ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF PARABOLIC EQUATIONS OF HIGHER ORDER

LU-SAN CHEN
ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
PARABOLIC EQUATIONS OF HIGHER ORDER

LU-SAN CHEN

It is known that the solution \(u \) of the heat equation
\[
\frac{\partial u}{\partial t} = \Delta u
\]
under the boundary condition \(u = 0 \) decays as
\[
e^{-\lambda t} u
\]
for some \(\lambda > 0 \) as \(t \to \infty \). This gives us information
about the asymptotic behavior of the solution \(u \) in time.

There arises the question whether such a theorem is valid
for parabolic differential equations with variable coefficients.

In this note we shall treat this problem and prove that
the theorem analogous to the above holds for parabolic dif-
ferential inequalities of higher order under some additional
restrictions.

Consider the unit sphere \(\mathbb{S} \) in the \(n \)-dimensional Euclidean space
\(E^n \) with boundary \(\Gamma \) and denote by \(I(T) \) the interval \(0 \leq t \leq T \)
and by \(I \) the half-infinite interval \(0 \leq t < \infty \). The \((n+1) \)-dimensional
domain \(\mathbb{S} \times I \) will be designated by \(R \), while \(S \) will be the portion
\(\Gamma \times I \) of the boundary of \(R \).

We are interested in the growth of functions \(u(x, t) \) which satisfy
the differential inequality of the form
\[
(Lu)^2 \leq c(t) \sum_{|\alpha| \leq s} |D_x^\alpha u|^2
\]
in \(R \) and \(D_x^\alpha u = 0 \ (|\alpha| \leq s - 1) \) on \(S \). Here \(L \) is a parabolic differ-
ential operator of higher order written in the form
\[
(1) \quad L \equiv (-1)^s \frac{\partial}{\partial t} - \sum_{|\alpha| \leq 2s} a_\alpha D_x^\alpha,
\]
where all the coefficients \(a_\alpha = a_\alpha(x, t) \) are \(s \)-times continuously differentiable in (a neighborhood of) \(R \cup S \) and
\[
(2) \quad A \equiv \sum_{|\alpha| \leq 2s} a_\alpha D_x^\alpha
\]
\[
(D_x^\alpha = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}, \alpha = (\alpha_1, \ldots, \alpha_n), \ |\alpha| = \alpha_1 + \cdots + \alpha_n)
\]
is assumed to be uniformly elliptic throughout \(R \cup S \), i.e., there is a constant \(k_0 \) depending only on \(A \) such that
\[
\sum_{|\alpha| \leq 2s} a_\alpha \xi^\alpha \geq k_0 (\xi_1^2 + \cdots + \xi_n^2)^s
\]
for any real vector \(\xi = (\xi_1, \ldots, \xi_n) \).

Let \(v(x, t) \) be a \(2s \)-times continuously differentiable function in
\(R \cup S \) such that

\[(3) \quad D_x^s v = 0 \quad (|\alpha| \leq s - 1) \text{ on } S \]

and

\[(4) \quad v(x, t) = 0 \text{ in } (x, t) \in \mathcal{D} \times I(T_0) \]

for some \(T_o \). The function \(v \) satisfying (3) and (4) is said to belong to the class \(V \).

We shall prove the following theorem.

Theorem. Suppose that \(u \) satisfies the inequality

\[(5) \quad (L u)^2 \leq c(t)^2 \sum_{|\alpha| \leq s} |D_x^s u|^2 \]

in \(R \cup S \) and that \(D_x^s u (|\alpha| \leq s - 1) \) vanish on \(S \) and suppose that the condition

\[\lim_{t \to \infty} \int_{\mathcal{D}} e^{2t} u^2 \, dx = 0 \]

holds for any \(\lambda > 0 \). If \(c(t) \) is bounded and continuous in \(I \) and if \(c(t) = 0(t^{-1})(t \to \infty) \) then \(u \) is identically equal to zero throughout \(R \).

This is an analogue to Protter's theorem \[2\], where parabolic operators of second order are considered.

2. To prove the theorem, we prepare two inequalities deduced from the following lemmas whose proofs are found in \[1\].

Lemma 1. Assume that the differential operator \(A \) in (2) is uniformly elliptic in \(R \cup S \). If \(v \) is in \(V \), if \(f = f(t) \) is in \(C^1([0, \infty)) \) and if \(g = g(t) \) continuous in \([0, \infty) \) has no zero, then there exist two positive constants \(k_1 \) and \(k_2 \) depending only on \(A \) such that

\[k_1 \int_R f^2 \sum_{|\alpha| \leq s} |D_x^s v|^2 \, dx \, dt \leq \int_R f^2 g^2 (Lv)^2 \, dx \, dt \]

\[+ \int_R (k_2 f^2 - 2ff' + f^2 g^{2s-2}v^2) \, dx \, dt + \lim_{t \to \infty} \int_{\mathcal{D}} f^2 v^2 \, dx. \]

Lemma 2. Suppose that \(v \) is in \(V \) and that \(f = f(t) \) is in \(C^\infty([0, \infty)) \) and \(g = g(t) \) continuous in \([0, \infty] \) have no zero, then for a given operator \(L \) in (1), there exists a constant \(k_3 \) depending only on \(A \) such that
\[\iint_R f f'' v^2 dx dt \leq \iint_R f^2 (Lv)^2 dx dt \]
\[+ k_3 \iint_R (f^2 g^2 + f'^2 g^{-2}) \sum |D^2_v| v^2 dx dt \]
\[+ \lim_{t \to \infty} \int_D f f' v^2 dx. \]

First, if \(v \in V \), then by putting \(f = e^{\lambda t} \) and \(g = 1 \), Lemma 1 implies that there exists two positive constants \(k_1 \) and \(k_2 \) depending only on \(A \) such that

\[(6) \quad k_1 \iint_R e^{2\lambda t} \sum |D^2_v| v^2 dx dt \]
\[\leq \iint_R e^{2\lambda t} (Lv)^2 dx dt + \iint_R e^{2\lambda t} (k_2 + 1) v^2 dx dt. \]

Next, if \(v \in V \), then by putting \(f = e^{\lambda t} \) and \(g = \sqrt{\lambda} \) it follows from Lemma 2 that there exists a constant \(k_3 \) depending only on \(A \) such that

\[(7) \quad \iint_R e^{2\lambda t} \lambda^2 v^2 dx dt \]
\[\leq \iint_R e^{2\lambda t} (Lv)^2 dx dt + 2k_3 \iint_R e^{2\lambda t} \sum |D^2_v| v^2 dx dt. \]

These are analogues to Protter's estimates, Lemma 3 and Lemma 4 in [2].

From (6) and (7), we get

\[\left(k_1 - \frac{2(k_2 + 1)k_3}{\lambda}\right) \iint_R e^{2\lambda t} \sum |D^2_v| v^2 dx dt \]
\[\leq \left(1 + \frac{k_2 + 1}{\lambda^2}\right) \iint_R e^{2\lambda t} (Lv)^2 dx dt, \quad v \in V. \]

So, if \(\lambda \) is sufficiently large, for instance, if \(\lambda \geq \lambda_0 \), we have

\[(8) \quad \frac{k_1}{2} \iint_R e^{2\lambda t} \sum |D^2_v| v^2 dx dt \]
\[\leq 2 \iint_R e^{2\lambda t} (Lv)^2 dx dt \]
for \(v \in V \).

3. Now we give the proof of theorem. Let \(\varphi = \varphi(t) \) be an infinitely many times differentiable function of \(t \) such that
\[\varphi(t) = \begin{cases}
0 & , 0 \leq t \leq T_1 \\
0 < \varphi < 1, T_1 \leq t \leq T_2 \\
1 & , T_2 \leq t < \infty
\end{cases} \]

for some \(T_1 \) and \(T_2 (T_1 < T_2) \).

The function \(v(x, t) = \varphi(t) \cdot u(x, t) \) is in the class \(V \) and the inequality (8) is valid for \(v \). We put

\[R(T_2 - T_1) = \mathcal{D} \times (I(T_2) - I(T_1)) \quad \text{and} \quad R(T_2) = \mathcal{D} \times (I - I(T_2)). \]

The inequality (8) implies that

\[\frac{k_1}{2} \int_R \left[e^{\lambda t} \sum_{|\alpha| \leq s} |D_x^\alpha u|^2 \right] dx dt \leq 2 \int_{R_{(T_2 - T_1)}} e^{\lambda t} (Lv)^2 dx dt + 2 \int_{R_{T_2}} e^{\lambda t} (Lv)^2 dx dt. \]

We substitute (5) into the last integral on the right and get

\[\int_{R_{T_2}} \left[\frac{k_1}{2} - 2c(t) \right] e^{\lambda t} \sum_{|\alpha| \leq s} |D_x^\alpha u|^2 dx dt \leq 2 \int_{R_{(T_2 - T_1)}} e^{\lambda t} (Lv)^2 dx dt. \]

Since \(c(t) = 0(t^{-1})(t \to \infty) \) by the assumption, we see that there exists a positive constant \(\delta \) such that \(k_1/2 - 2c(t) > \delta \) if \(t \geq T_1 \) for some sufficiently large \(T_2 (> T_2) \). It holds that

\[\int_{R_{T_2}} \sum_{|\alpha| \leq s} |D_x^\alpha u|^2 dx dt \leq \frac{2}{\delta} e^{\lambda (T_2 - T_3)} \int_{R_{(T_2 - T_1)}} (Lv)^2 dx dt. \]

Since \(\lambda (\geq \lambda_0) \) is arbitrary, letting \(\lambda \to \infty \), we see at once that \(u \equiv 0 \) in \(R(T_2) \). As \(c(t) \) is bounded in \(I \), we can apply the theorem in [1] for this function \(u \) and we can conclude that \(u \) vanishes throughout \(R \).

References

Received June 14, 1965.

Department of Mathematics

TAINAN

References

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
S. J. Bernau, *The spectral theorem for unbounded normal operators* 391
Lu-san Chen, *Asymptotic behavior of solutions of parabolic equations of higher order* ... 407
Lawrence William Conlon, *An application of the Bott suspension map to the topology of E I V* ... 411
Neal Eugene Foland and John M. Marr, *Sets with zero-dimensional kernels* ... 429
Stanley Phillip Franklin and R. H. Sorgenfrey, *Closed and image-closed relations* ... 433
William Jesse Gray, *A note on topological transformation groups with a fixed end point* ... 441
Myron Goldstein, *K- and L-kernels on an arbitrary Riemann surface* 449
George Joseph Kertz and Francis Regan, *The exponential analogue of a generalized Weierstrass series* ... 461
Walter Leighton, *On Liapunov functions with a single critical point* 467
Bernard Werner Levinger and Richard Steven Varga, *On a problem of O. Tausky* ... 473
Lowell Duane Loveland, *Tame subsets of spheres in E^3* ... 489
Erik Andrew Schreiner, *Modular pairs in orthomodular lattices* ... 519
K. N. Srivastava, *On dual series relations involving Laguerre polynomials* ... 529
Arthur Steger, *Diagonability of idempotent matrices* ... 535
Walter Strauss, *On continuity of functions with values in various Banach spaces* ... 543
Robert Vermes, *On the zeros of a linear combination of polynomials* 553
Elliot Carl Weinberg, *On the scarcity of lattice-ordered matrix rings* ... 561
Harold Widom, *Toeplitz operators on H_p* ... 573
Neal Zierler, *On the lattice of closed subspaces of Hilbert space* ... 583
Irving Leonard Glicksberg, *Correction to: “Maximal algebras and a theorem of Radó”* ... 587
John Spurgeon Bradley, *Correction to: “Adjoint quasi-differential operators of Euler type”* ... 587
Stanley P. Gudder, *Erratum: “Uniqueness and existence properties of bounded observables”* ... 588