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This paper gives a direct constructive proof of the spectral
theorem for a normal operator T (bounded or unbounded) in
a complex Hilbert space. It depends on the results, recently
obtained by elementary metheds, that an unbounded positive
self adjoint operator A has a unique positive self adjoint square
root Al/%; and an arbitrary self adjoint operator A has a unique
representation A = At — A~ with A* and A~ self adjoint and
positive and the range of each contained in the null space of
the other.

Write | T| = (T*T)"® and, for complex A and » = 0, let E(\, 7)
be the null space projection of (| T — XI| — »I)*. For compact subsets
K of the complex plane

E(K) = A V{E®, ¢):re K},
and for any Borel set M,
E(M) = VY {E(K): K compact and K & M} .

It is shown that E is the unique spectral measure such that
T — Sw«m .

In the case of a bounded normal operator the spectral theorem
can be obtained in many different ways. For example, the theorem
can be deduced from the theory of B*-algebras |4], the representation
of linear functionals on C(M) (M compact Hausdorff) ([5], [2]), or
the Stone-Weierstrass theorem [8]. The proof of the theorem for
unbounded normal operators usually relies both on the bounded case
and on the theorem for unbounded self adjoint operators [4], [8],
[9].

Our proofs are elementary in the sense of [7]. That is to say
we depend only on inherent properties of Hilbert space and of the
complex number system. While we use the notation and some ele-
mentary results from the theory of spectral measures and integrals
these are merely convenient devices for stating the results, Apart
from this, and some manipulations with projections, all the results
needed are to be found in [1].

The method of proof seems to be new, even in the bounded case.
It is motivated, to some extent, by Riesz and Nagy’s proof [8, §108]
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392 S. J. BERNAU

of the spectral theorem for bounded self-adjoint operators. The proof
of uniqueness of the spectral measure of a normal operator is based
on the neat characterisation of the spectral subspaces given by Halmos
[5, §41]. This in turn is based on the corresponding results for
bounded self adjoint operators given in [7].

To make the paper reasonably self contained statements of the
main results of [1] have been included.

I am grateful to the referee for pointing out one serious error
and some lesser mistakes in the original manuseript of this paper.

2. Definitions and preliminary results. Throughout this paper
9 denotes a complex Hilbert space. All operators on © are assumed
linear, but not necessarily bounded. For an operator T, D(T), R(T)
and R(T) denote, respectively, the domain, range and null space of
T. If T is bounded we assume D(T) = $ and if T is not bounded
we assume D(T) is dense in . By projection we always mean
orthogonal projection. All statements about convergence of operators
mean strong convergence.,

We refer to [8, §§ 114-119] for definitions and elementary properties
of closed operators, the adjoint of an operator and extensions of an
operator. Recall that an operator T is self adjoint if T = T*, positive
if T is self adjoint and (Tx, ®) = 0 (x e D(T)); and that T is normal
if TT* = T*T. If S is bounded we say that T commutes with S if
ST< TS (i.e., TS is an extension of ST).

We record the following theorems,

THEOREM 1. If A is a self adjoint operator there ewist unique
positive operators A* and A~ such that
A= A" — A7, R(AY) S W(47), R(A™) € (AT
and A* and A~ commute with every bounded operator which commutes
with A.
THEOREM 2. If T is a normal operator there exist a positive
operator | T| and a wnitary operator U such that

T=|T\U=U|T].

| T| = (T*T)"® and is uniquely determined by T, and U is unique
if we require (as we may) that

Us=a (veT)).

Furthermore,
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AT) = DT =D( T,
[ Tofl =T =Tzl (eXT).

For elementary proofs of these theorems see [1, Theorems 12 and
22].

We need some results about suprema and infima of sets of projec-
tions, For these we refer to [5, §30]. We also use the result that
a directed increasing (decreasing) set of commuting projections is
strongly convergent to its supremum (infimum). A proof of this can
be based on {8, §104, p. 263].

Throughout this paper T is a normal, but not necessarily bounded,
operator on ; C is the complex plane, <Z is the set of all Borel
subsets of C, . %" is the set of all compact subsets of C and 7 is the
set of all open subsets of C.

3. Construction of the spectral projections. Suppose that e C
and » = 0. The operator T — \I is normal so that (| T — \I|— rI)*
is uniquely defined, self adjoint and hence closed. It follows that
R T —N| — rI)*) is closed. We now define E(\, r) to be the pro-
jection on R(( T — NI | — rI)*); E(\, r) is a bounded orthogonal pro-
jection,

For Ke 9 we define

E(K) = AV {EQ, ¢): e K}

and extend the definition of K to arbitrary subsets M of C by the
formula,

E(M) = V {E(K): Ke 57 and K < M} .

(Here and subsequently we take the supremum of an empty set of
projections to be 0. This gives E(g) = 0.)

In this section we show that E restricted to <Z is a spectral
measure,
It is important to know that

(1) E(\, r) = E(D(\, 7))

where D(\, r) denotes the closed disc with centre » and radius r,
This result is proved in Lemma 3. Before we can prove (1) we need
some commutativity results which apply to all the projections E(M)
(M < O0).

LEMMA 1. The projections E(M) (M S C) commute with each
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other and with T, T* and | T — \I| (\eC).

Proof. As in the proof of [1, Theorem 23] it follows that for
each complex A the projections E(\,») (r = 0) commute with each
other and with 7 — xI and T* — XI (= (T — AI)*). Thus they commute
with T — p¢I and (T — p)* (xeC). Hence [1, Theorem 10] they
commute with (T — pI)*(T — pI)"®) = | T — pI| and [1, Lemma 16]
with E(y,s) (peC,s = 0). Because multiplication of projections is
strongly continuous, infima and suprema of sets of commuting projec-
tions are themselves commutative. It follows that

E(M)E(N) = E(N)EM) (M, N<C).

Now let & be any set of commuting projections all of which
commute with T. We show that YV & and A & also commute with
T. Because the projections in % commute we may, using the formulae
for finite suprema of commuting projections, assume that & is directed
increasing. Then & is strongly convergent to V &. If xeDT)
and Fe &, Exe D(T) and ETx = TEx, Now, Ex— (Y &)z and

TEx = ETx — (Y &) Tx .
Because T is closed, (V &)z e D(T) and
(V&) =(YV&)Tx (xeD(TY) .

Thus (V &)T < T(V &) as required. Similarly A & commutes with
T.

By taking adjoints we deduce that VYV & and A & commute with
T*. It now follows that they commute with (T — \)*, (T — \I) and,
by [1, Theorem 10] again, with |7 — XI|. The remainder of the
Lemma is now obvious.

Before proving the next lemma we record some known facts about
the projections E(x, 7).
For fixed neC:

(2) B 7) = EQys) (0=7r<s);
(3) E(\, ) = lim E(\, s) ;
(4) Enr)—I  (r—eco).

These are proved in |1, Lemmas 17, 18]. It also follows from [1,
Lemma 17 and proof of Theorem 23] that (T — NI)E(\, r) is a bounded
normal operator such that

(8) {(T = MDEM, n)} = (T — M) EQ\, 1) ;
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(6) (T = XDEMN, ) || =7 ;
and, writing F(\, r) = I — E(\, ), that:
(1) (T —=NI|F\ )2, Fv, r)e) 2 r || F(N r)z [P (e (T)) .

(Recall that (| T — AI|) = T — AI) = (T) (veO)).
It is an immediate corollary of (2) that, for any subset M of C:

(8) VBN e:ve M} = V{EQ0, p:ve M}  (0=esry);

and it follows from the definitions and from elementary properties of
suprema and infima that, if M S N,

(9) E(M) = E(N) .
The next lemma is crucial.

LEMMA 2. If Ny, -+, N, and pt are complex, v, -+, v, and r are
nonnegative and

Dz, ) € U D, )
then

E(p, r) = \? E(\;, 7)) .

Proof. Take ¢ > 0 and write
F, = E(\;, r; + ¢),
F =TT (B, ) — He, n)F)
Because all the projections commute, F, is a projection,
F, = B, ) — g, r) V Fi

and, because all the E(\, r) commute with 7 (see proof of Lemma 1),
F, commutes with T.

By (6), (T—pI)F. is a bounded normal operator and ||(T— pI)F, || <7.
For the remainder of the proof we write F' for F, and we assume,
as we may, that # = 0. By [2, Theorem 2], because TF is bounded
and normal, there exist a complex number « and a sequence (x,) in
9 such that: |a| = || TF||, ||»;|| = 1 for all &£ and

TFx, — ax, — 0 (k— o) .
Now, because T commutes with F, FTF = TF and hence,
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ax, — Fxy) = (F — ITFx, — az,) — 0 (f— o0) .
Suppose that « # 0, then
x, — Fe,—0 (k— o).

Consequently || Fu,||—1 (k— ) and we may, and do, assume that
z, = Fz, for all k.
Now, for 1 =1,2, -+, n,

| — N | = [[(@ — M) Fa, |
= (T = ND)Fa, — (T — al)Fu, ||
= (T =MD Fey || — (T — al)Fa, || .

Because F'= (I — F,)F, it follows from Theorem 2 and (7) that

(T = M) Fa || = [[ (T — D) | Fay || || F, ||
= (| T — M| Fay, Fizy)
= (r; + )i Fu, |

=1r;+ €.
Hence,
laa — N | = (i +6) —|[(T—al)Fa,||—r,+e  (k— ).
Because |a|=|| TF'|| = rand D0, r) S U D(\;, 7;), we have |a —\; | S 7,

for some 7. This is a contradiction so we must have a =0, i.e.
TF = 0. Again, for some 7, 0€ D(\;, r;) and, as above,

(r: + o) [[ Folf = [(T — MDD Fe| || Fo |l
= |l = MFw ||| Fo]l
=[NP (we9).

Because 0 D(\;, 7)), | M| = ;. Hence || Fr|| =0 (x€9) and F = 0.
Now let e — 0 + 0, by (3), F; — E(\;, r;) for each 7. Thus, because
multiplication of projections is strongly continuous,
0="F, -~>i=II1 (E(pe, v) — E(pe, 7)E(N;, 7))
- E(#a 7/‘) - E(F’ly ’l“) 1\=/1 E(A’u ’)”,5) 5
and E(y, r) < Vi, E(\;, 7;), as required.
- LemmA 3. For veC,r =0,

B(p, r) = A VAE(, o)1 e Digt, 1)}
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Proof. If >0, it follows from Lemma 2 that

397

Ep,r+m) =z Eve)  (veD(,r); 0<e=7).

Hence
Ep.r +7) = A VAEQR, e):he D(x, r)};
and by (3),

E(p, r) = A) VA{EM, €): e D, )} .

Conversely, for each ¢ > 0, the set of open dises {z: {2z — M| < ¢}

(e D(y, 7)) covers the compact set D(y, r). Hence,
Aj, =+, A, such that

Dig, ) S U DOvi, ©) -

By Lemma 2,
B, v) = V E(n, ©)
= VH{EQ, e):xe Dy, )} .
Thus

Ep, r) = 54\0 V {E(\, e): he D(y, r)}

and the proof is complete.

Lemma 4. If K and L are compact,

EK)\v EL)=EKUL).

there exist

Proof. Because all the projections commute, it follows from [5,

§ 30, Theorem 3] that

E(K) v E(L)

= [E/>\OV {E(\, €): XGK}] Vi I:v,/>\o V {E, 7): ﬂeL}]

- s¢>o ([V {E(?\,, 8): AE K}] \ [v {E(#: 77) re L}])

= A VIEN o v B, pire K, pel}.

Hence, by (8),
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BK) v B(L) = A VB ¢) V B, 9 ve K, pe L}
= 8/>\0V {E(v,e:ve KU L}
= EKUL).
Lemma 5. If M and N are disjoint subsets of C then,
EM)EN)=0.
Proof. Let K and L be compact subsets of M and N respectively.
Then KN L = @ and hence there exists a positive » such that
D\, ) N D(e, ) = @ (ne K, peclL).

Because all the relevant projections commute it is sufficient now to
prove that E(\, n)E(x,7) =0 (ve K, re L), Let xc 9 and write

Yy = EO“: W)E(#’ 77)% .
Because y = E(\, n)y = E(x, n)y, it follows from (6) that,

=yl = [[(T — pD)E(pe, nyy — (T — XDEN, n)y |
= (T — pDEQ, ny |l + 11T — MDHEN, )y |
=nllyll +7llyll.
Because D(\, ) N D(¢,n) = @, |N— ¢} > 2p. Hence ijy|l=0 and
E(\, n)E(p, n) = 0 as required,
CoroLrLaRY. If K and L are in %% and KN L= @,
EKULy= EK)+ EL).

Proof, This follows from Lemmas 4 and 5.

Levmma 6. If K is in o~

E(K)= N{E(U): Uew,K< U}.

Proof., By definition of E,

EK)= ANMEU):Uez,Kg U}.
To prove the converse let

E. =V {EM ¢): e K} (e>0).

By definition, E(K) = Ao E.. Let U, be the open e-neighbourhood
of K; i.e.
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U.={zeC:d(z, K) < ¢ (e>0).

Clearly K S U.. We complete the proof by showing that E(U.) < E,
(e > 0).

Suppose that Le .27 and L < U.. Then L is at positive distance
from C ~ U, i.e. there exists » such that » >0 and if #eL and
|2 — p| =7 then ze U,. Thus, for each g in L, the compact set
D(y, ) is covered by the open discs {z:]|z — M| < ¢} (ve K). Hence
a finite set, corresponding, say, to A, ---, A, of these discs cover
D(y, ). Then, by Lemma 2,

E(pe,n) = Y E(\;, ©)

Y
=k  (rel).
o

Thus E(L)< K, (Le % and L
follows that

U, and hence, F(U,) = E.. It

E(K)= A E(U,) = A E. = EK),
£§>0 e>0
and, because each U, is open,
EK)= AEU.Uez,KE U}.

At this stage it is relevant to point out that we have proved
enough to show that, for each « in ©, the function (E( )z, ) restricted
to 9%  is a regular content. Standard techniques [6, §8§53, 54] would
enable us to extend this content to a regular Borel measure. We
would then have to show that this measure coincided with the restric-
tion of (E( )x,x) to <. It would then follow [5, §36] that &
restricted to <# was a spectral measure. We do not proceed in this
way because the proof that (E( )x, x) was the extension of the content
originally defined would be of the same order of magnitude as the
direct proof that E restricted to <# is a spectral measure. There
are, however, obvious similarities between our proofs and the standard
procedures for extending a content,

Let & denote the class of all subsets M of C such that

EM)= N{EU:Uecz, M< U}.

Clearly % < .o and 2r < .&. We shall show that <& < .o and
that E restricted to .o (and hence, restricied to <#) is a spectral
measure.

LemMA 7. If (U,) is a sequence in 7/ and U = s, U,, then

E(U) = SZIE(U,,) i
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Proof, By (9), E(U) = V., E(U,) .

Conversely let Ke 27", K € U. Because K is compact there exists
m such that

K

in

uu..

Hence, [6, §50, Theorem A], there exist compact K, - -+, K,, such
that

K,2U, (=1--,m),
E=UK,.

Then, by definition, K(K,) < E(U,) for each n and, by Lemma 4,
B(K) = V B(K)

V EU,)

IA

n=1
<V EU,).
Thus E(U) < Vo, E(U,), which completes the proof.

LEmMMmA 8. If (M,) is a sequence in & and M = Ui M,, then
M s in & and

mm:me%

Proof. By (9), E(M) = V., E(ML,).
Now, suppose that ¢ > 0 and 2 9. By definition of &7 there
exists a sequence (U,) in % such that M, & U, and,

H E(Un)x - E(Mn)x H <ez2™ (n = 17 2: .t ') .
Let U=z, U,; U is open, M < U and, by (9) and Lemma 7,

E(M) = B(U) = V B(U,) .

Thus,

0 < EM)— VEM,) = VEU, — VEM,)

Hence,
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1EQDe — (VEML)z || < [{V (E(U,) — BAL)e |
= 3| BU)e — Bz ||
< 282‘”
..

Thus E(M)r = (Vo E(M,))x (x€ D) and E(M) = VEM,).
It also follows from the proof above that

inf{| BU)s — EM)x|: Uez/, M= U} =0 (ze9).
Hence,
EM)= ANEU):Uez,M<Z U},
Me o7 and the proof is complete.

CoROLLARY 1, If (M,) is a disjoint sequence in S,
B(QM,) = S EM,),
with the series strongly convergent.
Proof. By Lemma 5,
V B(ML) = 3 E(M)
with the series strongly convergent,
COROLLARY 2, Ewvery closed subset of C is in 7.

Pyoof. Every closed subset of C is a countable union of compact
sets,

LeMMA 9. E(C) = I and, for every M in &7, if M'=C ~ M,
then M'e &7 and EM') = I — E(M).
Proof. Because C is open, Ce .o and, by (9) and (4),
EC)= EO0,r)—I (r— o).
If U is open, U’ is closed and, by the corollaries to Lemma 8,

E(U") + E(U) = E(C),
E({U) =1I— EU).
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Similarly, if K is compact, K’ is open and
E(K") = I — EK).
Thus, by (9),

EM) = V{BU): Uez, M< U}
=V{—EU):Uecz, Mc U}
=I— NEBU):Uecz, M< U}
= I— B(M) ;

and conversely,

EM) = ANEK"): Ke 57, K= M}
= AN{I— EK):Ke 2, K< M}
=1— V{EK):Ke 9%, K< M}
=I— EM).

It follows that E(M') = I — E(M) and, because K'c¢ 7 if Ke 57",
the second inequality above shows that M’e . o7,

THEOREM 3. If E s vestricted to <Z them E s a spectral
measure,

Proof. Lemmas 8 and 9 show that .o is a o-ring of subsets of
C. Because, % < ., it follows that & < .or. Because E is
(strongly) countably additive on .o (Lemma 8, Corollary 1) and
E(C) =1 (Lemma 9), it follows that E, restricted to <#, is a spectral
measure,

Remark, The proof given above shows that the spectral measure
given by the restriction of E is regular, i.e. if M is in <Z,

E(M) =V {E(K): Ke 297, K< M}
= ANEU):Uez, Mc U}.

The proof can easily be adapted to give a simple direct proof that a
complex spectral measure [5, §39] is regular.

4. The spectral theorem. We now wish to prove the relation
T = SxE(dx) .

Before doing this we digress to define spectral integrals and recall
some elementary facts about them, Our remarks are based on [4,
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XII, 2.5] and [5, §37].
If f is a complex-valued Borel-measurable function defined on C
and r >0, f, is defined by

L) =750 (S =7),
frM) =0 1> ).

If ¥ is any spectral measure we define
4= [room@n

as follows. D(A) is the set of all # in $ such that S Fr(\E(dNn)x tends
to a limit as » — co; and, for 2 in D(A)

Az = lim S FOVE(d) .

r—oo

(We make the convention that the range of integration is the whole
of C unless otherwise specified). Writing A4, = S F-(\)E(d\) and

M, ={xeC:|f(M] =1},

we have, for x in 9,
14— A = [ 1£.00 = £,0) (B, 2)

=, 1 FHE@Na, @) .

r

It follows that

D) = fae &: [ 1£0) (BN, ) < o},
and
(10) 14z = {1F00 FE@z, 2 @eDA) .

For the remainder of this paper E denotes the spectral measure
with domain <Z which we obtained in § 3 (Theorem 38).

THEOREM 4, T = SxE(dx).

Proof. If M is a Borel set of diameter not greater than » and
if xe M, it follows from (5) and (6) that

E(M)x = E(M)E(, r)xe D(T)
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and
| TE(M)x — \EM)z|| < || EM)x|] (x€9).

Hence

SWS NE(AN)E = SW NE(@N) (O, 7)o
= TE(0, r)x (xe9).
Thus, if xe (T),

S MNE(d e = TEQ, r)x
IAl=r
= FE(0, r)Tx
— T (r— co) .
This shows that z ¢ @(S xE(dx)) and
SxE(dx)x — Te,

so that T'< SxE(dx). On the other hand if ze @(SxE(dx)),

TE(0, r)z = S NE(dN)@

IAlsr

~ SxE(dx)x (r— o) .

Because T is closed and E(0, 7)x — x (r — o), we have 2e D(T) and
T = S)»E(dk)x. Thus T = SxE(dx) as required,
The construction of E makes uniqueness easy to prove,

THEOREM 5. If F is a spectral measure (with domain &) and
T— SNF(dx), then E = E.

Proof. Suppose that xe C and » = 0. Let §(\, ) be the set of
all # in © such that
veD(T") and [T —M)z| =|[lzl]] (=12 ---).

The proof of [5, §41, Theorem 1] shows that F(x, ») is a subspace of
$ which is invariant under every bounded operator which commutes
with T. We show that

RE(D(N, 1)) = FN, 7) = REN, 1)) .
Write F(\, r) = F(D(\, r)). Because D()\, r) is bounded
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Fo,, Mze D(T") = DT —\)")  (ze)

and, by (10),
LT — NI)"F(\, )@ |
— grm o — AEFARFN, v, Fu, 7))
:L“ = [ g\ PHF@p)F(N, ), 3)
=| (Fawe, )
= HF(N, x| .

Thus REFQ, 7)) < F(\, 7).

Now suppose that xze®(\,r). Take s>r and write
y=a — F(\, s)xz. Because §(:\, r) is invariant under F(A, s), ¥ € F(\, 7)
and ||(T— M)yl < lyll. Also,

T =Dy = |1 —x (Fdmy, ) ;

and, because F(\, s)y = 0,

W=Dyl = 1= \EEdmy, )

= st (P, v)
=yl

Thus, because s > », ||y|| = 0. Accordingly, F(\. s)z = x (x € F(\, 7).
Letting s— 7 + 0, we have

x=FQ\, r (xeFM, 7).

Thus REFR, 1) = FO\, 7).

A similar argument, shows that R(E(\, 7)) = F(\, 7).

Thus the spectral measures K and F' agree on all closed dises D(\, 7)
(veC, r=0). Hence they agree on the o-ring generated by these
dises, i.e., on &. Thus E = F as required.

We now define the spectral measure (or resolution of the tdentity)
of a mnormal operator T to be the unique spectral measure E such
that

T = SxE’(dx) :

We conclude with the important commutativity result.
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THEOREM 6. If T is mormal its spectral measure commutes with
every bounded operator which commutes with T.
(i.e. If Bisbounded and BT < TB then BE(M) = E(M)B (Mec <7).)

Proof. For each complex ) and nonnegative r, F(\, r) is invariant
under B, Because F(\, ) = R(E(\, 7)), BE(\, r) = E(\, r)BE(\, ). Be-
cause B commutes with T, B* commutes with T* and, because

(T —=ADa || =[[(T* = M)w

| (e D(T)),

it follows that {(n,r) is invariant under B* so that B*E(\, r) =
E(\, r)B*E(\, ) and, finally, BE(\, r) = E(\, r)B. The desired result
is now an immediate consequence of the construction of E.
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