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It is well known in area theory that a continuous map f
of the unit square Q? into Euclidean space E? can have zero
Lebesgue area even though its range has a nonempty interior.
This cannot happen if f is suitably well-behaved, for example,
if f is light, Lipschitzian, or as we shall see below, if f satisfies
a certain interiority condition. The purpose of this paper is
to determine conditions under which an arbitrary measurable
gset A c @ will support the Lebesgue area of f. The results
imply that if f| A is Lipschitz and if one of the coordinate
functions of f is BVT (and continuous), then the Lebesgue area
of f is no less than the integral of the multiplicity function
N(f, A, y), where N(f, A, y) is the number (possibly <o) of points
in f7y)n A. We show that the BVT condition cannot be
omitted, The proofs of theorems involving Lebesgue area depend
upon a new co-area formula for real valued BVT functions.

2. Preliminaries. Our proofs rely heavily upon the following
topological theorem [3, p. 513] which was first proved by Federer in
the 2-dimensional case [8, p. 358]. We believe that this result is yet
to be fully exploited in area theory.

THEOREM 2.1. If X is a k-dimensional finitely triangulable space
and u: X— ELv: X— E*" i X—FKE' x E*' are continuous maps
such that f(x) = (w(x), v(x)) for xe X, then there is a countable set
Dc E* such that

SLf, (s, 0] = S[v|u™(s), ¢] Sfor (s,t)e(E'— D) x E*.
Here S|f, (s, t)] denotes the stable multiplicity of f at (s, 1) [9, (3.10)].

In the case X = @?, the unit square, (and this will be the only
case of interest to us throughout the remainder of this paper) this
theorem provides a very simple criterion to determine the stability of
f at a point (s, t); for ¢ is a positive stable value of v |« ~'(s) if and only
if there is a nondegenerate continuum C C u~'(s) such that ¢ < interior
»(C). Thus, the stable multiplicity function is positive at almost all
points in the range of a monotone map and in the case of a light map,
it is positive on an open dense set. In view of the following proposition,
we see that mappings which are similar to Whyburn’s quasi-open maps
[19, p. 110], [22, (8.9)] also have positive stable values.

ProrosITION 2.2, Suppose f: @*— E* is a continuous map such that
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for each y € (@), there is a component K of f~'(y) with the property
that for each sufficiently small open connected set U containing y,
there is a component V of f~(U) containing K which maps onto U by
f. Then, for all but countably many y e f(@*), S(f, y) > 0.

Proof. Select a point y € f(Q?) whose first coordinate is not contained
in the set D of (2.1). Let U; be a sequence of sufficiently small open
connected sets such that U, D closure U,,, and whose intersection is a
closed vertical line segment )\ containing y in its interior. Then the
intersection of the corresponding V,; will be a continuum C > K that
will be mapped onto ». By (2.1), S(f,¥) > 0. Now by repeating this
argument with horizontal line segments instead of vertical ones, the
result follows.

It is easy to verify that if S(f, y) > 0, then the converse of (2.2)
holds, c.f. [21, (2.4)].

The notion of stability is crucial in area theory since

2.2.1) o) = | SUvaLw

where £(f) is the Lebesgue area of fand L, is 2-dimensional Lebesgue
measure. By a result of Cesari [1], (2.2.1) is a special case of a more
general theorem due to Federer [9, (7.9)].

DerINITIONS 2.3. H} will denote k-dimensional Hausdorff measure
in B, F'¥ k-dimensional Favard measure [7, (2.18)], L, n-dimensional
Lebesgue measure, and dim (A4, ) will denote the topological dimension
of a set A at a point x. A real valued map f on a topological space
is called almost light if f~'(y) is totally disconnected for L, almost all
ye ', A map f: Q*— E* is said to satisfy condition N, on a set A
if it maps sets of H; measure zero of A into sets of L, measure zero.

We will use the following notion which was first introduced in
[6, p. 48]. An L, measurable set £ C E" has the unit vector n(x) as
the exterior mormal to E at x if, letting

S(x,"/')———{y:|y——w|<r},
Si(x, r) = Sz, r) N {y: (y — @)-n(x) = 0},

(2.3.1)
S_(z,r) = S(x, ) N {y: (y — x)-n(x) < 0},
a(n) = Ln[S(xy 1)] y
we have
2 lini L, S_(x,r) N Elfa(n)r* =1, 2 lin}an[SJr(x, r) N Elja(m)r=0.

Let BV denote the class of all locally integrable functions u: Q" — E*
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such that the ¢th partial derivative of u in the sense of distributions
is a totally finite measure z,;. This class contains those functions which
are BVT. For uwe BV and B any Borel subset of Q" let I(u, E) =
¢ [(E) where || is the total variation of the vector-valued measure
(2, s, + -+, 1), In the case that u is ACT observe that for any Borel
set Bc Q"

(2.3.2) I(u, B) = SB| grad w(z) |dLy(x)

where grad u is the ordinary gradient of #. Thus, in this case I(u, +)
can be extended to all Lebesgue measurable sets,

If Bc E™ is a Borel set then P(B) will denote the perimeter of B.
If F is the set of z for which the exterior normal to B exists at z
and if P(B) < oo, then we see from [2] and [10] that

(2.3.3) P(B)y = H; {(F) .

F' is called the reduced boundary of B and note that F' bdry B. For
u: Q" — E' in BV and E(s) = {x: w(x) > s}, Fleming and Rishel [14}
proved that

(2.3.4) I, @) = | PLEG)IAL)

In the case that u is Lipschitzian, theorems obtained independently by
Federer [11, (3.1)] and Young [20, Th. 4] imply that

(2.3.5) L, 4) = | _Hy{u~(s) 1 AJAL(s)
Bl
whenever AcC Q" is a Lebesgue measurable set.

3. Metric theorems. The following co-area formula is an exten-
sion of (2.3.5) and although the proof is only given for functions defined
on E* it is clear that it will generalize to K" without any essential
change, The author is indebted to Casper Goffman for his suggestion
that this co-area formula might be valid.

The following notation will be used throughout the proof. Let
(g,7, s) be coordinates in * and define é: E*— E*, II,: E*— E* Il : E*— E"*
by d(q, r, s) = s, II(q, r,8) = (r,s) and II(q,r) = r. If u:@Q*— E*then
u': @ — E*® is defined by w'(q,r) = (q, r, u(q, r)). G* will denote the
group of orthogonal transformations on E* and ¢ the unique Haar
measure on G* for which »(G*) = 1. For ReG*® let R*: E*— E*® be
defined by R*(q, r,s) = (¢, v, s) where R(q, r) = (¢’, 1').

THEOREM 3.1. If w:@Q — E' is BVT(ACT), then
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I(u, D) = E Hj[u(s) N D)Ly(s)
B
whenever DC @ is a Borel (L, measurable) set.

Proof. Let
9(s) = Hi[u™'(s) N D] = Hj[6*(s) N w'(D)] .

If wis BVT and D a Borel set, then A = «/(D) is an analytic set and
therefore it is the union of an increasing sequence of compact sets and
a set N of H; measure zero. Using the Eilenberg inequality [4] we
see that

HY6(s) N N1 =0

for L, almost all se E*, Thus, in order to show that g is L, measurable
it is sufficient to consider the case when A is compact; but then, it can
be shown as in [11, (8.1)] that g is the limit of upper semi-continuous
functions,

If u: @ — E"is ACT and NC @ a set for which L,(N) = 0, then
[18, (38.17)] and [12] imply that H[w'(N)]=0. Thus, w'(D) is H}
measurable whenever Dc @* is L* measurable and the measurability
of g follows as it did above.

Let

(D) = | Hilw(s) N DILs) .

It is now clear that a is a measure on Borel (I, measurable) sets if
w is BVT(ACT). Moreover, from [18, (3.17)], [12], and [4] we see
that « is absolutely continuous with respect to L, if » is ACT. Hence,
it is only necessary to prove the theorem in case v is BVT. For this
purpose we only need to show that I(u, W)= a(W) for rectangles
W @* because both I(u, -) and « are measures over the Borel sets.
‘We may as well assume that W = Q.

In view of (2.3.4) and (2.3.3) it is obvious that I(u, Q) =< a(Q.
The opposite inequality will follow from the last of four parts into
which the remainder of the proof is divided.

PART 1. For L, almost all se E*, u™(s) is (H}, 1) rectifiable.

Proof. Since u is BVT, 8(u') < e [16, p. 516]. If A= %'(Q) then
it follows from [12] that H(A4) < « and that A is (HZ, 2) rectifiable.
Now apply [13, (8.16)] to obtain a countable number of 2-dimensional
proper regular submanifolds M; of class C* for which
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Hg[A— GMi]zo.
i=1
Letting M = U, M; the Eilenberg inequality [4] implies

Hi[o7(s) N (A — M) =0

and
Hi[o'(s) N Al <

for L, almost all s, In view of (2.3.5) one can easily verify that for
each 4, 67%(s) N M, is (H}, 1) rectifiable and therefore that 6-*(s) N M; N A
is (Hj,1) rectifiable for L, almost all se E'. But the union of

07'(s) N M; N A occupies H, almost all of 6=(s) N A and thus the result
follows.

PART 2. For L, almost all se E*, Fi[u(s)] = H[u"'(s)].
Proof. This follows from Part 1 and [7, (5.14)].
PArT 3.

|, B snaLys) = m2| | NULR*w, @, yldLw)de(®) .

Proof. For each se E* apply [7, (5.11)] to obtain
FiuY(s)] = nz—ISGZLIN[ILR, u=(s), dLy(r)dop(R)
= 2| | NULEw, @, (r, 9JAL(r)dp(R)

By integrating with respect to s, the result follows from Part 2 and
Fubini’s theorem.

PART 4.
T, @) = || Hilw (6] Ls) .

Proof. Select a sequence of Lipschitz functions u,: @ — E* which
converge uniformly to % and for which I(u,, @) — I(u, @) as k— oo.

A result of [18, (8.5)] states that for each ReG® and continuous
v @*— EY,

(1) NUILE*Y, @, y] = S[LLR*V, y]
for L, almost all y € E*. Recall that the stable multiplicity function
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is lower semi-continuous with respect to uniform convergence, Thus,
from Part 3, (1), Fatou’s lemma, and (2.3.5)

[ Gl = n27| | NULRw, @, yldLw)de(R)

=2 | SULR*w, yldL)dp(®)

@2

< lim inf 112—15 S SI,R*uw}, yldLy(y)do(R)
@) B2

ko0

= liminf 712 | NULRui, @, vAL@)dp(R)
2JE

k—oo

=lim | Hifur(9)ldL.()
= lim I, @) = I(u, @Y .

COROLLARY 3.2. If u:@Q*— E*' is BVT, then the following hold
Sor L, almost all se E*:

(i) Hiu™(s)] < e and w™'(s) is (Hj, 1) rectifiable,

(ii) the exterior mormal to E(s) exists at H; almost all x € u='(s).

Proof. The first statement follows from the proof of Part 1 in
(3.1) and the second from (3.1), (2.3.4), and (2.3.3).

LEMMA 8.3, If u:@Q*— E' is BVT, then for L, almost all se€ E*,
dim [u~'(s), ] > 0 for H; almost all xeu™'(s).

Proof. If BC E* ze E*? denote by W(x) the set of all straight
lines passing through « and by U(B, x) those n e W(x) for which z is
not a cluster point of A N B. Since we may identify W(x) with the
unit semi-circle S}, we can regard the restriction of H, to S} as
defining a measure ¢ on W(x). In the same manner, we can define a
measure ¥ on the homogeneous space of all orthogonal projections
: E*— E°,

Suppose, for some se E*, that H)[u™'(s)] < « and that u'(s) is
(H;, 1) rectifiable. Letting

D, = uw(s) N{x: Ll U(u™(s), ©)] = O},

it follows from [7, (8.3)] that L,[p(D,)] = 0 for v almost all p. But
D, is also (Hj, 1) rectifiable and therefore, from [7, (5.14)] it follows
that H}(D,) = 0. Thus, in view of (3.2), for L, almost all se E* the
following two conditions hold at H;} almost all z € u=(s):

(i) the exterior normal to E(s) exists at z,

(i) p[U(s), z] > 0.
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We will conclude the proof by showing that for all such s and z,
dim[u~'(s), ] > 0. For if we assume that dim [u~'(s), ] = 0, this means
that there exist arbitrarily small open sets G containing a whose
boundaries do not intersect #~(s). By the Phragmen-Brouwer theorem,
it can be assumed that bdry G is connected. For every r > 0, let

Ulu(s), z] = W) N {x: S, 7) Nu™(s) N (v — {z}) = 0}.

From (ii) we know that there exists « >0 and », >0 such that
AU, (u(s), )] = a. Choose G < S(z, r,/2). Since bdry G is connected
and bdry G Nwui(s) =0, either bdry G E(s) or bdry GcC F(s) =
{zx: u(x) < s}. Suppose bdry G < E(s) and because of (i), r, may be
assumed to have been chosen so small that (see (2.3.1)),

(3) 2Ly[S. (7o, @) O E(s)]/ [T < /1T .

Now, for each e U, (u™'(s),®), Sz, r) Nu(s) N (v — {«}) =0 and
AN bdry G #= 0. Therefore, since bdry G < E(s), the union of all such
N in S(x, ;) — {#} is contained in £(s) and its L, measure is no less
than arl, which contradicts (8). The case of bdry G c F(s) is treated
in a similar way and thus the proof is concluded.

LEMMA 3.4. Suppose f: Q*— E* is continuous and f = (u, v) where
w18 BVT. Then f~'(y) is totally disconnected for L, almost all ye E®,

Proof. Let )\ be a horizontal (or vertical) line segment in @* on
which % as a function of one variable is of bounded variation. Thus,
if A is the line » = r, the function u(-, 7,) is of bounded variation
and consequently, N[u(-, 7)), N, s} < o for L, almost all se E*. This
implies that f(\) intersects almost all vertical lines in a finite number
of points and therefore, by Fubini’s theorem, L[ f(\)] = 0. Since u is
BVT, there exist a countable dense set of vertical lines and a countable
dense set of horizontal lines such that the image of each line is a set
of L, measure zero. If A denotes the union of these vertical and
horizontal lines, then L,[f(4)]=0. Now if C is a nondegenerate
continuum of f~(y), for some y e E*, then clearly C must intersect A,
‘Thus ¢ f(4) and the result follows,

COROLLARY 3.5. With the same hypotheses as in 3.4, for L,
almost all se E', v|u='(s) is almost light.

THEOREM 3.6. Suppose f: Q@ — E* is continuous, f = (u, v), 4 s
BVT and v satisfies condition N, on an analytic set A Q. Then

8 = | NU, 4, 9dL) .
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Proof. Let W, == u='(s) N {x: dim [w~'(s), ] > 0}. It follows from
(2.1), (3.3), (3.5) and [9, (3.3), (3.5), (3.12)] that for L, almost all se E*

S[v | w(s), t]dL.()

Bl

[,.SL7. & OlL) =

Bl

|
> S Niv, W,, tldL.()
|

>\ N, u(s) N 4, t]dL,(t)

mn

= | NS, 4, (s, OlaL() .

Now by integrating with respect to s the result follows from Fubini’s
theorem and (2.2.1). The analyticity of A is needed only to assure
the L, measurability of the last integrand.

COROLLARY 3.7. If f: @*— E* is continuous, if f is Lipschitzian
on an L, measurable set AC @, and f = (u, v) where w s BVT, then

8z | NG, 4 9l .

REMARK 3.8. It is easy to see that if neither of the coordinate
functions of f is BVT, then the conclusion of (3.7) may not hold. For
this purpose let A Q* be a dendrite for which L,(4) > 0. Then a
result from [15, p. 290] implies that A is a retract of @*. If r: Q*— A
is the retraction and ¢: A — A the identity map, then f = ir is clearly
Lipschitzian on A and £(f) = 0 since the range of f has no interior,

THEOREM 3.9. Suppose f: Q*— E* is continuous, f = (u, v), w is
ACT, v satisfies condition N, on Q, the approximate partial derivatives
of v exist L, almost everywhere on @QF and Jf, the approximate
Jacobian of f, is integrable. Then

o) = | J7f@) L@ = | N, @ wiLw) .

Proof. Referring to [5, (5.4)] and (3.6) we see that we only need
to prove that f carries sets of L, measure zero into sets of L, measure
zero. If this were not the case, then there would exist an L, null set
N c @ for which L[ f(N)] > 0. We may assume that f(N) is measurable
since N can be taken as a G; set. Thus, L,Jv(u='(s) N N)] > 0 and
therefore H;[u'(s) N N] >0 for all s in some set of positive L,
measure. But, from (2.3.2) and (3.1)

- §N| grad u(z) [dLy(x) = SEIH;[u—l(s) N N]dLy(s) > 0
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a contradiction.
COROLLARY 3.10. If u is ACT and v Lipschitzian on @, then

o) = | | If@) L) = | N(, @, waL) .

REMARK 3.11. The above corollary is an extension of a theorem
proved in [17, p. 437], where only the first part of the equality is
established. Both (3.8) and (3.9) are related to the following unsolved
problem c.f. [16, p. 380], [17, p. 433]: Let f:Q*— E* where both
coordinate functions of f are ACT and Jf is L, integrable. Then, is

o) = | 17w L) 2

By using techniques employed in this paper, one can show that if the
additional hypothesis is made that v satisfies condition N, on W, =

w'(s) N {x: dim [u~(s), ] > 0} for L, almost all s€ E*, then the question
can be settled in the affirmative,.
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