ + A)"1^ at oo and 0. When —A generates a bounded con-
tinuous semi-group or a bounded analytic semi-group, more
detailed results are obtained.

The study of fractional powers of operators has a long history,
which may go back to AbePs work on the tautochrone, the Riemann-
Liouville integral, and its generalizations by M. Riesz. However, it
is only recently that the general theory was developed. When A is
the negative of the infinitesimal generator of a bounded semi-group
of operators, Hille [6] and Phillips [16] showed that fractional powers
could be treated in the framework of an operational calculus which they
originated. This program was carried out thoroughly by Balakrishnan
[1], Later Balakrishnan [2] gave a new definition and extended his
theory to a wider class of operators. About the same time two different
definitions were introduced by KrasnoseΓskii-Sobolevskii [13] and Kato
[10]; further results were obtained by them, Yosida [22], Kato [11]
and Watanabe [20]. These theories, with the exception of [11], as
well as some classical results on the Riemann-Liouville integral (Hardy-
Littlewood [5], Love-Young [14]), will be reconstructed from a unified
point of view.

Our definition of fractional powers is essentially the same as
Balakrishnan's second definition and if, in particular, Re a > 0, they
are identical. In order to see that this definition is a natural one, let
us consider the case in which A is bounded and the resolvent set p(A)
contains the negative real axis ( —°°, 0], The most natural definition
of Aa for such an operator A is given by the Dunford integral

(1.1) A« =

where the path Γ encircles the spectrum σ(A) counterclockwise avoiding
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the negative real axis and ζa takes the principal branch. It is then
quite easy to see that Aa is a bounded operator which is an entire
function of a, satisfying Aα = An if a is an integer n, and AaAβ = Aa+β,
for all a,βeC.

Now we notice that the integration path Γ may be considered to
encircle the negative real axis clockwise. Thus we can write the
integral as

Aβ = - M ° [(ζ + ίθy - (ζ - iθ)β](ζ - AY'dζ
2π% J-~

(1.2) Binπαf- .
π Jo

in the sense of Fantappie and Sato [17]. The last integral loses its
ordinary meaning at °o if Reα^O and at 0 if R e α ^ — 1. However,
we have a convergent expression valid for — (m + 1) < Re a < n + 1:

A a — —

(1.8) π „ h r

k=-m a — k JN-

where N is an arbitrary fixed positive real number. This may be proved
directly from (1.1). Another proof is obtained from (1.2) by expanding
(λ + A)""1 into a Taylor series around oo and 0 and applying the formula

(1.4)

which holds for every β Φ — 1 in the sense of Fantappie-Sato.
Throughout this paper we will assume that A is a closed linear

operator such that the resolvent set contains (— oo, 0) and the resolvent
satisfies

(1.5) ||λ(λ + A)-ι\\^M, λ > 0 ,

with a constant M independent of λ. The bounded operator A considered
above and the negatives of infinitesimal generators of bounded semi-
groups satisfy these conditions. We remark that the operator
A(λ + A)"1 = 1 — λ(λ + A)""1 is also uniformly bounded. The bound is
denoted L:

(1.6) ||A(λ + A ) - 1 l i ^ £ , λ > 0 .

The constants M and L will have the same meanings throughout this
paper.

Our definition is based on the formula (1.2) or (1.3). But we
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cannot expect that (λ + A)~ι has a Taylor expansion at co or 0, nor
that Aax is defined for all x. In place of a Taylor expansion we use
the asymptotic expansion of (λ + A)"1^ which depends on x. Thus,
our study begins with the regularities of (λ + A^x at oo and 0. If
x satisfies

(λ + Ayxx = X-% - X~2x, + + (-l)nX"n"1xn + O(λ~σ-1)

as λ —> oo f where n g σ < n + 1 (if n — σ, O(λ~σ-1) must be replaced
by o(λ~σ~1)), then x is said to belong to the space D\ Similarly the
space R° is defined by the regularity at 0. The spaces D° and Rσ are
shown to be closely related to the domain D(An) and the range R{An),
and give a kind of interpolation spaces (Sections 2, 3).

If Re a > 0 and if σ > Re a, then Aax for x e Dσ is defined by
(1.2) or its justification as (1.3). It will be proved that the operator
A% thus defined has the smallest closed extension Aa

+ independent of
σ, which we define to be the fractional power. In the same way A°L,
Re a < 0, and Aj, ae C, are defined by their restrictions to Rσ and
DσΓ\R% respectively (Section 4).

A+, A°L and A" are closed linear operators with dense domains in
D(A), R(A) and D(A) Π 22(A), respectively, and dense ranges in
D(A)f]R(A). When P is an operator (or a relation) in a space X, and
F is a subspace of X, let us call the operator Q in Y defined by
D(Q) = {ye D(P) ΓlY Py e Y} and Qy = Py,y<~ D(Q), the maximal
restriction of P in Y. Then Aj for Re a > 0 (Re α < 0) is the maximal
restriction of A\ (A°L) in D(A)f]R(A). When a is an integer n, A+, Al
and Ao coincide with the maximal restrictions of An in ^D(A), R(A) and

D(A)Πi2(A) respectively (Section 4).
More precisely the domain D((μ + A)+) does not depend on μ ^ 0

and coincides with the range R((μ + A)^"α), ^ > 0, while R((μ + A)za)
is contained in DUea unless Reα: is an integer and in BUea~s for any
ε > 0 if Re a is an integer. In particular, it follows that D(A+) c D(A%)
if Reα > Re/9. Since DRea+saD(Aa

+), ε > 0, J?R e α is almost equal to
D(Aa+). Similarly, if μ > 0, we have D(AL) = D((A(^ + A)"1)^) =
R((A(μ + A)-%a) c J?-R e α- ε or i?-R e α according as Re a is an integer
or not (Section 6).

Aa

± maps Dσ f] D(Aa

±) into Dσ~Rea if α: — Re a is positive and not an
integer.

If ReaΈeβ > 0, then A£A^ = A%+β holds in the sense of the
product of two operators, where the subscripts are assumed to be the
same. For every a and β the smallest closed extension of A"Aξ is
the same as Aa

0

+β. If xe D{A§)ΐ\D{Al+β), then AξxeD(Aa

0) and
— A%+βx. Thus the additivity holds fairly completely (Section 7).

If x e D(A%) Π D{A%), Re a > Re β, then x belongs to D{A\) for all
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Re a > Re 7 > Re β. Moreover, A\x is analytic in 7 and converges
strongly to A%x (A%x) as 7 tends to a (β) in such a way that
I arg (a — 7) | ^ θ < π/2 (| arg (7 — β) | ^ θ < τr/2). A â? satisfies the
convexity inequality

(1.7) II Alx II ^ C II Aία? ||* II A*x H1"*

where 0 = Re (7 — /3)/Re (a — /3) and the constant C depends on 7 only
in terms of | arg (a — 7) | and | arg (7 — β) | (Section 8).

Therefore if JS is a closed linear operator such that D(B) Z) D(A\),
we have

(1.8) \\Bx\\ S CWAlxW'WxW1-6 , xeD(A"+) ,

where Re a > Re 7 > 0 and 0 = Re 7/Re α:. Conversely if (1.8) holds,
then D(.B) z) £>(Ay for every 7 with Re 7 > 0 Re α: (Section 9).

Now we have to specify the operator A more strictly. An operator
A is said to be of type (ω, M(θ)), 0 ^ ω < π, if the domain D(A) is
dense, the resolvent set of —A contains the sector | a r g λ | < π — ω
and (1.5) holds on each ray λ = rβ ί θ, 0 < r < o o , | 0 | < Γ — ω, with
ikΓ = M(θ). Every operator A with a dense domain which satisfies (1.5)
is of type (ω, M(θ)) for some ω < π. If —A is the generator of a
bounded semi-group, then A is of type (π/2, ikfsectf). Further it is
known that A is of type (ω, M{θ)) with ω < π/2 if and only if —A
generates a semi-group Tt which has an analytic extension to the
sector I arg t \ < π/2 — ω such that the extension is uniformly bounded
on each smaller sector | arg t \ ̂  π/2 — ω — ε, e > 0. Let us call such
a semi-group an analytic semi-group.

If A is of type (ω, M(θ)) and if 0 < a < π/ω, then A+ is of type
(aω, Ma(θ)), where Λfβ(0) is bounded by 3Λf((0 + (α - l)π)+/α:). In
particular — A+ generates an analytic semi-group exp(— ίA+) if
0 < α < π/(2ω). The semi-group exp (—ίA+) is continuous in the uni-
form operator topology in t and a in the domain | arg t \ < π/2 — aω,
0 < a < π/(2ω). For every as e i2(A), exp(—ίA+)α; converges to exp(—t)x
as α tends to 0. If A is of type (ω, M(θ)) and if 0 < a < π/ω and
Re β > 0, then the multiplicativity (A?.)?. = Af holds (Section 10).

In case A is the generator of a bounded semi-group Tu the value
of the fractional power A%x may be related to the Riemann-Liouville
integral of Ttx. Let Cσ, σ ^ 0, be the set of elements x such that
Ttx is n = [σ] times continuously differentiable and the %-th derivative
is uniformly Holder continuous with exponent p — σ — n. Then we
have DσZ)CσZ) D(Aa

+) for Re α: = σ. If σ > Re a > 0, A > , a? e ί ) σ , is
expressed as the fractional derivative of Ttx at 0. If X is sequentially
weakly complete, it follows that xeD(A%) if and only if ζTsx,y'ye
D((-d/ds)a

+) for all y'eX'. As in the case of D% Al maps Cσf]D(Aa

±)
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into Cσ~Reα if σ — Re a is positive and not an integer. The semi-group
exp( — tA\) generated by — A", 0 < a < 1, is uniformly bounded in
t ^ 0 and converges strongly to Tt as a tends to 1 (Section 11).

Let —A be the generator of a bounded semi-group Tt. Then A is
of type (ω, M(θ)) with an ω < π/2, or 2^ is analytic, if and only if
there exists a constant C such that

II ^ - + 2 ί II ^ yyo

If this is the case, and if σ is not an integer, it follows that Cσ — D%
and that xeCσ if only if || A"+Ttx \\ = 0{tσ~Rea) as £ — 0 for Rea> σ
(Section 12).

Section 13 deals with the cases where A is a normal operator in
a Hubert space, a restriction, an adjoint operator or a continuous
image of another operator which satisfies (1.5). As an application we
will prove that the convolution of a Cj function and a C$ function
belongs to Q+β~* for any ε > 0, where Co denotes the class of uniformly
Holder continuous functions with exponent a and with compact supports
in (— oo, co). Another application to a nonlinear partial differential
equation will also be given. The rest of the section is concerned with
the fractional differentiation of functions on the unit circle.

We collect several counterexamples in Section 14, among which
there is a simple example of an operator of type (τr/2, 2 sec θ) which
does not generate any semi-group of type (A).

The author failed to give an example of operator A such that —A
generates a bounded semi-group but for which Dσ Φ Cσ.

2. Regularity of (λ + A)~\τ at infinity* If x G D(An) for a non-
negative integer n, (λ + A)~ιx has the expression

(2.1) (λ + A)-χx = λ"1^ - X~2Ax + + (-ly-'X^A^x

+ i2Λ_!(λ, x)

for λ G p( — A), λ Φ 0, where

(2.2) jβfc(λ, x) = (-lY^X-^AiX + Ay

λ-1 - (λ +

Because of (1.5) we have the order estimate i2n-i(λ, x) = O(λ~%-1) as λ
tends to infinity along the real axis. If X is reflexive, the converse
is also true.

THEOREM 2.1. In order that there exist yk e X, k = 0, 1, , n,
such that

(2.3) (λ + A)~ιx = λ-^o - X-% + - • + ( - l ) w λ - w - ^ + oΐλ-"-1)
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as λ—>oo, it is necessary and sufficient that xeD(An), Anx e D(A)
and yk — Akx, k = 0,1, , n. Here the convergence can be either in
the weak or strong sense and X may increase, taking only values of
a sequence X3 —•* oo.

Moreover, let X be reflexive. Then it follows that if (λ + A)~ιx
satisfies

(2.4) (λ + A)~*x = X-% - λ-2^ + + ( - l ) - ^ - ^ . ! + O(λ—x)

as λ = Xd —• oo, there exists a yne X such that (2.3) holds. Thus (2.4)
is a necessary and sufficient condition in order that x e D(An). In
particular we have D(A) = X, since (2.4) for n = 0 holds for all
xeX.

Proof. In case n = 0 this is precisely an ergodic theorem due to
Hille [6], Kato [9] and Yosida [23], We shall, however, reproduce
the proof for the sake of convenience. If x e D(A), then we have by
(2.1) (λ + A)~xx - X~'x = O(λ~2) = o{X-1). Since λ((λ + A)"1 - λ"1) is
uniformly bounded by assumption (1.5), it follows from the Banach-
Steinhaus theorem that λ((λ + A)"1 — λ"1)^ —> 0 strongly for every
xeDζA).

Conversely, let the set {λ̂ λ.,- + A)~1x) have an accumulation point
yQ relative to the weak topology, where λ̂  —> oo. We note that this
is the case if λ, (λy + A)~xx converges weakly to yQ, or if X is reflexive.
Clearly y0 e D(A), so that we have λ^λy + A)"^ —* y0. Thus 0 is a
weak accumulation point of {λ̂ λ,- + A)~\x — y0)}. On the other hand
we have for any μep(-A)

(μ + Ay'XjiXj + A)~\x - y0)

- XJ(XJ + A)~\μ + A)~\x - y0) — (μ + A)"\x - y0) .

Hence (μ + A)~\x — y0) is the only accumulation point of
{(μ + Aj-'XjiXj + A)-\x — y0)}. Since (μ + A)""1 is weakly continuous,
this implies (μ + A)~\x — y0) = 0. Thus we have x = yQ.

Next let w > 0, and assume that the theorem has been proved for
smaller n.

If x e D(An) and Anx e D(A), then in (2.1) Xn+1Rn^(X, x) =
(—l)nX(X + A)"xAnx converges strongly to (—l)nAnx as λ-^oo. This
proves (2.3).

Conversely let (2.4) hold. Then by the induction hypotheses we
have x e D(An-1), An~λx e D(A) and yk = A\*, for k S n - 1. Thus the
remainder term in (2.4) is equal to (—1)ΛΛ~*(1 — λ(λ + A)"1)^!*"1^ =
i2»-.i(λ, x). If X is reflexive or if (2.3) holds when λy-> <*>, {λ^i^^λy, a?)}
has a weak accumulation point (—l)nyn. Since An~xx e D(A) and (λ + A)"1
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maps D(A) into D(A), yn belongs to D(A). We have (-l^λf^iC-iCS , x) =
AXJ(XJ + Aj-'A^x, and XJ(XJ + A)"1^-1;*; -> A*-1^. Therefore the pair
(An~xx, yn) belongs to the graph of A. This proves An~ιxeD(A) and
Vn = Anx.

DEFINITION OF THE SPACE Dσ. Let σ ^ 0 and σ = n + p where
n = 0, 1, 2, and 0 ^ ô < 1. σ, n and <o will have the same meanings
in the following unless the contrary is explicitly stated. We define
Dσ as the set of all xe X such that xe D(An) and the remainder
Rn(X, x) in

(2.5) (λ + AY'x = λ-1^ - λ-2Aa; + + ( - l ) ^ - * - 1 ^ + i?n(λ, a;)

satisfies the order estimate

f o(X~a~1) in case p = 0
(2.6) i2n(λ, x) = .
V ; V ' ; (O(λ-σ-2) in case p>0.

Theorem 2.1 shows that xeDn if and only if xeD(An) and

Clearly Da is a vector space. We introduce in it the following
topology: By definition a net (directed sequence) xυ e D° converges to
x e D° if (i) Akxv —• Akx strongly for k = 0, , n, and in case p > 0
if (ii)

(2.7) j ~ < λσ + 1i^(λ, a?,), y' > dm (λ) -> J" < λσ+1i2.(λ, a?), i/r > dm(X)

for every y'eX' and every measure m on [1, oo) of finite variation.
When we consider only a (countable) sequence xjΊ the requirement

(ii) is simplified as follows.

PROPOSITION 2.2. A sequence xseDσ converges to xeDσ if and
only if (i) AkXj—>Akx for fc = 0, •••,% and (ii) Xσ+1Rn(X, x9) is uni-
formly bounded in λ ^ 1 and j .

Proof. If (i) holds, then Rn(X, x3) converges strongly to Rn(X, x)
for every λ. Thus the sufficiency easily follows from Lebesgue's
theorem. To prove the necessity let xό —> x0 in Dσ and {Xp+1Rn(X, xs)}
be unbounded. Then there is a sequence Xk ^ 1 and a y' e X ' such that
{< λS+1jBft(λA, a?y), y'>} is unbounded. On the other hand it follows from
the hypothesis that the sequence ξs = (<Xl+1Rn(Xk, xs), yr» in the
space m of bounded sequences in k converges to ξQ in the weak*
topology on m induced by I1. Hence {£,•} is bounded in m contrary to
the above. This completes the proof.

Since A is closed we see easily that Dn is a Banach space with
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the norm || x \\ + \\ Ax || + + || Anx | |. When p > 0, ΰ " is a locally
convex space but it is not generally metrizable. There is, however, a
semi-norm in Ό° which will be used as a substitute for a norm.

Set for every x e Dσ

(2.8) qσ(x) = s u P λ σ + 1 | l ^ ( λ , a 0 H .
0<λ<oo

This defines a semi-norm in D% because by the definition
supλ^iλσ + 1 ||i?w(λ, a?) || is finite, and if 0 < λ < 1, we have

λ σ + 1 1 | Rn(\, x) || = X°-n || A(X + A)~xAnx \ \ ^ L \ \ Anx || ,

proving that qσ(x) is finite for every x e Dσ. The semi-norm property
is clear.

THEOREM 2.3. There exists a constant C(σ) depending only on
σ, M and L such that

(2.9) \\Akx || ^ C(σ)qσ(x)klσ \\ x ||(σ~fc)/σ

for x e Dσ and k = 0, 1, , n. A set B in Dσ is bounded if and
only if s u p ^ l l ^ H and supxejBqσ(x) are finite.

Proof. First we will prove, by induction on n, that

(2.10) || Anx || g (2(ML)ll2)n \\ An+1x \\nl{n+1) \\ x ||1/(%+1) .

If x e D(A2), we have

Ax = (λ + A)-χA2x + λA(λ + Aj-'x ,

so that

| |Aα | | ^ λ - W || A«α? || + λL| |a? | |

for any λ > 0. Taking the minimum of the right-hand side, we obtain
(2.10) for n = 1. Let (2.10) have been proved for n. Then the proof
for n + 1 is obtained by combining (2.10) for n with

|| An+1x || ^ 2(ML || An+2x || || Anx W)1'2 .

Similarly from

Anx = A(X + A)-χAnx + XA(X + A^A^x

and (2.8) we get

|| Anx || ^ (1 + p)p-pl{1+p)qσ(xfl{1+p)(L || An~'x |

Thus the combination with (2.10) for n — 1 gives



FRACTIONAL POWERS OF OPERATORS 293

\\A*x\\£C(p)qσ(x)*"\\x\\'",

where C(ρ) = [(1 + p)1+pρ-p(2(ML)ll2yn-1)pLp]nlσ. Now we can prove
(2.9) for smaller k step by step using the inequality (2.10).

To prove the second part let B be a bounded set in Dσ. Then in
particular sup \\x\\ and sup || Anx || are finite. By the same method as
in the proof of Proposition 2.2 we can easily show that

supλ* + 1 | |# .(λ, χ)\\

is finite. Since sup 0 < λ < 1 λ
σ + 11| Rn(X, x) \\ ^ L \\ Anx ||, we conclude that

suptfσ(#) is finite.
Conversely let sup,.^ \\x\\ and s u p , ^ qσ(x) be finite. Then by (2.9)

sup || Akx || is finite for k = 0,1, , n. Furthermore,

sup I Γ < λσ + 1i^(λ, x), y' > dm
zβB I J l

S Wφqσ(x)\\y'\\ \m\

is finite. Thus B is bounded in D°. The proof is completed.
The space D° is quasi-complete. Although we do not use this

fact, we briefly sketch its proof. Let xv be a bounded Cauchy net in
D\ Then xv converges to an x in Dn relative to the topology of Dn.
Since X is metrizable and since the mapping which maps Anxv e X into
< λ*+1jβΛ(λ, xu), y' > e C[1'oo) is continuous, Lebesgue's theorem proves
that

Γ < λσ+1J?.(λ, xu), yf > dm(λ) -> J~ < λσ+1i2n(λ, x), yf > dm(\) .

We have introduced a sophisticated topology in Dσ. The reason
will be explained in the following lemma and theorem.

LEMMA 2.4. If μ > 0, then μ(μ + A)~x is a one-to-one continuous
mapping from D° onto Dσ+1. Moreover, for every xeDσ

(2.11) μ(μ + A)-1 x->x (Dσ) as μ -> oo .

Proof. Let xμ = μ(μ + A)^x for a? G i)'7. Then we have

(λ + A)-1^ = λ-1!/? ~ λ-fi/f + + (- l) λ — ^ ϊ + Rn{\ x*) ,

where

and

(2.12) Λn(λ, x^) = μ(μ + A^R^X, x)

, x) .
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Here we have used the fact that μ(μ + A)"1 maps D(An) into D(An+1).
The last equality shows that xμ e Dσ+1, and the first equality in (2.12) with
(1.6) proves that Xσ+1Rn(X, %*) is uniformly bounded. By definition
Akx e D(A) for k = 0, 1, •••,?&, so that AkxfJι converges to Akx, μ —• oo.
Hence it follows from Proposition 2.2 that x* converges to x in the
topology of Dσ. We note, however, that x* does not necessarily converge
to x in the norm | | g | | + qo(x).

The operator μ(μ + A)~ι is, of course, one-to-one, and, as is clearly
seen from (2.12), maps Dσ continuously into Dσ+1. If z e Dσ+\ it is easily
shown that μ~\μ + A)x e D°. Thus μ(μ + A)-1 is a mapping onto Dσ+1.

THEOREM 2.5. // σ' > σ, then Dσ> c Dσ, Da> is dense in Dσ, and
the embedding mapping φσ

σ': D°r —> Dσ is continuous.

Proof. The fact that Da'(zDa and the continuity of φ%' are
obvious from the definition of D° and its topology. The above lemma
proves that Dσ+1 is dense in Dσ, so that Dσ+m is dense in Dσ for
every nonnegative integer m. For a given σr > σ, take an m such
that σ + m > σf. Since Όa> z> Da+m, D°f is dense in D\ This completes
the proof. Da> is not necessarily dense in Dσ with the norm topology
defined by | | # | | + qσ(x).

We can introduced a topology in D(An) by the norm

(Note that this norm is equivalent to || x \\ + || Anx \\ because of
Theorem 2.3.) From the closedness of A it easily follows that D(An)
forms a Banach space with this norm. D(An) contains Dn as a closed
subspace. If X is reflexive, they are identical. But this is not
necessarily the case otherwise. Moreover, it is easily shown that
D{An) c D% for all σ < n, that the embedding is continuous, and that
it has a dense range. Thus we have the following inclusion relation:

X3D(A) = D°^DpZ)D(A) D D ! D D 1 + P Z) . .

In case D(A) is not dense in X, the spaces D° for A are virtually
determined by a restriction of A.

THEOREM 2.6. Let AD be the restriction of A to the domain

D(AD) = {x e D(A); Ax e D(A)}. Then AD, considered as a closed operator

in D(A), satisfies (1.5) and has a dense domain. Moreover, the spaces

Dσ{AΌ) corresponding to AD are the same as Dσ(A) corresponding to

A. In particular we have Dn(A) — D(A^) for every integer n ^ 0.

Proof. It is easily shown that AD has a resolvent (λ + A^1 which
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is equal to the restriction (λ + A)"1 |̂ χ> of (λ + A)"1 to D(A) for
λ e ρ(—A). Thus (λ + An)*1 satisfies (1.5). From Theorem 2.1 it follows
that for every xe D(A), λft + A^1 x—>xa,sX—>oo. This shows that
D{AD) is dense in D(AJ. The identity of the spaces D°{A) and Dσ(AD)
follows easily from Theorem 2.1.

3* Regularity of (λ + Aγλx at zero* A discussion parallel to
Section 2 is possible concerning the regularity of (λ + A)~ιx at zero.
Suppose that x belongs to the range R{An) and x — Any. Then we
have

<3.1) (λ + A)-ιx = An~'y - xAn~2y + + (-1)—V~^

for any Xep(-A). Hence we have the asymptotic relation

•(3.2) (λ + AY'x = y^ - Xy_2 + + ( - l ) * ' ^ - * ! / - ^ +

as λ —>0, where y_k = Aπ~fc7/. The counterpart of Theorem 2.1 is the
following theorem.

THEOREM 3.1. In order that ft + A)~xx satisfy

(3.3) ft + AY'x - y^ - Xy_2 + + (-1)—'λ—y_n + oft—1)

as λ —» 0 wiίA, ?/_fc G X, iί is necessary and sufficient that there exists

a y_n e D(An) Π R(A) such that x = A%i/_% a^d 2/_Λ = An-ky_n. The
remainder term is then given by

<3.4) i?_w(λ, x) = (- l ) λ (λ + A ) - 1 ^ .

necessity it is sufficient that (3.3) λoZrfβ for a sequence X5 —> 0
relative to the weak topology.

Furthermore, let X be reflexive. Then for every x e X there is
an xh e N(A) = {y; Ay = 0} such that

(3.5) ft + AY'x = λ-X + oft"1) , as λ -> 0 ,

x — xhe R(A). The expression x = xh + (x — xh) with xh e N(A)

and x — xhe R(A) is unique, so that X is decomposed directly:

(3.6) X = N(A) + R(A) (direct) .

In case X is reflexive and n > 0 it follows that if (3.2) is satisfied
as X tends to 0 taking values of a sequence X3 —> 0, then there exists
2)~n such that (3.3) holds. Thus (3.2) holds if and only if xe R(An).

Proof. We prove the theorem by induction on n. Let x e R(A)
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and x — Ay. Then

λ(λ + A)-'x = XA(X + A)~xy -+ 0 as λ —> 0 .

Thus by the Banach-Steinhaus theorem we have λ(λ + A)~xx —> 0 for
every x e R(A). Conversely let Xj(Xj + A)"1^ converge weakly to 0 as
Xj —» 0. Then using a? = λy(λy + A)"1^ + A(λy + A)"1^ we see that x
is the limit point of A(Xd + A^x e iϋ(.A).

In case X is reflexive, choose a sequence λ, —»0 and let xh be a
weak accumulation point of {Xj(Xj + A^x}. Since AXj(Xd + A)~λx —• 0'
as Xj—»0 and A is closed, it follows that x f t eΰ(A) and Axh = 0. 0
is then a weak accumulation point of {λ^λ^ + A)~\x — xh)} =

{λj ίλy + A)-χx — α;Λ}. Hence we obtain x — xhe R(A) as above. Clearly
the decomposition is unique.

Let n > 0. If y_n e D(An)f]R{A) and a? = Any_n, then (3.3) follows
from (3.1) and the theorem for n = 0. Conversely let (3.2) be true.

Then by the induction hypothesis it follows that y_n+ί e DiA"-1) Π R(A)
and y_k = i4.n"*""1j/-n+i The remainder in (3.2) is equal to J?_%+1(λ, a?) =
(-1)—V- x(λ + A)-V—+i. Now let ( - l J — V ^ Λ - +Ai* ») converge
weakly to τ/_w as λ, —> 0. Since A is closed and

it follows that y_n e D{A) and y_n+1 = Ay_n. Noticing that (λ + A)"1

maps R(A) into R{A) we have also y_n e R{A).

DEFINITION OF THE SPACE R°. Let σ, n and p be as in the pre-

vious section. The space Rσ is by definition the set of all x e R(An) Π R(A)

such that the remainder 2ί_n(λ, x) in (3.3) satisfies

(3.7) Rn(\x)=\°(Xn ί

; -nK ' ' (O^- 1) in case ^ > 0 .

Note that x e Rn if and only if there is a y_n e D{An) Π R(A) such that
a? = Any_n.

We introduce a locally convex topology in R° in the same way as
in D° by the following family of semi-norms:

( i ) | |»_ 4 | | for k = l, . . . , n ,

(ii) I £ < λ"σ+1iί_n(λ, a?), /

for all 7/' 6 Xr and all measure m of finite variation on (0, 1],
The following theorem which is analogous to Theorem 2.5 permits

us to reduce most of the discussion about Rσ to the case of Dσ.

THEOREM 3.2. Let AR be the restriction of A to D(AB) = D(A) Π R(A)^
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Then AR satisfies the assumption (1.5) in R(A), is one-to-one and has
•a dense range there. The spaces Rσ(A) corresponding to A are the
same as Rσ(AR) corresponding to AR. y_h in (3.3) is precisely AR

kx
and the remainder is given by

Furthermore, the inverse AR1 has the resolvent

<3.8) (λ + A*1)-1 = λ - ^ λ " 1 + A)"1 Jroy

which satisfies (1.5); and R°(A) is the same as and is isomorphic to

Proof. First we prove that AR is one-to-one. This is a consequence
of Theorem 3.1. In fact, if xeD(AB) and ARx = 0, then

x = χ(χ + A)-'x + (λ + A)^ARx —> 0 as λ -»0 ,

so that x must be 0.

The range R(AR) is dense in R(A) because if x e R(A), then, by

Theorem 3.1, A(X + A^x—>x as λ—>0 and (λ + A)"1 maps R(A) into

R(A). As is easily shown, (λ + AR)"1 coincides with the restriction of

<λ + A)-1 to R(AJ:

•(3.9) (λ + A ^ = (λ + A)-1 |^y .

Thus Aβ satisfies (1.5).
Now it is easy to see that Rσ(A) coincides with R°(AR). In par-

ticular we have Rn = R(An

R) for every integer n ^ 0.
Since λ +-4.51 = (λ>AR + I)AR\ and since A^1 and λA^ + /, λ""1 e p(—A),

are one-to-one, (3.8) follows from (3.9).
It remains to prove that Dσ(A^1) = Rσ(A). If σ is an integer n,

then we have D*{At) = D(AR

n) = i2(Aj) = i?%(A). Further, it follows
from (3.8) that

(3.10) XRMΰ\ λ, x) = -λ-Ή.ΛA*, λ-1, x)

for every x e D%{At) = Jf2n(Afi). Now it readily follows that Da(At) =
^^(Aij) = jβσ(A) and that the topologies of the two spaces are identical.
This completes the proof.

The results in § 2 may be translated in terms of Ra. We just state
two of them.

LEMMA 3.3. If μ > 0, then A(μ + A)"1 is a one-to-one continuous
mapping from R° onto Rσ+1. We have also

A(μ + Aj-'x ~> x (Rσ) as μ->0
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for every xe R°.

THEOREM 3.4. // σ' > σ, then Ra' c R\ R° is dense in Rσ and the
embedding map ψ%': Ra' —* R° is continuous.

Before leaving Rσ, let us investigate the relation between R° and
R(An). As we have shown above, Rn = R(A%). Therefore, Rn c R(An).
If X is reflexive, they coincide with each other because of (3.6). We
define a norm in R{An) by

Since the set {y; Any = 0} is closed in D(An), R(An) becomes a Banach.
space with this norm. The topology of Rn is defined by the same
norm, so that Rn is a closed subspace of R(An). If σ < n, we have
R° ZD R(An). Therefore, there is the following inclusion relation:

R(A) = ffD

THE SPACE D°[)Rτ. Let σ and τ ^ 0. We introduce in the set
Dσ Π Rτ the weakest topology that makes both the embedding mappings,
into D° and into Rτ continuous. Since Dσ and Rτ are quasi-complete,,
it follows that DaΠRτ is quasi-complete.

LEMMA 3.5. Let μ > 0. Then μ(μ + A)-1 (A(μ + A)"1) is a one-
to-one continuous mapping from DσΠRτ onto Da+1f]Rτ (Dσf]Rτ+\
respectively). We have also

μ(μ + Aj-'x -+x (Dσ Π Rτ) as μ -> oo

(A(μ + Aj-'x ->x (DσΠ Rτ) as μ-+0)

for every xe DσnRτ.

Proof. It is enough to prove that μ(μ + A)^x e Rτ, that

μ(μ + A^x —> x (Rτ) as μ —> oo f

and the corresponding facts for A(μ + A)"1 and D°. If (λ + A)""1^
satisfies (3.3) with the remainder jβ_w(λ, x) = (-l)Λλn

then α;'4 = JM(J« + A)"1^ satisfies

(λ + A)-^ = 7/ίί, ~ λ^ίi2 + + (- l)*-V-yu + i2^(λ, ^ ) ,

where ytk = JU(JU + A ) " 1 ^ and B-Λ(λ, α̂ ) - /£(/£ + A)- 1 !?,^, a?) =
{-l)nXn(X + A)-'ytn. Thus ^ belongs to Rτ. Since y_ke D(Ak) a D(A),
it follows from Lemma 2.4 that 2/ίί.fc —> /̂_fc as // —> oo, which proves.
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x^—^x (Rτ). The statements about A(μ + A)~ι are proved similarly.
Hence it follows that:

THEOREM 3.6. // σ'^σ and τ'^τ, then DσC)Rτ' is densely
contained in DσΠRτ, and the embedding map is continuous.

THEOREM 3.7. Let AB = ADf]AR, or the restriction of A to
D(AB) = {x e D{A) n R(A), Ax e D(A)}. Then AB is one-to-one, the
domain D(AB) and the range R(AB) are both dense in D(A)ΠR(A), and
AB and A~£ both satisfy assumption (1.5) in D(A)f]R(A). Moreover,
the spaces Dσf]Rτ corresponding to A remain unchanged if A is
replaced by AB.

4* Definition of fractional powers of operators* In this
section we give the definition of the fractional power Aa of an operator
A which satisfies the assumption (1.5), separating a into three cases:
(i) Re a > 0, (ii) Re a < 0, and (iii) Re a — 0. Let us begin with

THE CASE Re a > 0. First, we take a number σ > Re a, and define
Aa

σx, x e Dσ, by

Aa

σx — Aax if a is an integer and

(4.1) Alx = - s m 7 T O Γ Γ λ * ( λ + A)~λxd\

π LJO

XaRn(X, x)d\ + Vi ("l)^"1"1 , otherwise.

Here N is an arbitrary fixed positive number and λα = exp (a log λ).
Clearly the integrals converge and the right-hand side represents a
continuous linear operator from D° into X = Xw equipped with the
weak topology. By a simple computation it is seen that Aa

σx does not
depend on N and that if σ < &', then Aa

σx — Aa

σ,x for every x e Da>'.
If n < Re a < σ, we may let N—> 0 and obtain

(4.2) Alx = (-iysmπa f\«—-^(λ + A)-ιAnxd\ .
π Jo

This expression was used by Balakrishnan [2] to define Aa.

PROPOSITION 4.1. (Balakrishnan [2]). Al has a closed extension
as an operator in X, and its smallest closed extension does not depend
on σ > Re a.

Proof. Since A and (λ + A)"1 are commutative with (μ(μ + A)"1)1,
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I — 1, 2, , μ > 0, it is easily shown that

(4.3) A«σ(μ(μ + A)'1)^ = (μ(μ + A)-yAa

σx, x e Ό° .

(μ(μ + A)"1)1 maps X continuously onto D(Aι) and, hence, into Dι~\
ε > 0. Thus, the left-hand side of (4.3) represents a continuous linear
operator in X, if I > σ.

In order to prove that Aa

σ has a closed extension, let xά e Dσ be a
sequence such that x3- —> 0 and Aa

σx0 —> y in X. Replacing x in (4.3)
by Xj, and taking the limits of both sides, we have

0 - (μ(μ + Ayjy .

This proves y = 0.
Let σ < σ'. It follows from Theorem 2.5 and the continuity of

A% that the closure of the graph G{A%,) = {(x, Aa

σ,x); x e Dσ'} in Dσ x Xw

is identical with G(Aa

σ). Since the closure of G{Aa

σ,) in Xw x Xw is
equal to the closure of its closure in Dσ x Xw, we have the statement.
This completes the proof.

The smallest closed extension of A£, whose existence and uniqueness
have been proved above, is defined to be the fractional power of A and
denoted by A+, or Aa if there will be no confusion.

PROPOSITION 4.2. The fractional power A+ coincides with the
fractional power Aa

D+ of the operator AD. Furthermore, if a is an
integer n, then A% is equal to Aj, the n times iteration of AD. In
particular we have D(A+) = D(Al) = Dn.

Proof. In view of Theorem 2.6 we see that A% is the same as
A%σ. Thus the former part follows.

Now let x e Dn. For every j « > 0 w e have μ(μ + A)"^ e Dn+1aD{AX)
and

An

+(μ(μ + A)-1)^ - An(μ(μ + A)"1)^

Here let μ tend to infinity. Then we obtain μ(μ + A)""1^ —> a? and
μ(μ + A^AβX —> Â α? by Lemma 2.4. Hence x e i)(A%

H) and A!{.̂  coin-
cides with An

Dx. Conversely if xe Dσ with σ > w, then by definition
we have A+a? = Anx = Ajα;.

Since A^ has a nonvoid resolvent set in D(A), An

D is closed in D(A)
(cf. Theorem 6.1 of Taylor [18]), and hence in X. Thus A£ is an
extension of A%

PROPOSITION 4.3. The domain D(A+) is contained and dense in

D(A), while the range R(A%) is contained in D(A)f]R(A).
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Proof. Since D% a > Re a, is contained and dense in D(A), the

former part is clear. To prove the latter part it suffices to show

R{Aa

σ) c D(A) Π R(A) for a σ. As we have seen above A% is an operator

in D(A). Thus the range is contained in D(A). We remark that

U»(λ, x) and Afcα; for k = 1, , w are elements in ΐ!(A). Now let iV

in (4.1) tend to zero. Then the first term and the term Nax/a tend

to zero. Therefore, Aa

σx is a limit point of elements in R(A).

Later we will prove that the range R(A+) is dense in D(A)f]R(A).

PROPOSITION 4.4. A+ commutes with (μ(μ + A)-1)1 and (A(μ + A)-1)1,
whenever μ > 0 and I = 1, 2, . Namely, if a G D(A%), then

+ A)-1)^ and (A(μ + A)" 1)^ belong to D(A"+) and

(4.4)

<4.5) AΪ(A(JM + A)-X)lx =

Proof. (4.4) follows easily from (4.3). (4.5) is proved similarly.

PROPOSITION 4.5. If a? e D(Aa

+), then for every I = 1, 2, •

Aa

+(μ(μ + A)" 1)^ —> A+x as // -> oo .

Conversely if y5 = A\(μά(μά + A)~ι)ιx exist for an x e D(A), and if
/̂j converges weakly to an element p l a s μd —» oo y then # e D(A+)

and Aa

+x = 7/.
Especially let X be reflexive. Then x belongs to D(Aa

+) if and
only if {A2^{μj(μj + A)"1)^} is bounded for an I and a sequence /*/—> °°.

Proof. The first statement is an immediate consequence of Pro-
position 4.4. The second and third statements follow easily from the
closedness of A+.

Lemma A5 in Kato [11] holds without the reflexivity of X.

PROPOSITION 4.6. Let n<Rea < n + 1 and x e Dn. If

din 77W f ^J
\4.Όj ^ — l j \ λ. JLyAu - j - / I ) ^ L CC(XΛί

π Jo

•converges weakly to a 7/e X as Nj—> oof then a?e £>(A+) and A+# = y.
In case X is reflexive, x e D(Aa

+) with n < Re α < n + 1 if (4.6)
is uniformly bounded for a sequence Nd—> 00.

Proof. Since the integrand belongs to JD(A), we have yeD(A).
If μ > 0, then μ(μ + A^xeD**1, so that A«(μ(μ + A)~> is defined
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by (4.2). Therefore,

A%(μ(μ + A)^)x

π Jo

= w-lim (-l) βinπ« Γ'v—*
i-»~ 7Γ Jo

= μ(μ + AJ- *ϊ!L5
J-oβ

This shows, by Proposition 4.5, that xeD(Aa

+) and y = A+x.

PROPOSITION 4.7. If a? e Z>σ, then Aa

+x is an analytic function of
a on the strip 0 < Re a < σ. Moreover,

II A\x || ^ C(σ, α)tfσ(α;)Reα'σ || a? ||<σ-Re«>/"

holds for every xe Dσ with a constant C(<7, α) depending only on a
and a.

Proof. It is clear by (4.1) that A\x is analytic in a unless a ia
an integer n. But a = n is not a singularity because A\x —> A%α? as.
α tends to ^. Estimating each term in (4.1) we obtain

π I L Re a k=o\a — k\
jyReα-σ η

σ — Re a J "

|sinτrα|/|<x — fc| is bounded by const eπlIma{, and we have by Theorem
2.3 the estimates

II Akx | | ^ C{σ){Nk-°qa{x) + Nk\\x | | ) , & = 0, . , n, 0 < iV .

Hence it follows that

(4.7) || A\x || ^ CΛ
α;

with a constant Cx(σ) depending only on σ. Taking the minimum of
the right-hand side we obtain the desired inequality.

PROPOSITION 4.8. Let Re a > 0 and m = 1, 2, 3, . If σ > m +

Reα:, then

(4.8) AsA^α; = A^A;a? = A^+αx , xeDσ .
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Proof. By definition x e D° if and only if x e D(A%) and A™x e Dσ~m.
Thus A% belongs to D(A+). Making use of expansion (3.1), we have

\\a(X + AY
Jo

m —1 \fa + m—k

+ Σ (-l)™+k+1-±ί Akx .
k=o a + m — k

In view of definition (4.1), this proves that

A«_mAlx = A?+α£ , x e D° .

Notice that the integrals defining Aax converge in the sense of Riemann
and that the integrands are commutative with A%. Then the former
part of (4.8) follows easily from the closedness of A™.

PROPOSITION 4.9. Let Re a, Re β > 0, and σ be sufficiently large.
Then we have

(4.9) Aa+A%x = Aa

+

+βx , xeDσ .

Proof. Combining Proposition 4.7 with Proposition 4.8 we see that
if m is an integer such that 0 ^ m < σ, then for every x e Z)σ, Â .α;
is a Z)m valued analytic function of a on the strip 0 < Re β < σ — m.
If Re a < m, A+ is a continuous operator from Z)w into X. Thus
A+Aζ.x is analytic in β in the domain defined by 0 < Re a < m and
0 < Re /3 < σ - m.

From Proposition 4.7 it follows that A+Aξ.$ is analytic in a in
the same domain. Therefore, it is analytic in a and β. Similarly
Aa+βx is analytic in a and β.

Thus in order to prove (4.9) in general it is enough to prove it for
0 < R e α + R e / 3 < l and say for all x e D(A2). We have by (4.2)

^ ^ smπ/3
π π Jo

7Γ 7Γ Jo Jo λ — Γ

Since the integrand is analytic, we may take for the path of inte-
gration of λ a line parallel to and slightly above the real axis and
for τ a line slightly under the real axis. Splitting the integrand into
two terms, we obtain

A * + A β χ = _ s i n τ r α s i n π ( ) ^

π π LJo Jo
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2™L [V(λ
π Jo

^ M [°>(
7Γ Jo

+ A Y i

τ + A^AaK-r +

π

THE CASE Re a < 0. Similarly as in the case Re a > 0, we define
Aiσ# for x e R° and for —σ < Reα < 0 by

A"σ# = ya if α is an integer or

(4.10) - _sinπαΓfVi2_(λ, x)d\
π LJo

+ Σ ( - l ) f c + 1 ^ α + f c y,ife + ί°°λα(λ + ^ - ^ d λ ] otherwise,
fc=i α + k JΛ J

where i?_u(λ, x) and /̂_fc are as in (3.3) and (3.4) and N is an arbitrary
fixed positive number. A°Lax does not depend on N and σ as far as it
has a meaning.

Now we might pursue the analogy of the case Re a > 0 and could
prove that A°Lσ has the smallest closed extension independent of σ,
etc. We remark, however, that A°Lσ defined above is the same as
{A£)~a. For, the domains Rσ(A) and Dσ(A£) are one and the same as
was shown in Theorem 3.2, and it is easily proved by (3.10) that the
expression (4.10) is identical with the expression (4.1) for Aχ\

Consequently we have the following proposition as a corollary of
Propositions 4.1-4.9.

PROPOSITION 4.10. Let R e α < 0 and A°Lσ be defined by (4.10).
Then ALσ has the smallest closed extension AL in X which is independent
of σ. A°L is identical with Aj_ — (A^)+a defined by AB and if especially
a is a negative integer — n, Al coincides with Aχn in the usual sense.
The domain D(Aa) is contained and dense in R{A), and the range R(A°L)
is contained D(A)f)R(A). A* is commutative with bounded operators
(μ(μ + A)-J and (A(μ + A)-1)1, μ > 0, I = 1, 2, . . . .

For every x e R% Aax is analytic in a on the strip —σ < Re a < 0.
If Re α, Re β < 0, then there is a σ ^ 0 such that

Ai.A5.aj = Ai+%

holds for every x e i?σ.
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THE CASE Re a = 0. If Re a = 0, the integral (1.2) becomes singular
both at infinity and at zero. Therefore, first we restrict the domain
to Dσf)Rτ, where σ = n + p and τ = m + π are positive. Aax for
x e D° Π Rτ is defined by

Aa

στx = a? if α = 0 or

(4.11) = _ sin r

+ Σ (~l)fc+1 N" * ABx + ί"λβ.βΛ(λ, #)dλ], otherwise.

As before N is an arbitrary fixed positive number, and it has nothing
to do with the value of Aa

στx.
The right-hand side of (4.12) expresses an analytic function of a

on the strip — τ < Reα < σ and it coincides with A°Lτx and A*x in
the subdomain — τ < Re a < 0 and 0 < Re a < σ, respectively, Thus
it is possible to give another definition of fractional powers by means
of the operator A$τ even in the case Re a Φ 0.

PROPOSITION 4.11. For every complex number a, Aa

στ has the
smallest closed extension A% independent of σ and τ such that
— τ < Re a < σ.

Proof. This may be proved in the same way as Proposition 4.1
by making use of operators (μ(μ + Ayι)ι(A(v + A)"1)11 in place of
(μ(μ + A)-%

PROPOSITION 4.12. Aa

ϋ coincides with the fractional power (AB)%
of the operator AB. If a is an integer n, A% is equal to An

B.
In case Re a > 0 (Re a < 0), A% is the restriction of Aa

+(A°L) to the
domain D(Aa

0) = D(Aa+) (UΪ(Aj (D(Al)Γi7)(AJ, respectively).

Proof. In view of Theorem 3.7, the first statement is clear. The
second statement follows from the third statement and Proposition 4.2
and 4.10.

To prove the third statement, let Re a > 0. Obviously A" is a
restriction of A\ and we have D(A") c D(Aa

+) n R(A). Conversely let
x e D(Aa

+) f)R(A). If I is sufficiently large, x^ = (μ(μ + AyyAψ + Ayxx
belongs to Dι~* ΠR1"2 czD(Aa

0), and it follows from Proposition 4.4 and
Theorem 3.5 that x^ —> x and Aa

Qxμv —• A\x as ^ —• oo and v —• 0. Thus
we have x e D(-4j). The proof in the case Re a < 0 is similar.

Analogously to Proposition 4.9 we have
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PROPOSITION 4.13. Let a and β be complex numbers. If a and
τ are sufficiently large, we have

AΐAξx = Aa

0

+βx , x e Da Γ) Rτ .

Proof. We omit the details of the proof which is essentially the
same as that of Proposition 4.9. We note only that if an integer m
satisfies -τ < m < σ, then Al maps Dσf]Rτ onto Dσ-mni?Γ + m

homeomorphically and that if, in addition, the real parts of a complex
number a and a + m satisfy the same condition, then we have

A%A%x = AlA%x = Aa

0

+mx , x e Dσ n Rτ .

5* The case where A"1 is bounded* In this section we confine
our attention to the class of operators A which has a bounded inverse
A"1 and satisfies (1.5). μ + A satisfies these conditions if μ > 0 and
A satisfies (1.5).

The distinctive feature of this case is that (λ + A)"1 is regular at
zero. In fact, (3.3) is satisfied for every n by setting y_k = A~~k%,
k = 1, , n. Thus it follows that R° = X and, as is easily seen,
these spaces are isomorphic. (Conversely, we can prove that if Ra = X
for a σ > 0, then A has a bounded inverse.)

In particular, A°Lx is defined everywhere and analytic in a if
lie a < 0. Furthermore, if x e Dσ, then Aα# is analytic in the half-
plane Re a < σ.

The following proposition gives a useful representation of AOL. This
Λvas used by KrasnosePskii-Sobolevskii [13] to define Aa and A~a.

PROPOSITION 5.1. Let A have a continuous inverse and n be a
positive integer. Then for every a with — (n + 1) < Re a < 0 we have

<5.1) AI = V ( λ + A ) Ή λ ,
x ; π (a + 1) ••• (α: + n) Jo

where the integral converges in the uniform operator topology.

Proof. It is evident that the integral (5.1) converges in the uni-
form operator topology and represents an analytic function of a for
— (n + 1) < Reα < 0. Integrating (5.1) by parts, we see that the
integral does not depend on n. When n = 0, (5.1) coincides with (4.10),
Thus it follows from the unique continuation property of analytic
functions that (5.1) holds for —(n + 1) < Reα < 0.

We remark that Aa

0 = A% for Re a > 0, while A« = At |^y for
He <2 < 0 and that the latter operator is bounded in D(A).
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PROPOSITION 5.2. If Re a < 0 (Re a > 0) and x e D(Aξ) (x e D(Aa

0

+β))9

then x e D(Aa

Q

+β) (x e D(A§), Aβx e D(A$, respectively) and

<5.2) AζAξx = Aa

0

+βx .

In particular, D(A$) c D(Aξ) if Re a > Re β.

Proof. Let Re a < 0. By Proposition 4.13, (5.2) holds for all
xeDσ if σ is sufficiently large. If xeD(Aξ), it can be approximated
by a sequence x3- e Dσ in such a way that xs —• x and A ^ —> ilfa?.
Since A; is bounded, A Q A ^ = A(^+βxj converges to A"Aξx. This proves
by the closedness of Aa

0

+β that x e D(Aa

0

+β) and A«+βx = ASA?x. The
proof in the case Re a > 0 is similar.

COROLLARY 5.3. 1/ R e α > . 0, then Aa

+ = Aj is ίfeβ inverse of
A^a = Aza |^ΰ). ί?t particular the domain D(Aa

+) is contained in the
range R(Aza).

PROPOSITION^5.4. Let Re a > 0. If Re a is not an integer, then
the range R(Aza) is contained in DRca and there exists a constant
depending only on M, L and a such that

<5.3) qnea(Azax) ^ iΓ(α) || a? || , x e X .

If a is an integer n, then Azβ = A~n, so that i2(Aiα) = D(An). Finally,
if Re a is an integer n and a Φ n, then i2(Azα) c D(AW~1) and there
exists a constant iίi(α) depending only on ikf, L, [| A""1 j | and α such
that

.(5.4) || An(x + AY'A^x \\ S K^cήX-1 log (λ + 2) || x || ,

α J G X , 0 < λ < c > o #

Consequently R(Aza) is contained continuously in DRea~s for every

-e > 0.

Proof. Let α = n + β, where % = 0, 1, 2, and 0 < Re β ^ 1.
In view of Proposition 4.10, we can show that

A~a = A~nAzβ

similarly to Proposition 5.2. Hence we have R(Aza) c D(An) and

AnAzax = Az% , x G X .

Thus the problem may be reduced to the case n — 0. The statement
is obvious in the case β — 1. Let β Φ 1. Then we have by Propo-
sition 5.1
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sinτr/3
A)-*xdτ .

We split the integral into two parts and estimate each of them as
follows:

|| A(λ + A

(λ + A)AK(A(τ + AY^τ^τ + A)~ιxdτ \
J

τ'-^τ-'dτ \\x\
o

S LM\1 - Re iSJ-V*" 11 a? 11 if Re /3 < 1 .

In case Re β = 1, the last integral becomes infinity. We note, how-
ever, that there is a constant ϋΓ such that || (τ + A)"11| <; J5L(1 + r)"1,.
0 < τ < oo. Thus the last integral may be replaced by

= MLKX-1 log (1 + λ) || x || .

PROPOSITION 5.5 (KrasnoseFskii-Sobolevskii [13]). Let α, β and r
be complex numbers such that Re a > Re 7 > Re β. Then we have

(5.5) 11 Aix 11 ^ C(α, /3, 7) 11 A?x | Π | Aξx \ \^ , xe D(A?) ,

where

(5.6) 0 = Re (7 - /3)/Re (a - /S)

in case Re (a — β) is not an integer or a — β is an integer, and an
arbitrary number greater than the right-hand side of (5.6) otherwise..
The constant C(α, β, 7) depends only on a, β, 7 and θ.

Proof. In view of Proposition 5.2 we may assume that β = 0..
Then the statement is an immediate consequence of Propositions 5.4 and
4.7.

6. Domain D(Aa). We examine the domain D(Aa

+) (D(A°L)) in
connection with Dσ(A) and D((μ + A);), μ > 0 (Rσ(A) and £>((A(μ + A)-1)!),,
μ > 0, respectively). First we note

PROPOSITION 6.1. Dσ(μ + A) is identical with and isomorphic tσ
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Da{A) for every σ ^ 0 and every μ ^ 0.
We omit the proof which is straightforward.

PROPOSITION 6.2. Let μ > 0 and v ^ 0. Then the bounded operator
(v + A)(μ + Ay1 satisfies (1.5). If Re a > 0, then its fractional power
((y + A)(μ + A)"1)" is bounded and expressed as

(6.1) ((v

where the integral is taken in the sense of Sato. In terms of the
convergent integral this is equal to

(6.2) 1 + a(v - μ)(μ + A)"1 + . . .

+ α ( q - l ) . . . ( α - n + l ) _ + A)_n

nl

7Γ

where 7i is an integer such that n + 1 > Re a.

Proof. It is easy to see that if λ > 0, then (λ + (v + A)(μ + A)-1)
is one-to-one and the inverse is given by

(6.3) (λ + l )- 1 ^ + (μ- v){\ + l)~\X(μ - v)(\ + I)" 1 + v + A)'1) .

Thus (v + A)(μ + A)-1 satisfies condition (1.5). Since (v + A)(μ + A)-1 is
bounded, it follows that D°((v + A)(μ + A)-1) = X for all σ ^ 0 and that
they are isomorphic to each other. Therefore, {{v + A)(μ + A)-1)01 is
bounded for Re a > 0 and analytic in a. On the other hand, an easy
calculation shows that expression (6.2) does not depend on n as far as
0 < R e α : < w + l and represents a bounded operator valued analytic
function of a for Re a > 0. Thus it is enough to prove that (6.1) is
true for 0 < a < 1. This can be done by expressing {(v + A)(μ + A)""1)*
as integral (4.2) in terms of (6.3) and then by changing the variable
as τ = (Xμ + l)/(λ + 1).

PROPOSITION 6.3. Let Re a > 0, μ > 0 and v ^ 0. If x e D(A)y

then (μ + A)^ax e D((v + A)a

+) and

(6.4) (v + A)\{μ + A)oax = ((i;

If ^eJ5((v + A)«+), then

(6.5) (μ + A)oa(v + A)\x = (v + A)a

+(μ
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Proof. First we prove that (6.5) is valid for every xe Dσ if σ is
sufficiently large. In view of Proposition 5.1, we see easily that
(μ + A)za maps Dσ into Dσ for every σ and that it commutes with Ak

and (λ + A)~k. Therefore, we have

(μ + A)za{v + A)a+x = (v + A)%(μ + A)zax

for every x e Dσ if # > Re a.
Let a? G D% σ > 0. Then it follows that (μ + A)za(v + Aftα is

analytic for 0 < Re a < σ since (μ + A)za is analytic for Re a > 0 and
(v + A)a

+x is analytic for 0 < Re a < σ. ((v + A)(μ + Ayψ+x is also
analytic for Re a > 0, and expressed by integral (6.1). Therefore, to
prove (6.4) for x e Dσ, it is sufficient to show that (v + A)α(/^ + A)~ax
is equal to the integral (6.1) for 0 < a < 1 and all x e D{A). By (4.2)
and (5.1) for n = 0 we have

(v + A)a

+(μ + A)zax

\ 7Γ

( ) ( ) ( ^ ) (

Now by a similar computation as in the proof of Proposition 4.9 we
obtain

{v + A)"+(μ + A)zax

= s ί ϊ l 7 Γ α Γ Γ ( λ - J ; )*- 1 ^ - λ - ίθ)-α(λ + A)-1^ + A)xd\
π LJv

- r )a-x(r + A)~\v + A)xdx\

( V ) ^ )~α(λ + A)-\v + A)xdX
π >

S H l ^ f"(Λ, - y)«(^ - λ)-«(λ + A( ^
π JV

Thus we have proved that (6.5) holds for every x e Dσ when σ is large
enough.

Hence the statements of the theorem follow by the same arguments
as in the proof of Proposition 5.2.

THEOREM 6.4. If Re a > 0, the domain D((v + A)%) does not depend
on v Ξ> 0 and coincides with the range R((μ + A)^a) = R((μ + A)za |sc3y)
/or JM > 0.

Proof. It follows from Proposition 6.3 and Corollary 5.3 that if
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μ > 0 and v ^ 0,

D((μ + Aft) = R((μ + A)o-«) c 2?((y + A);) .

Thus if μ and y are positive, then we have D((μ + A)+) — D((v + Af+)
and £((/* + Aft) is contained in D{A%).

To prove that D(A\) c D((μ + Aft), we show that the restriction
of A+ to D((μ + Aft) is closed in X. Proposition 6,3 gives

(A% ~(μ + A)"+)(μ + A)ό«x = a(-μ)(μ + A)-*x + . . .

l ) - > - ( α - n + l ) ( ) > ( + A r a .

- s m π a \ χ«(μ - χ)~a+n(
π Jo

for every a? e J5(A). We notice that the right-hand side remains bounded
if we operate μ + A on both sides. Therefore, there is a constant C
such that

| | (μ + A)(Aa

+ ~(μ + A)*+)x \\£C\\(μ + A)%x | | , xe D((μ + Aft) .

Let £ = (^ + A)"1^ with y e D((μ 4- A)^) and use Propositions 4.4,
-5.2 and 5.5. Then we obtain the estimate

«+ - (μ + A)β

+)i/1| g C \\ (μ + A)W II

•with a constant d independent of 7/ e D((μ + A)5_). Hence it follows
that

ISίow it is easy to see that A\ restricted to D((μ + A)+) is closed.

THEOREM 6.5. Let R e α > 0 . If a is real or Reα is not an
integer, then D{A\) is contained in the space DBea. There is a
constant K{a) depending only on M, L and a such that

(6.6) gReα(x) ^ K{a) \\A\x\\, xe D{A\) .

Thus the embedding map is continuous. Even when Re a is an
integer, D(A%) is contained in every DBea~- for ε > 0 continuously.
In particular, we have D(A°\) c D(A%) if 0 < Re β < Re a.

Proof. The statements except (6.6) are immediate consequences of
Theorem 6.4 and Proposition 5.4. Let Re a = n + p, 0 < p < 1. Then
<(6.6) is equivalent to
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(6.7) || An+1(X + AY'x || ^ K(a)χ-p \\ Aa

+x || , λ > 0 , x e D(Aa

+) .

It follows from Proposition 5.4 that if v > 0,

|| (v + A)n+1(X + v + A)~'x || S K{a)X-> \\ (v + Afts ||

for every x e D(A+), where K(a) does not depend on v. Let v tend tσ
0 with X fixed. Then clearly the left-hand side converges to that of
(6.7). Further, it follows from Propositions 6.2 and 6.3 that
(v + A)\{μ + A)za converges to A\{μ + A)za in the uniform operator

topology of D{A). Thus we have (v + A)a

+x -> A\x for every x e
This proves (6.7) and the proof is completed.

In view of Theorem 3.2 and in particular identity (3.8) the dis-
cussions concerning the domain D{A°L) may be reduced to the case
considered above. We summarize the results in the following propo-
sitions and theorems.

PROPOSITION 6.6. R°(A) is identical with and isomorphic to
R°(A(μ + A)"1) for every σ ^ 0 and every μ > 0.

PROPOSITION 6.7. Let Re a < 0 and μ > 0. If x e R(A), then

(A(μ + A)-%ax e D(A°L) and we have

AL(A(μ + A)~%ax = (μ + A)a

ox .

lΐ xe D(Aa), then it follows that

A°L(A(μ + A)~%ax = (A(μ + A)~V-^α = (β + A)Sa? .

THEOREM 6.8. // Re α: < 0 αticί μ > 0, we have

THEOREM 6.9. If Re a < 0 α^ώ if a is real or Re a is not an-
integer, then we have D(Aa) c ϋ!~"Reα, and the embedding map is con-
tinuous. When Re a is an integer, D(A°L) is not necessarily contained
in R~Rea, but it is contained in R-nea~* for any ε > 0 and the em-
bedding map is continuous. Thus we have D(A°L) c D(AL) if
Re a < Re β.

7* Additivity and range*

THEOREM 7.1. If Reα Re/3 > 0, then we have

<7.1) A%Aί = A%Ai = A??

in the sense of the product of operators.
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Proof. It is sufficient to consider the case Re a > 0 and Re β > 0.
The case Re a < 0 may be reduced to this case. We know that if σ
is sufficiently large,

<7.2) A%A%x = Aa

+

+βx

holds for every xeDσ. Theorem 6.5 shows D(Aa

+

+β)c: D(Aβ

+). Thus
there is a constant C such that

<7.2) |[ Aί& || ^ C(|| A«+% || + || x ||) , x e

Now let x e D(Aa

+

+β). Then there exists a sequence ^ e Dσ such
that ίCy -> x and Ay-% —> A°+

+βx. Hence we have, by (7.2) and (7.3),
—• A%x and A+A%x3 —> A++βx. This proves A£α; e J9(A+) and

Since Aβx e RζA), it follows that A\A%x =
Conversely let x e D(A+Λξ.). If ϊ is a sufficiently large integer, we

have x* = (μ(μ + A)-1)1 e Da and α?μ->a? as μ-+co. From (7.2) for
jxe Dσ and Proposition 4.4 it follows that

A)~ι)ιx

—• A+A^ cc as

Hence we have a? e D(Aa

+

+β) and A^βx =
If we use (μ(μ + A)^)ι(A(v + A)-1)11 instead of (μ(μ + A)-1)1, we can

prove that

for all a and β. On the other hand, we hnow that if σ and τ are
large enough, DσΓϊRτ is contained both in D(A"Aξ) and in D(Aj+/?),
and Ao+β is the smallest closed extension of its restriction to DσΓ)Rτ.
Thus we obtain the following theorem.

THEOREM 7.2. For arbitrary a and β we have

<7.4) [A°0A
β]σ = Aa

0

+β ,

-where [AQA^]0 denotes the smallest closed extension of A"A$.

More precisely the following theorem holds.

THEOREM 7.3. If x e D(Aβ) n D(Aζ+β), then Aβx e D(A«) and satisfies

<7.5) Aa

0A
βx = Aa

Q

+βx .

In particular, A% is one-to-one for every a and the inverse is the
same as A^a.



314 HIKOSABURO KOMATSU

Proof. Let x^ = (μ(μ + A)"y(A(v + A)"1)11 with I and h sufficiently
large. Then it follows that x^-^x, Aξx^^Agx and Aζ+βxflv = A?
-4fa?**" —• i4j+βa; as μ —* oo and v —> 0. Since -A? is closed, we have thu&
the statement of the theorem.

COROLLARY 7.4. 1/ A has a bounded inverse and if Re a > 0,,
then

(7.6) A?A? - Ap e .

Proo/. By Proposition 5.2, D(ilg) Π I>(il?+β) = D(Aζ+η.
The results obtained above give us information about the ranges,

of operators Aa

± and Aζ restriction to certain subspaces. We give here
only one proposition as an illustration.

PROPOSITION 7.5. Let Re a > Re β > 0. Then

(7.7) A%{D(A%))aD{Al)

if 7 = a - β or - R e β < Re 7 < Re (a - /3).

Proo/. It follows from Theorem 7.1 that

Aa

+ = i4j-pA5. .

This proves the proposition for 7 = α — /5. Similarly we have

Aβ

+ =

for 0 > Re 7 > - R e /9. Hence Theorem 7.3 shows that R(Aβ

+) a D(Ay

0)»
Now the proposition for a general 7 follows from Proposition 4.12 and
Theorem 6.5.

In this connection the following theorem will be interesting.

THEOREM 7.6. (i) Let σ >Rea > 0 and let σ — Re a: be not an
integer. Then Aa

+ maps Dσ into Dσ~Rea. (ii) Similarly let σ Ξ> 0,
R e α < 0 and let σ — Rea be not an integer. Then A°ί maps
DσΠD(A°L) into Dσ~Rea.

Proof, (i) We may assume that 0 < R e α < l without loss of
generality. First we consider the case Re a < p. It is clear from the
foregoing discussion that A"+x e D(An). Using (4.2) and the com-
mutativity of operators, A, A\ and (λ + A)"1, we obtain

An+1(X + AY'A^x = s m π a [ V
π Jo

— sin πa\π(Ix



FRACTIONAL POWERS OF OPERATORS 315

where Ix and I2 denote the integrals over (0, λ) and (λ, oo), respectively.
Since

(7.8) || A(λ + Aj-'Aiτ + A)~xAnx || g || A(τ + A)-1 \\\\ An+1(X + A)~ιx \\

^ Lqσ(x)\-' ,

we have

Hill £ Lqa(x)(Rea)-1\1B*a-li .

In the same way we have

(7.9) || J21| ^ L[~ I τ*"11 qσ(x)τ-pdτ

= Lqσ(x)(Re a - p)-1λReα-p .

Thus A\x belongs to D°-Rea.

In the case Re a > p, it is enough to make use of the estimates

|| A(λ + A)~ιA(τ + Aj-'A^x \\

' || A(X + A)-xA(r + Aj-'A^x \\

for I1 and J2, respectively.
(ii) We may restrict ourselves to the case 0 > Re a > — 1 as above.

First, let p - Reα: < 1. Since DσΠD(A°ί) is contained in D(A)Γ\B(A),
A°Lx = Aj a; and A%ίc = A%x hold for a? e D° Π D(A^). Hence we have by
Theorem 7.3 A°Lx e Dn and

(7.11) An+1(X + A)-χA°Lx = ilj+ β(λ + A)~xA%x

π Jo

In a similar way to (i), employing inequalities (7.10), we obtain

An+1(X + A)~ιAa_x = O(λReα"p) , X -> oo .

If ^ — Reα: > 1, we can apply A to (7.11) under the integral sign,
obtaining

An+2(X + AY'AZ.x = - s m π a [°τaA(X + A)- 1 ^^ + Aj-'A^dτ .

π Jo

From (7.8) and a similar inequality it follows that

An+2(X + Aj-'Alx = O(λReα~p+1) , λ -* oo .

8* Convexity and continuity in a.

THEOREM 8.1. Let Re a > Re 7 > Re/3. 27*,ew ίfcere is a constant
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C(a, β, 7) depending only on M, L, a, β, arg (a — 7), and a rg (7 — β),
such that

(8.1) II Alx II ^ C(α, /3, 7) || Ajx | | ' | | A ' α II1"0 , x e

where θ = Re (7 — /3)/Re (a — β). Subscripts for A%, A% and A\ are
assumed to be the same.

Proof. If R e α Re/S ̂  0, A may be replaced by AB, so t h a t we
have Alx = A$~βAgx, and ^ α ? = 4 Γ M . ^ . If R e / 3 > 0 , then by
Theorem 7.1 we have also A%x = ^ ~ M ^ and A^α? = A%~βA%x. Lastly
t h e case Re a < 0 is reduced to the above case by considering A^1

instead of A. Thus we may assume t h a t β = 0 and A — AB wi thout
loss of generality.

If R e α is not an integer, then it follows from Theorem 6.5 and
(4.7) t h a t

II A\x II ^ C(a)l^-NRey \\x\\+ — ^ ^ — J V R e ( γ ~ α ) || Aa

+x
LRe 7 Re (a — 7)

for all N > 0. Thus taking the minimum of the right-hand side, we
obtain (8.1) with C(a, β, 7) depending also on Re (α — 7). We may,
however, change the roles of a and β by Theorem 7.3. Therefore,
taking min {C(a, β, 7), C(β, a, 7)} for C(a, β, 7), we have the assertion.

If Re a is an integer, choose δt and δ2 such that 0 < dί < δ2 < Re α
and that any one of δl9 δ2, Re α — δt and Re α — δ2 is not an integer.
Applying the same method as in the proof of Theorem 2.3, we obtain
(8.1) for 7 = δx and δ2. If we use these inequalities and (8.1) for a = δ2

or for /3 = δu we can similarly prove the statement of the theorem.

THEOREM 8.2. Let x e D(A%) Π D(A%), Re a > Re β. Then Alx is
analytic in the strip Re/3 < Re7 < Reα, and it converges to A%x
(Alx) as 7 tends to a (β) in a Stolz region arg (a — 7) ^ θ < π/2
(arg (7 — β) έs 0 < π/2, respectively).

Proof. The analyticity is already known. Theorem 8.1 implies that
the operator Ay* from the space D(A%)Γ\D(Al) normed with | | # | | +
||Ajaj|| + | |A5 | | into X is uniformly bounded if 7 is in a ίixed Stolz
region. If x e Dσ with σ sufficiently large (or D° Π Ra or Rσ according
as Re/3 > 0 or Reα Re/3 ^ 0 or Re a < 0), then A\x is analytic at a
and β. Since D σ (or Dσf]Rσ or J2σ) is dense in D(A^)nD(A^), the
statement follows from the Banach-Steinhaus theorem.

PROPOSITION 8.3. Let xeD(Aa

+) for an a. Then Ay

+x converges

to x as 7-+O in a Stolz region if and only if x e R(A).
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Proof. If xeJR(A), then it follows that xe D(A°)nD(Aa

Q). Thus
A\x converges to x as 7—>0. Conversely if A\x —>x9 then x belongs
to R(A) as the limit of elements in R(A).

PROPOSITION 8.4. Let Re a > 0 and ya be a sequence such that
7j ->« in a Stolz region arg (a — y3) S θ < ττ/2. Then a?e -D(A*) if and
only if x e D(AyJ) for all j and A+y*τ converges (weakly).

Proof. Necessity is clear from Theorem 8.2, Let Ay

+

jx converge
weakly to an element y. Since x e Dnea~s for ε > 0, we have
(μ(μ + A)~ι)x e D(Aa

+), μ > 0. Thus it follows from the necessity part
and Proposition 4.4 that

A*+(μ(μ + Aj-^x = lim A\s(μ(μ + A)~ι)x

= w—lim

Let /i —• oo. Then the right-hand side tends to y because y is in D(A).
Therefore, we have by Proposition 4.5 xeD(A+) and A*+x = /̂.

9* Domination* The results of this section have been announced
by Krasnosel'skii-Sobolevskii [13].

PROPOSITION 9.1. If B is a closed linear operator from X to an-
other Banach space Y such that the domain D{B) contains D(Aa

+), then
for any β with Re β > Re a, there is a constant C such that

(9.1) || Bx || ^ C(|| A£B || + || x \\)θ \\ x \rθ , x e D(Aξ) ,

where θ = Re α/Re ̂ .

Proof. It follows from the closed graph theorem that there is a
constant Cx such that

(9.2) || Bx || £ 0,(11 A\x \\ + || x ||) , a; e

(9.1) is an easy consequence of this inequality and (8.1).

THEOREM 9.2. If a closed linear operator B satisfies (9.1) for a
β, Re β > 0, αraZ a θ, 0 < 0 < 1, £/̂ w £(£) contains D(Aa+) for
every a with Re a > 0 Re β.

Proof. We are concerned only with the domain D(A%), so that we
may replace A by A + 1 and assume that A has a bounded inverse
without loss of generality. Then ||A+#|| gives an equivalent norm to
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|| A%x || + || x || in D(Aa

+). Further we may assume that β in (9.1) is a
positive integer m, because if (9.1) is valid for a β, then it follows
from Theorem 8.1 that (9.1) holds for every β with a greater real part
without changing the value ΘReβ.

It is plain from (1.5) and (1.6) that

11 B(X + A)~mx 11 ̂  CLmθMm*-θ\X + l)—*1-*) 11 x \ | , x e ~D{A) .

This implies by Proposition 5.1 that for any Rea>mθ there is a
constant d such that

\\BAzax\\ ^ C7X || a? || ,

Since Aa+ is equal to {Aza)~ι \DU), we have (9.2), proving that D(B) ZDD{A"+).

PROPOSITION 9.3. Let A and B be operators satisfying (1.5) and
let D{B%) z> Z>(̂ 1+) for an a and a /9. Then we have D(B\) z> D(A\)
and

+ llajll), α? e

for any 7 and <5 such that 0 < Re δ < Re β and Re δ/Re β < Re 7/Re α.

Proo/. It follows from Theorem 8.1 that

II B*+x II ^ C I

^ d f l l 4 + » II + II a? | | ) R e δ / R e ^ II α? H1-

Now the statement follows from Theorem 9.2.

10* Resolvent and multiplicativity* This section is devoted tσ
the resolvent of A+m We note that 4̂+ is an operator in D(A), and
hence the resolvent is considered only in D(A). It has been shown,
however, that Aa

+ is determined by its restriction AD which has a dense
domain in D(A). Therefore, we may assume that D(A) is dense in X+
Further we shall restrict ourselves to the case a > 0, because this is.
the only case important in application. For the general spectral mapping
theorem the reader is referred to Balakrishnan [2].

First we need a specification of the operator A. From the as-
sumption (1.5) and the resolvent equation it follows easily that (λ + A)"1

exists at least for λ in the sector | arg λ | < arc sin (M"1) and that
λ(λ + .A)"1 is uniformly bounded on each ray in the sector. Write

M(θ) = sup II λ(λ + A)-1 II , θ ^ 0 .
|arg y|=0

Then by the Phragmen-Lindelof theorem M(θ) is an increasing function
of θ and satisfies some convexity property.
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Modifying the definition of Kato [10], we call an operator A of
type (ω, (M(θ)), 0 ̂  ω < π, if A is a densely defined closed linear
operator such that the resolvent set of —A contains the sector
I arg λ I < μ — ω, and

(10.1) sup || λ(λ + A)-1 (I ̂  M(θ) < oo
|argλ|=θ

holds for 0 S θ < π — ω. An operator A is of type (ω, M(θ)) for an
ω < τr/2 if and only if —̂ 4 generates a semi-group Tt which has an
analytic extension to the sector | arg t | < ττ/2 — ω such that the ex-
tended Tt is uniformly bounded on each smaller sector | arg t | ^ π/2 —
ω — ε, (Kato [10], Komatsu [12]).

THEOREM 10.1. If A is of type (ω, M(θ)) and if | arg c | < π — ωy

then cA satisfies (1.5) and we have

(10.2) (cA)l = caAl for all α: .

Proof. Since (λ + cA)~ι — c^c^X + A)"1, the former statement is
evident. To prove (10.2) it is enough to show that (cA)%x — caA%x
holds for all xeDσ with σ sufficiently large (or DσΓ\Rσ or Rσ). This
is proved by rotating the integration path in (4.1) (or (4.11) or (4.10))
since the remainders R+n(X, x) are estimated uniformly on each smaller
sector.

PROPOSITION 10.2. If A is of type (ω, M(θ)) and if 0 < a < πjω,
then every λ > 0 belongs to the resolvent set of —Aa

+ and the resolvent
is expressed by

(λ + A\)~ι - % ( α ζ r r ί - C i + A)-1

(10.3)
J55« (- Ξ!+ J55 ( Ξ ( Γ + AΓdz ,

π Jo λ2 + 2λτα cos TΓO: + τ2a

where ζi's are all roots of λ + ζα = 0 satisfying — π < arg ζ g π, and
the integral term disappears when α is an integer.

REMARK. The number h of ζ̂  is 0 when 0 < a < 1, 1 when α = 1,
2 when 1 < α < 3, 3 when α = 3, etc. This formula was used by Kato
[10] to define Aa for 0 < a < 1. A different proof is given by
Balakrishnan [2] for sufficiently small complex a.

Proof. Let us denote the right-hand side of (10.3) by I(λ, a). It
is clear that the integral converges in the uniform operator topology,
and hence I(X, a) is a bounded linear operator. If we prove that
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(10.4) (λ + A°+)I(X, a)x = J(λ, α)(λ + Aa+)x = a?

holds for every xe D° with sufficiently large σ, then the proposition
follows easily as the limits of both sides.

Since the integrand in (10.3) commutes with A and (λ + A)~\ the
commutativity is easy to see. Now we note that

J(λ, a) = ™^ Γ τ- (τ + Ardτ
π Jo λ2 + 2Xτa cos πa + τ2 α ;

(10.5)

2πi J

where ε is a small positive number and the integration path Γe runs
from ooei{ω+:) to —ε + iθ and from —ε — iO to ooe~i{ω+2). This is
proved by the standard technique of shift of integration path. Hence
it follows that I(λ, a) is analytic in ae (0, π/ω). lΐ xe D% (λ + A\)x
is analytic in ae (0, σ), so that f(λ, α)(λ + 4̂+)x is an analytic function
of α in the interval 0 < a < min (π/α>, σ). Thus it is sufficient to
prove (10.4) only for 0 < a < 1. Let x e D(A). Then in a similar way
to Proposition 4.9 we obtain

J(λ, a)A\x = ^iίi^

+ Γ τ " ( ~ τ ~ ^ ^ (τ + A ) " 1 ^ ^ I
Jo λ2 + 2λr2 cos πa + τ2a J

π Joλ2 + 2λrαcosτrα + τ2α "~

Now it is easy to see that this is equal to x — λl(λ, α)a?.

THEOREM 10.3 (Kato [10]). // A is of type (ω, M{θ)) and if
0 < a < τr/ω, ίfee^ Aα is o/ ί?/pβ (αω, Ma(θ)), where

(10.6) Ma(θ) £ (A
a

with h as in Proposition 10.2, and the resolvent (λ + A*)"1 is analytic
in a and λ in the domain 0 < a < π/ω, | arg λ | < TΓ — aω.

Proof. When arg 0 = 0, this is an easy consequence of the re-
presentation (10.3), since we have

π Jo λ2 + 2λrα cos πa + τ?α V a 1 λ

The case arg 0 ^ 0 can be reduced to this case because of Theorem 10.1.
The analyticity follows from (10.5).



FRACTIONAL POWERS OF OPERATORS 321

PROPOSITION 10.4. If x e B(A), then (λ + AXy^x converges strongly
to (λ + l)-1^ as a > 0 tends to 0.

Proof. We may consider only the case λ > 0. Since (λ + AX)"1

is bounded uniformly in a and D(A)C\R(A) is dense in R(A), it is
enough to show that

(λ + A^-'x — (λ + l ) - ^ , x e D(A) f] R(A) .

We have

(λ + Aα)-1x - (λ + l)"1^

= sin™ Γ- τ l __ ( r i r i ) a . ί r

7Γ Jo λ2 + 2λτα cos πα + τ2α

If a is sufficiently small, τ"(λ2 + 2λτα cos TOT + τ2")"1 is uniformly
bounded. Further, from the assumption that x e D(A) (Ί i?(A) it follows
that

|| ((r + A)-1 - (τ + I)"1)*; || = || (τ + l ) " 1 ^ +A)-1(1 - A)x \\ £ C(τ + I)"2 .

Thus we have

|| ( λ + Aaγiχ _ ( τ + l r i χ || ^ sinπα f- Ct

π Jo (τ +(τ + I)2

THEOREM 10.5 (Yosida [22], Kato [10], Watanabe [20]). // A is
an operator of type (ω,M(θ)) and 0 < aω < π/2, £/&ew —A\ is the
generator of strongly continuous semi-group exp(—tA°\) which is
analytic in the sector \ arg t \ < π/2 — aω and uniformly bounded on
each smaller sector \ arg 11 ̂  π/2 — aω — ε, ε > 0. exp (—tA%) is con-
tinuous in t and a in the uniform operator topology in the domain
I arg 11 < π/2 — aω, 0 < a < π/(2ω). Moreover, if xe R(A), then
exp (—tA°\)x converges strongly to exp (—t) x uniformly on every com-
pact set of the half plane Re t > 0 as a > 0 tends to 0.

Proof. The first and the second statements are direct consequences
of Theorem 10.3. The third statement follows from Proposition 10.4
and Theorem 3.2 by Trotter's theorem (Trotter [19]).

THEOREM 10.6 (Watanabe [20]). Let A be of type (ω, M{θ)). Then

(10.7) (A*+)i = Af

if 0 < a < π/ω and Re β > 0.

Proof. (Aa

+)ζ. and Af are defined to be the smallest closed exten-



322 HIKOSABURO KOMATSU

sions of their restrictions to Dσ(Aa

+) and Dτ(A), respectively, where a
and τ are sufficiently large. On the other hand, since (Aa

+)n = A"? for
positive integer n by Theorem 7.1, it follows from Theorem 6.5 that
Dσ{Aa

+) = D((Al)σ) = D(Aγ)(zDaσ-\A)czD{AT-1)) = D°-\AX) for positive
integer σ. Thus we have only to prove that

(10.8) (Aa

+)β

+x = il?α? , a? e Dτ{A)

holds if r is sufficiently large. We may assume that τ = a(σ — 1/2)
with a positive integer σ. Then, both sides of (10.8) are analytic in
β in the domain 0 < Re β < σ — 1. Thus it is enough to show (10.8)
for 0 < β < min {1, I/a}, and, say, for x e D(A).

By an easy computation it follows from (10.5) that

A°+(\ + A;)-1 = — J L [ ζ«(λ + ζ«)~%-\-ζ + Ay'Axdζ

for λ > 0 and x £ D(A), where Γθ is composed of two rays reiθ,
oo > r ^ 0, and re~iθ, 0 ^ r < oo 9 and θ must satisfy π > aθ > αω.

Therefore we have

π Jo

2π^ Jrθ
J2π^ Jrθ π Jo

α; e D(A) .
2m

We may let θ = TΓ in the last integral without changing the value and
obtain

(A%)%x = s i n

11Φ The case where —A generates a bounded semi-group*
Throughout this section we assume that —A is the infinitesimal
generator of a strongly continuous semi-group Tt which is uniformly
bounded in t:

(11.1) | | Γ t | | SM, QSt < oo .

A closed linear operator Λ satisfies this condition if and only if the
domain D(A) is dense, the negative real axis is contained in the re-
solvent set ρ(A) and

(11.2) | |λm(λ + A)~m\\ ^M , 0 < λ < o o , m = l, 2, . . . .

A typical example is the differential operator p = —d/ds in the
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space B[Q, oo) of all bounded uniformly continuous functions x(s) on
[0, oo). The corresponding semi-group Tt is given by

(11.3) Ttx{s) = x(s + t) , x(s) e B[0, oo) .

It is well-known that the half-plane Re λ > 0 is contained in the
resolvent set p(—A) and the resolvent is expressible as the Laplace
transform of the semi-group Tt:

<11.4) (λ + A)~ιx = \°e-χtTtxdt , Reλ > 0 .
Jo

Thus Tt is commutative with (λ + A)"1. We note that hence it follows
that TtA* c AnTtJ n = 1, 2, . . . , TtA°+ cAa

+Tt, Reα > 0, and TtA
a

0(zAa

0Tt,
a arbitrary. A% Re a < 0, coincides with Aζ since D(A) is dense.
(11.4) implies also that A is of type (π/2f Msec Θ).

PROPOSITION 11.1. Let Reα: < 0 and μ > 0. Then

<11.5) (μ + A)a

ox = — - — \Γt"a"ιe"μΛTixdt , x e X.
Γ(—a) Jo

Proof. If 0 < — a < 1, then we have by Proposition 5.1 and (11.4)

{μ + Λ** = Γ(-a)Γ(l + a) S > - ^

Γ(-a) Jo

Since both sides of (11.5) are analytic in a, the equality holds for all
Re a < 0.

DEFINITION. Let σ = n + p ^ 0 as before. C° = Cσ(A) is defined
to be the set oί xe X such that

(i) xeD(A«),
-and, in case p > 0,

(ii) Γtil*a? — ^4wa; = O(tp) as ί —> 0.

Let

(11.6) p^^ί1 1^1 1 ^ = °
^ S U p 0 I j JL ̂ / i X " — ^rl •(/ 11 y ^> yj ,

Then C* becomes a normed space by the norm

When A = —d/ds in J?[0, oo), Cσ is the set of all n-times con-
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tinuously differentiable functions x(s) on [0, oo) such that the n-th
derivative x{n)(s) is uniformly Holder continuous with exponent p or
simply uniformly continuous when p = 0.

PROPOSITION 11.2. C° is a Banach space and contained in Dσ con-
tinuously.

Proof. If σ = n, then C° = D° and these spaces are isomorphic.
As we have seen in the proof of Proposition 4.2, the operator An is
closed. Thus Cn = D(An) is complete.

Next let p > 0. We have

(11.7) g,(a) ̂  X(σ)pβ(aj) , xeCσ ,

with a constant K(σ) depending only on σ. In fact, it follows from
(11.4) that

|| An+1(X + Aj-'x || = || (1 - λ(λ + A)~ι)Anx \\

^ [°Xe-λt\\TtA
nx- Anx\\dt

Jo
ρ)χ-ppσ(x) .

Hence we have Cσ c Z)*7. (11.7) implies also that the embedding is
continuous.

To prove the completeness of C% let xά e C° be a Cauchy sequence.
By (11.7) and Proposition 4.7, x5 forms a Cauchy sequence in C\ Thus
there is an x e Cn such that x3- —> » and .̂"αĵ  —• Anx in X. It is easy
to see that

<po{xό - x) = sup lim r p || (T t - 1)^(0^ — a?fc) || —> 0 .

THEOREM 11.3. Lei Re<^> 0. If a is real or Re a is not an
integer, then D(A\) is contained in CR e α.

Proof. Since D(A) is dense, D{A\) coincides with D{An) = Cn.
Suppose that Re a is not an integer. By Theorem 7.1, xeD(A+) if
and only if x e D(4%) and Anx e D(Aa

+~n). On the other hand, x e Cσ

if and only if x e D(An) and Anx e Cσ~n. Therefore we may assume
that 0 < Reα < 1 without loss of generality. If x e D(Aa

+) = D((μ + A)"+),
μ > 0, then there is a y e X such that x — (μ + A)^ay. Thus we have

Γ(a)
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Clearly the norm of the latter integral is bounded by Mσ~ιh° \\y\\ with

σ — Re a. The former integral is estimated as follows:

M || y || Γ I (ί - hy-'e-^-^ - ta~le~^ \ dt
J h

M || y || | 1 ~ 6 y | \~dt[ ( 1 ^ 2
1 — σ Jh )t-h\ s

σ(l - σ)

PROPOSITION 11.4 (Balakrishnan [1]). Let σ > R e α : > 0 . Then
for every xe D°

(11.8) A\x
Γ(—a)

in the sense of Sato or

% \ t x - tAx ™ .. - £-An

(11.8)' Γ ( - « ) L ! !

+ ΣT^ Λkx + t-^TtXdt ,
k=o fc — a JN J

where 0 < iV < oo. In particular, if 0 < Re a < 1 and σ > Re α, then

(11.9) Â α? = ^Γt~"-\Ttx - a?)dί , xeDσ .
Γ{~a) Jo

Proo/. If x G Z)σ, it follows from Theorem 11.3 that a? e Cσ~s for
ε > 0. Thus the integrals of (11.8)' converge absolutely. Further, it
is easy to see that the right-hand side of (11.8)' represents an analytic
function of α for 0 < R e α < σ independent of N. In case 0 < Re a <
a < 1, we can make N tend to infinity and obtain (11.9). Since A\x
is also analytic in a and (11.8)' does not depend on σ > Re α, it is
enough to prove equality (11.9). By (4.2) and (11.4) we have

^ - X)dt
π

Γ(—a)

completing the proof.

THEOREM 11.5. Let p = —d/ds in J5[0, <χ>) and Re a > 0. Then
x e D(A+) if and only if
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(11.10) <T8x,y'>eD(p«+) for all y'eX', and

there is a function f(s) e X independent of y' such that

(ii.il)

If X is sequentially weakly complete, the second condition may be
omitted.

Proof. First we remark that (Tβy, y'ye J3[0, c>o) for all ye Xand
y'eX'. In view of Proposition 11.1 we have

(Ts{μ + A)ϊ*y, y'y =

i l l 12)

for μ>0. Let ^ e ΰ ( i + ) . Then there is a T / G X such that
a? = (μ + A)ϊay. Thus we have by (11.12)

*>e D(p\) .

Similarly it is shown by Propositions 6.2 and 6.3 that

(11.13) p°+<T8x, y'y - <TsA%x, y'> , x e

This proves (11.11) with /(s) = ΓsAί.α;.
To prove the converse, first let a be an integer n. Since as-

sumptions (11.10) and (11.11) show that T8x is n times weakly differ-
entiable at s — 0, it follows that xe D(A) (see Komatsu [12]), and we
have by (11.13)

(11.14) K ? > , y'> - <TsAx, y'> .

Assume that the theorem is true for smaller integers. Then it follows
from (11.14) that AxeDiA*-1). Hence we have xeD(An).

Next if a is not an integer, take an integer n such that n + 1 > Re a.
(11.12) with Theorem 7.1 gives

(Ts(μ + A)ϊ*x, yf> =(μ + p)ϊ*<Tax, y'>eD((μ + p)^) = D(p^) ,

iίβ — n + l — α and μ > 0. Moreover, we have by Propositions 6.2
and 6.3

pβ

+(μ + p)

(p(β + P)
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Since f(s) is uniformly bounded and weakly continuous, it can be shown
Xβ(μ — λ)~^dλl e~λ{t~s)f(t)dt converges weakly (see

0 }s

Komatsu [12]). Thus there exists a function g(s) e X such that

pn+iζT8(μ + A)ϊβx, y'y = ζg(s), yry , y' e X' .

Applying the theorem in the case of integer n + 1, we obtain
(μ + A)oβx e D(An+1). Since D{A) is dense, it follows from Theorem 7.1
that x e D((μ + A)\) = D{A\).

Lastly let us prove that if X is sequentially weakly complete, the
existence of f(s) e X satisfying (11.11) follows from (11.10). Let x
satisfy (11.10). In view of Theorem 11.3 we h a v e < ϊ > , y'}e Cσ(p) for
any σ <Rea, i.e., x(s) — Tsx is n times scalarly differentiable and the
w-th derivative is scalarly uniformly Holder continuous with exponent
p, σ = n + p.

If p > 0, we can replace the word "scalarly" by "strongly". It is
evident that x(s) is n times weakly* continuously differentiable in X"
and {(x{n](s) - x{n)(t))/\ t - s\p} is weakly* bounded in X". Since a
weakly* bounded set is strongly bounded, x{n)(s) is strongly uniformly
Holder continuous in X". Hence it is easily proved that x{k](s),
k = 1, 2, , n, is strongly continuous in X". In particular the differ-
ence quotient

x(s + h) - x(s) __ 1 [s+h

h

1 Γs

converges strongly to cc'(s) in X " as λ—+0. This proves that x(s) is
strongly differentiable. Repeating the same argument, we see that x(s)
is n times strongly differentiable and the w-th derivative is strongly
uniformly Holder continuous with exponent p.

As we have shown above, it then follows that x e D(An) and
(-d/ds)nTsx= TsA

nx. Therefore x belongs to C°(A). In particular we
have x e D(A%) for Re β < Re a and

Pl<T.x, y'> - <T.A'+x, y'> , i / ' e Γ .

When /S tends to a in a Stolz region, the left-hand side converges to
pa+(Tsx, yfy. Since X is sequentially weakly complete, there exists the
limit

f(s) = w- l im Γ S A^ e X ,

which satisfies (11.11).
Incidentally, we have proved that if x satisfies (11.10), then

x e D{A%) for Re β < Re a in any case.
Similarly to Theorem 7.6 the following theorem holds.
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THEOREM 11.6 (Hardy-Littlewood [6]). ( i ) Let σ > Re a > 0. If

σ — Re a is not an integer, then A+(Cσ) is contained in Cσ~Rea. (ii)
If Re a < 0 and if σ — Re a is not an integer, then Aa

0(Cσ Π D(A")) is
contained in Cσ~Reα.

Proof. ( i ) We may assume that 0 < Re a < 1 without loss of
generality. First let Re a < p. (11.9) gives

(Th - l)A*A$x = _ J _ ( V « - i ( 2 \ - 1)(Γ# - l)A*xdt .
Γ{—a) Jo

Hence, using the estimate

|| (Th - l)(Tt - l)A*x || ^ (M + l)pα(a;) min {^, ί̂ } ,

we obtain

|| (Th -

In case p < Re a, we employ the identity

which follows from (11.9) and Theorem 11.5. From the estimate

'Ts(Th - l)Anxds ^ Mpσ(x)thp

and the one with t and h interchanged, it is concluded that

(Th - l)An^A%x = O(hp-Rea+1) , as h-> 0 .

(ii) The proof of (ii) in Theorem 7.6 can be modified to this case with
no difficulty.

T H E O R E M 1 1 . 7 . If 0 < a < 1, λ > 0 and n = 1, 2,

is an analytic function φn(a, λ, s) > 0 defined on (0, oo), independent
of A, such that

(11.15) (λ + A5.)-Λa = λ- w ί^ w (α:, λ, s)Tsxds .
J

<pw(α, λ, s) satisfies

(11.16) ΓΦ"(^»
 λ» s)ds =

Jo
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In particular we have

(11.17) || (λ(λ + A"+)-ιy \\£M, n = 1, 2, . .

Proof. Combining (11.4) and (10.3), we have

(11.18) (λ + AϊΓ'x - gίΐLggLΓ fdτ \~e~»T.xd8
π Jo λ2 + 2λτα cos πa + τ2 α Jo

= λ^Γ^Xα:, λ, s)Tsxds ,
Jo

where

i//v Λ o\ λsinτrαf~ rαe-Γ β ,
ffi> (CX, λ , S) = \ dT .

7Γ Jo λ2 + 2λτα cos πα: + τ2a

It is easy to see that φ\oc^ λ, s) is positive and analytic for 0 < s < oo
and satisfies (11.16). Let us define φn(a, λ, s) for w > 1 recursively by

<Pn+ι(a, λ, s) = <p%(α:, λ, s ) * ^ ^ , λ, s)

φn(a, λ, s — O Φ 1 ^ , λ, ί)dί .

o

(11.15) for general n is proved by induction.
Other properties of φn(a, λ, s) are clear by the definition.

THEOREM 11.8 (Phillips [16], Yosida [22]). If 0 < a < 1, £/̂ w
exists a positive analytic function ψ(cx, t, s) on (0, oo)2 such that

(11.19)

and the analytic semi-group exp( — tA\) generated by —Aa

+ has the
representation

(11.20) exp {-tA°\)x = [°ψ(a, t, s)Tsxds .
Jo

exp(—tA\) is uniformly bounded:

( 1 1 . 2 1 ) H e x p ( - ί i l ί ) | | ^ J l f , 0 < K «>, 0 < α < l ,

and converges strongly to Tt = exp(—tA) as a tends to 1. The con-
vergence is uniform on every compact set in (0, oo).

Proof. Let

Ψ\a, t, s) = [ φn(a, n/t, r)dr .
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Then we have by (11.15)

( i Aa \~n Γ°°

1 + ίfh±Λ x = TsxdΦn(a, t, s) ,
n / Jo

and in particular

1 + _^L_) x = e~asd¥n(ay ί, s) , α > 0 .

n / Jo
Since {?FW} is a uniformly bounded sequence of increasing functions,
there is a subsequence which converges to an increasing function Ψ(a, t, s)
except for a countable set. Now it is easy to see that

f°Vα sd?Γ(α, ί, s) = lim \°e~asdΨn\a, t, s)
(11.23) J o ^ ~ J o

( - ί α α ) , α > 0 .

Letting α —> 0, we have also

["dΨia, t, s) = 1 .
Jo

Thus it follows that

\~f(8)d¥(a, t, s) - lim [°f(s)d¥n'(a, t, s)
JO n'-^co Jo

for every bounded continuous function f(s). In particular (1 + tA+/n')~n'x
T8xdΨ(a, t, s). On the other hand, (1 + tA+/n)~nx

o

converges strongly to exp ( — tAa

+)x (Hille-Phillips [7]), so that we have

exp(-tA°\.)x = [~T,xdΨ(a, t, s) .
JO

(11.23) shows that exp(-£λα) is the Laplace transform of dΨ(a, t, s).
It is not difficult to derive from this fact that dΨ(a, t, s) has an
analytic density φ(a, t, s).

According to Trotter [19], a sequence of semi-groups T" converges
strongly to a semi-group Tt if Tj* is uniformly bounded and the resolvent
converges at a point λ > 0. This is surely the case with T" = exp ( — tAa)
by (11.21) and Theorem 10.3.

12* The case where —A generates an analytic semi-group*

THEOREM 12.1. Let A be an operator of type (ω, M{θ)) with
ω < τr/2, and let Tt be the analytic semi-group generated by —A. If
I arg 11 < 7r/2 - ω, t Φ 0, then Ttx e D(Aa

+) for any x and Re a > 0,
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and we have

(12.1) A\Ttx = ΛΛ (-λ)Vλ(λ + AY'xdX ,
2m JΓ

where the path Γ consists of two rays from ooe~iθ to 0 and from 0
to ooeίθ with π/2 < θ < π/2 + | arg £ |. There is a constant C depending
only on a, e > 0 and A such that

(12.2) \\AlTt\\^C\t |-Reα, I arg t | ^ π/2 - ω - ε .

Proof. Since T4x is analytic in the sector | arg 11 < π/2 — ω,
TtxeD(A+) for any Reα > 0 and A+2Vc is analytic in a. The right-
hand side of (12.1) expresses also an analytic function of a. Thus it
is enough to prove (12.1) for 0 < a < 1. If xeD(A), we have the
integral representation

(12.3) Ttx = - i - ί eίλ(λ + A)-γxdX
2πi JΓ

(Hille-Phillips [6]), so that we obtain by (11.9)

Aa

+Ttx = ( V ^ ώ - ^ - f (esλ - l)etλ(X + ilj-^dλ
Γ(—α) Jo 2π% Jr

ίVα-1(eβ λ - l)dsf e ( λ + A)^d\
2πi )r v } Γ{-a)

Since both sides of (12.1) represent bounded operators, (12.1) holds for
every x. (12.2) follows easily from (12.1). Conversely,

THEOREM 12.2. Let Tt be a bounded semi-group and —A be its
generator. If there is a complex number a with Re a > 0 such that

(12.4) || A\Tt || SL Ct~nea , t > 0 ,

with a constant C, then A is of type (ω, M(θ)) for an ω < π/2.

Proof. Since A% commutes with Tt, A+Ttx = TtnA°\.Ttί2x is still in
D(A%) and we have (A%fTtx = A^Ttx == (A;Γt/2)

2α;. Similarly we have
2>eD(Af) and A^Γ^ = (A"+Ttln)*x for any integer n > 0. Thus it
follows from (12.4) that

II A™Tt || g (Cw)ΛRθαί"wRθα , ί > 0 .

Taking an w such that Re na > 1 and applying Theorem 8.1, we obtain
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the estimate

WATtW^Cj-1, t>0,

which is a necessary and sufficient condition that A is of type (ω, M(Θ))
with ω < π/2 (Yosida [21], Komatsu [12]).

REMARK. If condition (12.4) is satisfied only for small t, it follows
that for every ε > 0, 4 + e is of type (α>, M(θ)) with ω < π/2 because
the same calculation leads to

\\(A + e)e-*Tt\\ ^CJ-1 , t > 0 .

THEOREM 12.3. Let A and Tt be as in Theorem 12.1 and let σ > 0
δe not an integer. Then the following conditions for x are equivalent.

( i ) For each ε > 0, there is a constant C independent of t in
the sector | arg 1| ^ π/2 — o) — ε such that

(12.5) \\TtA
nx~- A n x \ \ ^ C\t\p .

(ii) x e C σ ,
(iii) & G D σ .
(iv) ίVr each Re α > σ and ε > 0 ίfoere is a constant C such that

(12.6) l l^

/or I arg 11 ̂  π/2 -- ω — ε.
(v) (12.6) holds for an a, Re a > σ, and sufficiently small t > 0%

Proof. Implication (i) =* (ii) =^ (iii) and (iv) =» (v) are immediate.
(iii) => (iv). We may assume that 0 < σ < 1 without loss of generality.
If x e Dσ, then the estimate

(12.7) || (λ + AYlx - X-'x || ^ C I λ I — 1

holds uniformly on each sector | arg λ | ^ π — ω — ε, ε > 0. In fact,
the resolvent equation gives

λ((λ + A)"1 ~ λ-1)^ = (1 + (/i — λ)(λ + A)~ι)μ{{μ + A)-1 - /-1)^ .

If λ is in the sector | arg λ | S π — ω — ε, we can choose a μ > 0 such
that Cx I λ I ̂  μ ^ C21 λ | with constants Ĉ  independent of λ. Thus we
have

|| (λ + A)-* ~ X-'x || ^ (l + (C, + l)M(π - ω - e))Crσ \ λ Γ*- 1?^) .

Since 1 (—λ)βe*λλ-1dλ = 0, it follows from Theorem 12.1 that
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I A\Ttx || = ILL- ( (-λ)Vλ((λ + A)"1 ~ X-l)xdX
II 2π% JΓ

SC 3

(v) => (ii). First we note that if (12.6) holds for an a, then it holds
for every a with a greater real part. For, if Re β > 0, then

II Δ<x+βrF γ \\ < II J 3 7 7 II II Λa T T II < Γr/σ-Re(α + β)

Therefore we have

(12.8) || {-A)mTtx || g Cίσ"m , 0 < t < ί0 ,

for an integer m > σ. Since ( — A)mTtx is the mth derivative of Ttx,
it follows that

| ( ) ||
(12.9)

^ C I σ — m + 11"1.1 ίσ-m+1 - sσ-m+11 , t, s e (0, ί0) .

If m — σ > 1, we have (12.8) with m replaced by m — 1. If m — σ < 1,
then (12.9) shows that ( — A)m~ιTtx converges as t—+0, so that x be-
longs to D(Am~ι). Letting s->0 in (12.9), we obtain also

|| Tti-A)1"-^ - (-Ay-'x II g C I σ - m + 11-^-»+1 .

This proves x e Cσ.
The implication (iv) => (i) is proved similarly.

Even when σ is an integer > 0, the equivalence of (iv) and (v) is
proved in the same way.

DEFINITION. When —A generates an analytic semi-group, let us
denote by B% σ > 0, the set of all x such that (v) (or (iv)) of Theorem
12.3 is satisfied.

Then Theorems 7.6 and 11.6 are unified in the following way.

THEOREM 12.4. Let A be as above. If σ > Re a > 0, then A\
maps Bσ into Bσ~Rea. Ifσ>0 and Re a SO, then A" maps Bσ Π D(A$)
into Bσ~Rea. Note that σ — Re a can be an integer.

Proof. Let xeBσf]D(Aa). If Re/9 > σ - Reα:, we have by
Theorems 7.1 or 7.3

\\A*+TtAlx\\ = \\AξAlTtx\\
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13* Miscellaneous results* In this section we give a few results
and applications related to the fractional powers of operators with and
without proofs.

THEOREM 13.1. Let Xz)Y be two Banach spaces such that the
topology of Y is stronger than that of X. (By the closed graph
theorem it is enough to assume that if x3- —» x in Xand xό —+y in Y,
then x — y.) If a closed linear operator A in X and its maximal
restriction B in Y (see Section 1) satisfy assumption (1.5) in X and
Y respectively, and if D(B) is dense in Y, then Ba

+ is the maximal
restriction of A\ in Y. If in particular Y is a closed subspace of
X, then the maximal restriction is the simple restriction to Y.

Proof. It follows from the assumptions that (λ + A)~\ λ > 0,
maps Y into Y and

(13.1) (λ + B)-1 = (λ + 4)" 1 \τ , λ > 0 .

Hence we have

(13.2) Ba

+Xn(X + B)~n = Aa

+Xn(X + A)~n | r , n > Re a .

Let yeD(Ba

+). Then Proposition 4.5 shows

Ba

+Xn(X + B)~ny->B\y i n f a s λ - ^ o o .

so that we have

Aa

+Xn{X + A)"ny -> B\y in X .

Since y e D(B) c D(A), this proves that y e D(Aa

+) and A°+y = Ba

+y.
Conversely let y e D(Aa

+) n Y and A\y e Y. We have

B«.Xn(X + BYny = Aa

+Xn(X + A)~ny

= Xn(X + AYnA\y

= λ*(λ + B)-*AZy .

Since D(B) is dense in Y, it follows that

(13.3) Ba

+Xn(X + B)~ny — A%y in Y as λ — oo .

Therefore we have y e D(B°\) and B%y = A\y.
If F is a closed subspace, (13.3) holds without the assumption that

A\y e Y. Thus the simple restriction gives the maximal restriction.
The assumptions of Theorem 13.1 are satisfied if —A is the

infinitesimal generator of a bounded semi-group Tt in X, Y is invariant
under Tt and the restriction St = Tt \γ forms a bounded semi-group in
F. In this case — B coincides with the infinitesimal generator of St.
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Let us denote by cQ(Z) the space of all sequences x — (ξk), k = 0,
± 1 , ± 2 , , such that ξk —> 0 as | k \ —• oo and normed by || x || = sup | <ffc |.
Then each of L*(T), 1 <; p < oo, and C(T) on the unit circle T is
embedded in co(Z) by the Fourier transformation. The translation semi-
group St:

(13.4) Stx(e") = ί φ ί ( s - ί ] )

becomes the restriction of the semi-group Tt defined by

(13.5) Tt(ξk) = (e~itkξk) , (ξk) e

We denote by —JL and —d/ds the infinitesimal generators of T, and St

respectively. By a simple computation it is shown that

D(A%) = {(ξk) e co(Z); ((ίk)"ζk) e co(Z) .

Thus we have:

PROPOSITION 13.2. Let X be any one of LP(T), 1 ^ p < co? and
C(T). Then a function

belongs to D((d/ds)a

+) if and only if the formal sum

( \ V(PU\ ~ V n (ηh\aPiks

represents a function in X.
The following two theorems may be proved in the same way as

Theorem 13.1.

THEOREM 13.3. Let X and Y bs Banach spaces, and T be a con-
tinuous linear mapping from X to Y. If closed linear operators A
and B satisfy

(13.6) BTx^TAx, xeD(A)

and assumption (1.5) in X and in Y9 respectively, then we have

(13.7) B% Tx = TA%x , x e D(A%) ,

where A% has the same subscript as B%.

THEOREM 13.4 (Love-Young [14]). Let X be a Banach space and
let Xf be its dual space. If an operator A in X satisfies (1.5) and
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has a dense domain, then its transposed operator B — A! also satisfies

(1.5) and B+ is the maximal restriction of {A%)f in D(B). If, more-

over, R(A) is dense, then B°L and B" are the maximal restrictions of

(Aa

oy in~R(B) and ~D(B)f)R(B), respectively.

Let us apply Theorem 13.3 to the regularity of the convolution of
functions. Let A be the negative of the generator of translation semi-
group

Ttx(s) = x(s - t)

in B(— oo, oo), and let B be the corresponding operator in Z/(—oo, oo).

PROPOSITION 13.5. If x(s) e D(Aa

+) and y(s) e D(Bβ

+), then the con-
volution x*y(s)eD(Aa

+

+β).

Proof. The mapping T:B(— oo, oo)χZ/(—oo, oo)—>J3(— oo, oo) de-

fined by T(x, y) = x*y is a continuous bilinear mapping, and we have

A(x*y) = Ax*y, xeD(A), yeL1(—oo9oo)i

A(x*y) = x*By, xe B(— oo, oo), ye D(B) .

Therefore it follows from Theorem 13.3 that if xeD(A°+) and
yeL\—oo9 oo), then x*y e D(A\) and A$.(x*y) = (A+x)*y. If, more-
over, yeD(B%), then we have (Aa

+x)*yeD(A%) and
(A"+x)*(B%y), so that ίc*τ/ belongs to D(A°++β).

COROLLARY 13.6. Let x(s)eB(—oo9 oo) be uniformly Holder con-
tinuous with exponent 0 < a < 1 and let y(s) e Co(— oo, oo) &e uniformly
Holder continuous with exponent 0 < / 3 < l . J/ α + / 3 > l , ίfeβn
x*y(s) is differentiable and the derivative is uniformly Holder con-
tinuous with exponent a + β — 1 — ε, for an arbitrary e > 0. If
a + β ^ 1, £/&e% x*y(s) is uniformly Holder continuous with exponent
a + β - ε, ε > 0.

THEOREM 13.7. Lei

A = \ ζdE(ζ)
jc

be a normal operator in a Hilbert space X. Then A is of type
(ω, M(Θ)) if and only if the spectrum σ(A) is contained in the sector
I arg λ I 5£ ω. If this is the case, M(θ) satisfies

I 1 ' °
(cosec (ω + θ) , θ > π/2 — ω .
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In particular, a normal operator is the negative of the generator of
a bounded semi-group if and only if A is of type (ττ/2, M(Θ)).

In order that an element x belong to D° it is necessary and
sufficient that

qσ{xf = sup λ2o( I λ + ζ |-21 ζ \^"d || E(ζ)x ||2 < oo .
0<λ<oo J

When —A generates a semi-group, Dσ coincides with C°.
The fractional power Aa is given by

ζ«dE(ζ).
C-{0}

The domain D{A%) consists of the elements x such that

\\A%x\\ = ( \ζ«\2d\\E(ζ)x\\2 < oo .
JC

If Re a — Re/9, then \\A+x\\ is equivalent to \\A%x\\ and D(Aa+) = D{A%).
However, D{A°\) does not coincide with DRea if A is unbounded and
Re a is not an integer.

Proof. We prove only the last statement. We have

| 2 ^ C | ζ r , λ > 0 ,

with a constant C depending only on 0 < p < 1 and ω. Thus if
x e D(A+) for a σ = n + p > 0, we have

q(X, x) - ίλ2^ I λ + ζ |-21 ζ \2n+2 d || E(ζ)x ||2 g C \\ Aa

+x ||2 .

Further it follows from Lebesgue's theorem that

q(X, x) —> 0 as λ —> 0 .

If A is unbounded, however, it is not difficult to construct an element
a; or a measure d \\ E(ζ)x ||2 such that

q(X, x) ^ C and q(λ, x) -+* 0 .

This completes the proof.
Let us denote by H the space of functions x(z) which are con-

tinuous on the unit disk | z | ^ 1 and analytic in the open disk | z | < 1,
and by Hp, H p < ω , the Hardy space cL p (Γ) (Hoffman [6]). Then
the translation (or rotation) group St restricted to H or Hp becomes
the boundary group of the analytic semi-group
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(13.8) Stx(eίs) = x(eIm V(s~Reί)) , Im t ^ 0 .

— idjds, which is the negative of the infinitesimal generator of St in
the direction of the negative imaginary axis, satisfies the conditions of
Section 12, so that if σ > 0 is not an integer we have

) C(
i ds' V i ds

On the other hand, we have shown in the proof of Theorem 12.3 that
Dσ(-id/ds) = Dσ(d/ds). Cσ(-id/ds) coincides with Cσ(d/ds) because of
the identity

and the equivalence of (i) and (ii) in Theorem 12.3. Further it follows
from the identity

λ.£.χ(re

is) = reis—x(reis)
i ds dz

that \\—ίdx/ds\\ is equivalent to \\dx/dz\\ if r is near 1. Thus we
have proved the following theorem.

THEOREM 13.8 (Hardy-Littlewood [5]). Let X be H or Hp,
1 ^ v < °°, αwc? Zeί ' 0 < σ < 1. Γfcew £fce following conditions for
x e X are equivalent.

( i )

(ϋ) 1
(iϋ) 1

(iv)

1 Jo

1 x(reis)

dz

*(α;(e«-'>) -

k)) -x(eu)\\

- x(eis) | | =

J " ) | | = O ( ( 1

x(eu

= 0

O(o
- r )

))dt

{h%
L — 1

- 1 ) ,

=

h
r)')

r -

O(λ

— 0.
, r -

- 1 .

(v)

If 1 < p < oo, M. Riesz's theorem (Zygmund [24], Hoffman [6])
states that the natural projection P from LP(Γ) to Hp is continuous.
Since P is commutative with (λ + d/ds)~\ we obtain the following
theorem.

THEOREM 13.9 (Hardy-Littlewood [5]). Ifl<p<o° and 0 < σ < 1,
£Aew ί/̂ e following are equivalent for xeLp(T).

( i ) x e Dσ(d/ds).
(ii) xeCσ(d/ds).
(iii) a? = α?i + a?2, where xt e Hp satisfy one of the conditions of

Theorem 13.8.



FRACTIONAL POWERS OF OPERATORS 339

Similarly Privalov's theorem (Zygmund [24]) proves the following
theorem.

THEOREM 13.10. A function x(eίs)eC(T) is uniformly Holder
continuous with exponent 0 < σ < 1 if and only if there are two
functions xιeH satisfying the conditions of Theorem 13.8 such that

x(eis) = xL(eis) + x2(ei$) .

Theorem 9.2 may be applied to the theory of partial differential
equations.

Let A(x, d/dx) be a strongly elliptic linear partial differential
operator of order 2 in a domain Ωcz Rn and let B(x, d/dx) be a linear
partial differential operator on dΩ. It is known that if A(x, d/dx),
B(x, d/dx) and the domain Ω satisfy certain conditions, then the smallest
closed extension A in LP{Ω), 1 < p < oo, of the operator A(x, djdx)
restricted to the space {ue C°°(Ω); Bu = 0} satisfies:

D(A)cWl9(Ω),

(13.9) II V H Λ | U P + 1 1 ^ 1 1 x ^ ^ 1 1 ^ 1 1 ^ , ueD(A),

and —A generates an analytic semi-group.

Let us prove that if n/p < 3, there are constants 0 < a < 1 and
C> 0 such that

(13.10) || Vu-u \\Zp ^ C || A\u |β p , u e D(Aa

+) ,

(13.11) || Vu-u - V ^ ^ \\tp £ C(\\ A\u \\Lψ + \\ A\v \\L) \\ A\{u - v) \\lp ,

u,ve D{A%) .

Obviously we have

II \ / u - u - \ 7 v - v \\Lp ^ || \ / u \\Lr \ \ u - v \\L

where p"1 = r"1 + s~\ r, s ^ 1. Let

7

p /' 2

and choose suitable r and s. Then it follows from the Sobolev-
Gagliardo-Nirenberg inequality (Nirenberg [15]) that

^ ^ C d l v ^ l ^ + ll^llz^Ίl^lli; 1,

Combining these inequalities with (13.9) and applying Theorem 9.2, we



340 HIKOSABURO KOMATSU

obtain (13.10) and (13.11).
Once inequalities (13.10) and (13.11) are established, the local

existence theorem for the Cauchy problem of the nonlinear equation:

i-W(ίf χ) = A (x, -pju + Σ h(x)^-u , xeΩ ,
dt V dtJ i=i dXi

B(X, —)u(t, x) = 0 , x e dΩ ,
\ dx /

u(0, α?) - wo(aj) 6 Z>(A«) ,

is proved by the method of Fujita (Fujita-Kato [3], Itδ [8]).

14* Counterexamples* This section is devoted to various counter-
examples which show that the statements of some theorems cannot be
improved in general.

1. If X is not reflexive,

(14.1) (λ + A)-'x - λ"1;*; - O(λ-2)

does not necessarily imply that xeD(A). Let A— —d/ds in 2?[0, oo).
If xeB[0, oo) is uniformly Lipschitz continuous, then we have

I ((λ + A)-1 - λ-χ)ίφ) I = I Γ e~λt(x(s + t) - x(s))dt

e~Mdt = CΓ(2)λ-2 .

Thus x satisfies (14.1), but it is not always diίferentiable.
On the other hand, by the same computation, we obtain the following

theorem as a corollary of Theorem 2.1.

THEOREM 14.1. Let X be a reflexive Banach space and let —Abe
the generator of a bounded semi-group Tt in X. Then x e D(A) if
and only if

(14.2) Ttx-x = O(t) as ί -> 0 .

In particular a Lipschitz continuous function in Lp(a, 6), l<p < oo,
is differentiate in Lp(a, b) (Hardy-Littlewood [5]).

2. The domain D(A) is not necessarily dense even if A satisfies
(1.5). In the space m of all bounded sequences, the operator A,

Λ(ξk) = (kζk), D(A) - {x e m; Ax e m} ,

gives such an operator. D(A) coincides with c0.
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3. (3.6) is not true in general. Let A = — d/ds in J5[0, oo).
Evidently the null space N(A) is composed of all constant functions.
Whereas for any constant c,

x(s) = sin Λ/ S + c

does not satisfy

(14.3) sup ["xe^-vx^dt -* 0 as λ -* 0 ,

so that sinτ/s does not belong to N(A) + R(A).
It should be remarked that by a Tauberian theorem (14.3) is

equivalent to

I Γs+IT

(14.4) sup \ x(t)dt = o(N) as N

4. The Weierstrass-Hardy function

(14.5) x(eis) = Σ &-pfce*6* , 6 - 2 , 3 , . . . , 0 < ρ < 1 ,

belongs to Cp(d/ds) in Jϊ and hence in any one of C(Γ), Jϊ^ and
1 ^ ^ < oo (Hardy [4]), but its formal fractional derivative

is not even in L\T), so that x does not belong to D((d/ds)p

+) in any
of the spaces H, C(T), Hp and LP(T). Since

H lljfcίλ + bk

-b~p

the first statement follows from Theorem 13.8.

5. If σ is an integer, B° may be wider than Ό\ The function
(1 - z)(log (1 - z) - 1) belongs to B'i-id/ds) in jff, but clearly it does
not belong to D^—ίd/ds).

6. Contrary to the case of normal operators, D(A+) may be different
from D{A%) even if Re a = Re /3.

Let AS be the shift operator in cQ:

(14.6)
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and let

(14.7)
»ξt,
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The domain D{A) is the set of all sequences (ξk) such that 2*=i ί* =
which forms a dense subspace. The resolvent is given by

(14.8) (λ + A)-1 =
λ + 1 (λ + I)2 f=ί V λ + 1

Since the norm of an operator P of the form

with a dense domain is given by

(14.9) 11*11 =

the resolvent is estimated by

*, Re λ > 0 .

(14.10)
λ + II

^ 2(Re λ + —
V 2

-iλin

Re λ > 0 .

Therefore A is an operator of type (π/2, 2 sec
By an easy calculation it is proved that

(14.11) A' = aS a(<X 2 )

o!

for every complex number a.
Since A"1 is bounded, L̂α is bounded for Re a < 0, and clearly

i4° = 1 is bounded. However, the pure imaginary power Au is un-
bounded for any t Φ 0, because we have

it
ίtjit + 1) 2)

3!

^ l + | ί | + 4-1*1 + 4-1

More generally let us prove that

(14.12) D(Aσ+ίt) Φ D{A°), σ > 0, ί > 0 .

If D(Aσ+ίt)iDD(Aσ)t there would be a constant C such that
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(14.13) || A σ + i t x \\£C(\\Aσx\\ + \\x | | ) , x e D{Aσ) .

Since A*1 is bounded and D(A) is dense, it follows from Corollary 5.3
that D(A°) = R(A~σ) and that there is a constant Cx such that

(14.14) WA'xWΛ WxW^C^WvW, for x = A-y .

Let 2/y be a sequence in -0(4*0 such that

(14.15) l lVi l l^ l , II A*% || *zj, j = 1, 2, . . . .

Theorem 7.3 proves that A-%- e D(Aσ+it) and Aσ+<t<A-% = Aiιys. Thus
we have by (14.13) and (14.14)

which contradicts (14.15).

7. In the statement of Theorem 9.2 "Re a > θ Re /3" cannot be
replaced by " R e # ^ #Re/3". In view of Theorem 8.1 we have

I Aσ+itx \\ ^ C\\Ax\\σ\\x II1"*, x e D(A)y 0 < σ < 1 .

But (14.13) does not necessarily hold.

8. Although the operator A in 6 is of type (π/2, 2sec#), —A is
not an infinitesimal generator of any semi-group of class (A).

If —A generates a semi-group exp(—tA), then we have

exp i

(See Hille-Phillips [7].) Since D(A2) is dense, and (λ + Ay1 has ex-
pansion (14.8), it follows that exp (—tA) must have the form

oo

exp (—tA) — exp (—t) +

where

(~tA)x = — (C, 1)~ Γ" βλί(λ + AJ-^dλ, a? e D(A2) .
2ττΐ J-ί00

= Σ(-1)Λ+1( , hΛ-n, exp(-t) .
^ = o \ h / (h + 1)1

If exp (—ί-4) is bounded, Σ?=ilΛ(^)l ^s finίtei s o that the function
Ψ(z) = Σik=ifk(t)zk must be continuous on the disk | s | ^ 1. We have,
however,
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h + 1)!
h+l fh + 1

This shows that ψ>(z) is discontinuous at z — 1.
An example of operators of this kind has been given by Phillips

(Hille-Phillips [6]), but this example is more interesting because
—A"1 = — 1 + S generates a continuous contraction semi-group

exp (-tA-1) = Σ - ^ T ^ exp (~t)Sk ,

|| exp {-tA-1) || = exp (I ί I - Re ί) .

9. Even if —A generates a contraction semi-group,

|| A\x || ^ || Ax W || x ||ι-», 0 < 7 < 1, x e

does not necessarily hold. Let 4 = 1 — S, 7 = 1/2 and x = (1,2,1,0,0, •)•
Then we have

4a! = ( 1 , 1 , - 1 , - 1 , 0 , 0 , . . . ) ,
4*» = (1,3/2,-1/8,.-.).

Thus

II Alβx II = 3/2 > II Ax | | 1 / 2 1| x ||I/2 = \/Ύ .

10. If X is not sequentially weakly complete, Theorem 11.5 may
be false without assumption (11.11). The semi-group

Tt(ξk) = (e-ktζk), (£,) e c0

has the infinitesimal generator

-A(ξk) = (-kξt), D(A) = {(ζk) € co; A(ξt) 6 c0} .

The element x = (1,1/2,1/3, •) does not belong to D(A), but

is differentiable for every y' — (τjk) e I1 and

~<Tsx, y'> = g β - % 6 i?[0, 00) .
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REMARKS ADDED ON REVISION. Suppose σ > 0 is not an integer.
Let us denote by D%(C%) the set of all xeDσ(Cσ) which satisfies
stricter estimate

(TtA*x - Anx - o(tp), t -> 0) .

Then we have

Dlz>D(AX), Reα = σ

and, if —A generates a bounded semi-group,

The inclusion D% D C$ is proved in the same way as in the proof
of Proposition 11.2. Since Dl (C%) is a closed subspace of D° (C°) with
the norm \\x\\ + qa{x) (II ̂ 11 + $<,{%)) and contains every Dτ (Cτ) with
τ > σ, the other inclusions follow from the estimates

\\x\\ + qa{x) SC{\\x\\ + \\A%x\\) ,

\\x\\+Va{x)

and the definition of A%.

holds for the operator A of Example 10 of Section 14.
In the space Dζ the approximation theorem (Lemma 2.4) holds in

the norm topology. Thus if we used D% instead of Dσ we could avoid
the strange topology of Dσ.
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