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Consider the compact simply connected symmetric pair
(Es, Fi). By a slight abuse of the notation of E. Cartan, the
corresponding symmetric space is denoted by FEIV. Let
W be the Cayley projective plane. The Bott suspension
map E: 3(W)— EIV (where = denotes the nonreduced sus-
pension) is defined by means of the set of minimal geodesic
segments joining the two nontrivial points of the ‘‘center”
of EIV, In this paper a map q: S* — X(W) is constructed and
E is extended to a homeomorphism of (W) U ,e, onto EIV,
Among other things, this gives canonical isomorphisms ;(EIV )~
i (Z(W)), 0 < j<24. These groups are explicitly determined.

Statement of results. The maps E and ¢ will be constructed
in §2 and the following theorems will be proven.

THEOREM 1.1, The map E extends to a homeomorphism E’':
2(W)U,es— EIV.

COROLLARY 1.2, E.: 7 (3(W))—n(EIV) is a bijection for j = 24,
and o surjection for j = 25,

THEOREM 1.3, Im(q,) = Ker (E,) in homotopy in dimensions =
32, and

0 — m(S¥) . oo 2 (W) —= T EIV) — 0
* *

18 exact and canonically split, with w(EIV) a finite 2-primary
group.

Having by (1.2) reduced the problem of computing n(EIV), j <
24, to a somewhat easier problem, we devote the remaining sections
of the paper to deducing the consequences listed below. We do not
list z;(EIV) for j < 15, since isomorphisms 7w, (EIV) ~ 7 (S°), together
with the explicit values of these latter groups, are already well known
for that range,

(1.4) To(EIV) =0
(L.5) ol BIV) = Z + (Z)
(1.6) T (EIV) = (Z,)°

411
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(1.7 . EIV) = Z,

(1.8) T EIV) = Zis. + Z,

(1.9 T (EIV) =0

(1.10) T EIV) = Z,

(1.11) T(EIV) = Z,

(1.12) o (EIV) = Z,s + (2-primary group) .

REMARKS. (1.4) was communicated to the author some time ago
by Shoro Araki who proved it by a somewhat different method
(unpublished). The present paper actually resulted from attempts to
verify this formula. (1.9) was proven in a different way in [8] and
(1.5) and (1.10) remove the ambiguities from the partial determinations
of these groups in that same paper. In (1.1) one gets a fully explicit
cellular structure by recalling that

(W) =e Ure U,

where p: S®— ¢, is the only map possible and g: S*—¢, U, e, ~ S° is
the suspension of the standard Hopf map f: S®— S°

In the course of this paper we will repeatedly (and without further
reference) make use of the values of 7,(S™) as found in [14].

2. The maps E and q. Let ¢, be the Lie algebra of E; and
B: ¢, — ¢, the involution corresponding to EIV. Let mCe, be the —1
eigenspace of B. Let tcm be a maximal abelian subalgebra (a two
dimensional real vector space) and consider the root system of EIV
relative to t. This is a proper root system (in the sense of [2]) iso-
morphic to the root system of A,, each root having multiplicity 8.
Let 4 be a fundamental simplex in t.

The symmetric space EIV is canonically imbedded in Eg as exp(m).
The adjoint action of F, on m passes over, under exp, to the adjoint
action of F, on EIVC E,.

Exp | 4 is one-to-one (since EIV is simply connected) and exp (4)
intersects each F-orbit on EIV in one and only one point.

Let B denote the union in m of the F,-orbits of points of 4. By
the above remarks exp: B— EIV is onto. Let s(t), 0 =t = 1, describe
the edge of 4 opposite the vertex 0. Then x, = exp (s(0)) and 2z, =
exp(s(1)) coincide with the nontrivial elements of the center Z; of K,
while expes is a minimal geodesic joining x, and xz,. The following
lemma and its corollary are completely straightforward.



APPLICATION OF THE BOTT SUSPENSION MAP 413

LEMMA 2.1. B 1s homeomorphic to the standard closed cell ey
and the boundary 0B ~ S® is the union of the Frorbits of s(t), 0 =
t =1,

COROLLARY 2.2, Under the homeomorphism B~ ey, exp|B defines
a surjection eyx— EIV which 1s a homeomorphism on the interior

of ey

LEMMA 2.3, exp (0B) ~ X(W).

Proof. From [1] one knows that the centralizer in F, of exp(s(t)),
0 <t <1, is the symmetric subgroup Spin (9) C F,, while for ¢ =0, 1
the centralizer is clearly all of F,. Since W = F,/Spin (9), the lemma
follows.

COROLLARY 2.4, The 1inclusion exp(0B)C EIV is a Bott sus-
penston E:X(W)— EIV,

Proof. Let Q = Q(EIV; x,,x,), the space of paths on EIV joining
%, and «,. From the proof of (2.3) it is clear that the subspace of
shortest geodesics in 2 is homeomorphic to W. The adjoint of the
inclusion map W 2 is precisely the Bott suspension [4], is one-to-one,
and its image is exp (0B).

Of course, we define ¢ as exp|oB and immediately obtain (1.1)
and (1.2).

ReEMARK. The loop space 2 of EIV is homology commutative,
hence the theory of [5] can be applied to the Pontrjagin ring H,.(Q).
W < 2 proves to be a generating variety contributing generators
T, ¥ € H, (Q) ~ Z|xg, 2], dim (x;) = ©. The diagram

H’I/(Q) ’—0_’ H¢+1(EIV)

o

H(2) —o—’ H; (EIV)

is commutative, where ¢ is homology suspension and the homomorphisms
B, are induced by the involution 8 of E,. B, is —1 on H(EIV)~Z
[9] and o(x;) generates this group. Thus B. (%) = —, and B, (x2) = 22,
By is —lon HEIV)~ Z[9], so g(x) = 0. 0H Q) = H(EIV), hence
o(x,) generates that group. From the known homology of EIV [9], it
follows that E,: H(X(W)) — H,(EIV) is bijective, ¢ < 25. (1.2) then
follows by the Whitehead theorem. One can also deduce a map ¢ (defined
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up to homotopy) and a weakened version of (1.1) in which E’ is only a
homotopy equivalence., In point of fact, it was this somewhat rounda-
bout line of thought that suggested (1.1).

We now take up the proof of (1.3). Consider the homomorphisms

2 T(S¥) — T{Z(W))
0: T (BIV, Z(W)) — m(Z(W)) .

LEMMA 2.5. For j < 32 there is a matural bijection h: m(S*)—
T;(EIV, Z(W)) such that doh = q,.

Proof. q defines a map §: (e, S*) — (EIV, X(W)) and by 11,
Chapter XI, Ex. B-3] (cf. the references given there to [10] and [16]),
J+ is bijective in dimensions <33. Let

Vi T(SP) —— T ;p5(ea, S¥), § = 32,
be the inverse of the boundary map. Then %4 = g,ov is as desired.

The first assertion of (1.3) follows immediately from (2.5). For
the exactness of

0 — m,(S%) P Tos(Z(W)) = To(EIV) — 0
* *
we need only the following.
LEMMA 2.6, 0: (EIV, Z(W)) — ms(Z(W)) is one-to-one.

Proof, From [8], z(EIV,S*)~m;_(S*), < 31. Thus, since m,(S°)
and 7,(S") are finite groups, so is m(EIV). Since m(EIV, (W)~ Z
by (2.5), the map 7(EIV)— m(EIV, 3X(W)) is zero. The lemma
follows by exactness.

The fact that n,(EIV) is a finite 2-primary group also follows
from the results in [8], so we are left with the task of proving that
the above sequence splits. (If it splits at all, the splitting is canonical,
since 7, (KIV) will have to be identified with the torsion subgroup of
Tu(2(W)).)

The imbedding S°— EIV studied in [8] defines a generator of
n(EIV) ~ Z, hence E can be assumed to define a map

1 (2(W), S — (EIV,S%,+|S* =1,

where S*c (W) is given by our standard cellular decomposition of
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J(W). Using 7, (EIV, S°) ~ 7.,(S*) ~ (Z,)* [8], we obtain a commuta-
tive diagram

VA
71s(S7) — > TR S(W) —or o S(W), S°)

7o(SY) - R EIV) 2 (Zy

0

where the second column and both rows are exact. Extending this
diagram two more terms to the right, one easily establishes the sur-
jective half of the five lemma.

LEMMA 2.7, 4. 7 (X (W), S°) — (Z,)* is surjective and
Ker (7,) € Im (j).

LEMMA 2.8, j'(Ker (i,)) = Ker (E,) @ Im (»).

Proof. j'(Ker (i,)) = Ker (i,05) = Ker (y/o E,). Now Ker (E,) is
infinite cyclic while Im(r) is a torsion group. Thus Ker (E,) NIm(r) =
0. Furthermore, if 57 (E.(a)) = 0, then E, (a)eIm(»’) and a =b + ¢,
beKer (Ey), ce Im (7).

COROLLARY 2,9, Ker (i,) is the infinite cyclic group j(Ker (E,)).
LEMMA 2.10. (Z,)* C m(2(W), S°).

Proof. In 3(W)= S°U, e the attaching map ¢ defines the
characteristic map

g: (en, 8°) — (2(W), S°) .

Sinece suspension X: 7,,(S*) — 7,,(S") is one-to-one, it follows [11, p. 333]
that

Gt Tos(er, S*) — T (3(W), S°)

is one-to-one. But my(ey, S*°) A T (S) A~ (Z,).
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ProposiTION 2.11. Ker (E,) is a direct summand of m(Z(W)).

Proof., Write Ker (E,)C Z*, where Z' stands for a maximal infi-
nite cylic subgroup of m(J(W)). Im(r)NZ'= 0, so j| Z* is one-to-one.
Thus j(Z*) N (Z.)' = 0, and, by (2.9), Im (i,) D (Z) @ j(Z")/j(Ker (E,)).
Thus j(Ker (E,)) = j(Z), so Ker (E,) = Z*.

This completes the proof of (1.3). It also proves
(2.12) T(2(W), §°) ~ Z + (Z:) .

3. The homotopy sequence of (J(W), S°). For the computation
of m,(EIV), j <24, we are reduced to computing 7;(Z(W)). We begin
the attack on this latter problem by investigating the boundary operator
0 in the homotopy sequence of (X(W), S°).

Recall that (W) = S°, e, where g is the suspension of the
standard Hopf map f: S®— S%. By [11, p. 834] one shows that

s wilen, S°) — T{((W), S°)

is bijective for j < 24, g the characteristic map determined by g.
Let

(3.0) F:n,3(W), S — 7, (S, j= 24,

be the natural bijection obtained by composing (g,)~* with the natural
isomorphism 7;(e,;, S ~ m,_,(S™).

LEMMA 3.1. 6: wy(X(W), S°)— m,;_(S°) is given by g.o F if j = 24.
Next consider the commutative diagram (n < 29)

(S™) o, 7, (S°)

4 z]

Tua(S) L5 7, (SY)

where the vertical maps are suspensions.

LEmMA 3.2, Ker {0: 7, (Z(W), S%) — 7,_(S*)} ~ Im (f,) N Ker (2) in
77'-_7'—2(‘S'B)y .7 é 24-

Proof. By (8.1) we are reduced to finding Ker (g,). In the above
diagram f, is injective (because it has Hopf invariant one [7, exposé
6, Proposition 5]). This immediately yields the assertion.
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We study Im(f,) N Ker(¥) by means of the exact suspension
sequence [7, expose 6]:

e Tus1(S°) - T, (2(S°), S°) - T,.(S®) 5 w,(S°) -
This gives Ker (3) = Im(4). In order to study 4 we will consider the
topology of 2(S°) in lower dimensions.

Let 14, generate my(S®) and consider the Whitehead product
[%s, 1s] € Tis(S®). Let A: S®— S® be in this homotopy class and set X =
S8, es. It is known [7, exposé 5] that 2(S°) has the homotopy type
of a CW complex obtained by attaching to X cells of dimensions =24,
Thus the inclusion (X, S®) c (2(S°), S®) is a homotopy equivalence in

dimensions <22, and in this range we can consider 4 as defined on
(X, 8%. I determines a characteristic map

h: (e, S®) — (X, S%) .
By [11, p. 334] we obtain
LEMMA 3.3, h,: m.(eq S°) — m (X, S?) is bijective, n = 22,
COROLLARY 3.4, 4 = h,o0doh;' in dim < 22, where
a: T['-n(elfiy Slﬁ) ~ T[n—l(Slb) .

COROLLARY 3.5, Ker {3: TAS(W), S%) — 7,_(S9} ~ Im (£,) N Im (k)
i ijz(ss)y f/ = 23.

4. w(2(W)), j =18. For the simple proof of the following
lemma I am indebted to S. Araki,

LEMMA 4.1, Let g be the suspension of the standard Hopf map
f:8% — 8% The class [g] generates m(S°) ~ Zyy.

Proof. Let oem,(SO(8)) be the element defined by the natural
action on R® of the unit sphere of Cayley numbers. Let ¢’ m,(SO(9))
be the image of ¢ under the standard inclusion SO(8) < SO(9). Then
o’ generates m,(SO(9)) ~ Z [15]. The J-homomorphism

J: T(SO(9)) — 7(S°) ~ Zoy
is surjective [12] and J(¢’) = [g].

COROLLARY 4.2, 7 (X(W)) =10

This establishes (1.4). For (1.5) and (1.6) we will need to make
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use of (3.5).

For » and f as in §3, the class [{] = [#] — 2[f] is a torsion
element in 7,,(S®%), hence {: S¥— S® is the suspension of some map [7,
exposé 6].

LEMMA 4.3, Let Bem(S®)~ Z, be the generator. Then h.(B)
18 @ suspension class.

Proof. Since B is a suspension class, %.(8) = 2f.(8) + {,(B) =
{«(B) and this is a suspension class,

CoROLLARY 4.4. Ker {0: m(J(W), S°) — m,(S°)} = 0.

Proof. By (4.3), Im (%,) in m(S®) is contained in the image of
the suspension. Therefore Im (f,) NIm (4,) = 0 in m,(S%). The con-
clusion follows by (3.5).

COROLLARY 4.5. 7 (3(W)) ~ Z + (Z,).

Proof. mo(3(W), S°) ~ ,(S*) ~ Z, by (3.0), and 7,(S°) ~ (Z.)".
From the exact sequence of (¥(W), S°) and (4.4) one obtains

00— (Z) — 7 (3(W)) — 7 (S(W), S°) — m4(S°) .
Since 7,,(X(W), S°) ~ Z and 7,,(S°) is finite, this gives an exact sequence

0 — (Z) — Tf(S(W)) — Z——0 .

This completes the proof of (1.5).
Proceeding analogously as above, let g8e 7,(S®)~ Z, be the gener-
ator and show that %,(8) e Im (Z). Then

0: To(S(W), 8°) — ,4(S?)

is one-to-one. Since, by (3.0), 7 (J(W), S°) ~ Z,, and 14(S°) ~ (Z,)*, one
obtains

0 — (Z) — T (S(W)) — To(S(W), S —> -«

where 0 is one-to-one by (4.4). This yields the following proposition and
so proves (1.6).

PROPOSITION 4.6, 7 (S(W)) ~ (Z.).

5. Partial determinations of 7;(3(W)), j=19,20. The 3-primary
components of these two groups present a special problem. The
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ambiguities left by the partial determinations in this section will be
removed in § 7 by cohomological methods.

LEMMA 5.1, 4: (X, S®) — m(S®) is ome-to-ome.

Proof. Consider the exact sequence

(X, 8% 2 74(S%) — f(S%) —s -

H is zero since m,(S°) is finite. Thus I is onto. Also 74(S%) ~ (Z.)",
7.,(S%) ~ (Z.), so, by (3.3), Im (4) ~ Z, ~ (X, S%). It follows that 4
is one-to-one,

COROLLARY 5.2, 4: 7w(X, S% — 7w,(S®) 7s one-to-one.
Proof. By (5.1) the sequence

To( X, SS) _‘4‘_’ 7[17(88) _Z_’ 7518(89) —0
is exact. Since 7,(S%) ~ (Z), m(S°) ~ (Z.)', we obtain Im(4) =
Ker () ~ Z, ~ w4 X, S°).
COROLLARY 5.3. 4: (X, S®) — 74(S®) s ome-to-ome.
Proof. By (5.2)
7o X, 89— (S%) — 14(S7) — 0
is exact.
75(S%) ~ (Zo)' + Z,, wo(S°) ~ Zoy + Z,, and w(X, S°) ~ ms(S°) ~ Z,, .

The assertion follows.
By (5.3) and (3.4), h,: w(S*) — m(S®) is one-to-one. Let S generate
7(S¥) ~ Z,,. Then B is a suspension class and

hi(B) = 2.(B) + Cu(B)

is of order 24, Since f, is known to be one-to-one in all dimensions,
7«(B) is also of order 24. It follows that {.(B) is of order 24 or 8.
This ambiguity affects the rest of this section.

LEMMA 5.4, 0: 7 (S(W), 8°) — 74(S°) has kernel 0 or Z,.
Proof. If L.(B) is order 24, then Im (f,)NIm(k,) is 0 in m(S®).

If £.(B) is of order 8, then Im (f,) NIm(h,) ~ Z, in mS°). The
lemma follows by (3.5).
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PROPOSITION 5.5. 7, (3(W)) ~ Z, or Z,.
Proof. Consider the exact sequence

0 — Ker (3) — To(S(W), 8°) —2 7,4(S?) — T E(W)) — 0

where exactness holds on the right by the proof of (4.6).
To(S(W), 8°) ~ T4(S°) ~ Z,, and  7y(S°) ~ Zy + Z: .

The proposition follows by (5.4).

ProrosiTiON 5.6. There is an exact sequence

0 — Zyy + Z, — moo(Z(W)) — 77-'19(2( W)) &R Z,— 0.

Proof. By (5.4) and (5.5) the kernel of 0: m(2(W), S°) — m,(S°)
is 7o(X(W))® Z,. This, together with 7, (J(W), S°) ~ 7.,(S") ~ 0 and
T(S°) ~ Zy, + Z,, yields the proposition.

6. m(3(W)), 21 =j =23, One has m,,(S°) ~ 0 and 7,,(¥(W), S°) ~
T,(S®) ~ 0, so the exact homotopy sequence of the pair yields the
following proposition, completing the proof of (1.9).

ProPOSITION 6.1. 7 (X(W)) ~ 0.

Now let 8 generate 7..(S”) ~ Z,. As usual, 1.(8) = {.(8) so that
Im(f)NIm (k) is 0 in 7, (S%). Thus 8: my(S(W), S°) — m,(S°) is one-
to-one,

ProrosiTION 6.2, 7Wu(Z(W)) ~ Z..

P?”OOf. 7'[23(2( W)y Sg) ~ 7T22(S16) ~ Z,, 71'22(5'9) ~ Zs, and
o2 (W), S°) ~ 7T21(S16) ~0.

By the above remarks we obtain an exact sequence

0 Z, Z; To(X(W)) — 0.

This also establishes (1.10). In order to prove (1.11) a slight
change in approach is needed. The difficulty is that we are now out
of the range of validity of (3.5).

There is an exact sequence

6.3) Tl Z(W), S%) —2s 7(S?) — T S(W)) — 0
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where exactness on the right follows from the fact that o is one-to-
one on m(3(W), S%). Substituting the known values of the first two
groups (note that we are still in the range of validity for (3.0)) we
obtain

(632)  Z+ Zi+ Zu—> Zu + Zi— 7 S(W) — 0 .
Our problem will be to compute Ker (3) in (6.3a).

LEMMA 6.4, 4: mw(X, S®) — 7,,(S®) is one-to-one.

Proof. By (3.3), mw(X, S®) ~ 7,(S®) ~ Z,, and 7,(S%) ~ Z; + Z,
T(S*) ~ Z;. The suspension sequence of §3 then yields
4 X
Z,— Zs + Z,— Z;

which necessitates 4 = 0.
COROLLARY 6.5, X: m,(S®) — my(S°) s onto.

Recall that f,: 7,,(S*) — 7,.(S®) and 3: 7,,(S") — 7.,(S®) are one-to-one
and

7(S%) = Im (f,) @ Im (&)
Furthermore,

Im(f*)~25+ Z,+ Z,
ImX)y~Z, + Z, + Z,
o(S%) ~ Zy + Z,

It now follows from (6.5) that X: m,(S®) — 7,,(S°) must vanish on
Z; + Z,C Im(f,) but must be one-to-one on Z, < Im(f,). The following
lemma now holds by (3.2).

LEMMA 6.6. Ker (0) in (6.3a) is Z; + Z..

PROPOSITION 6.7, 7uy(3(W)) ~ Z,.

Proof. By (6.6), Im (0) ~ Z,; in (6.3a). Regardless of how the
imbedding Im (0) ¢ Z,, -+ Z, is realized, the quotient must be Z,.

This completes the proof of (1.11).

7. The 3-primary components in 7 (EIV), j=19,20. Our pre-
sent aim is to complete the proofs of (1.7) and (1.8) which were begun in
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§5. Let Q denote the space of loops on EIV. From the spectral
sequence one easily obtains:

LEMMA 7.1, In dimensions <32, H*(2; Z;,) has a basis {1, &g, @,
X§, Tgly, Top}, dim (x;) = .  Furthermore, x3 = 0.

In order to compute the 3-primary components of 7,(2) and 7,(2),
we proceed by the method of killing cohomology classes in H*(2; Z;)
via successive fibrations with appropriate Eilenberg-MacLane complexes
as fibers, This yields the values of 7,(2)® Z, j = 18,19, and this
information, together with §5, will prove (1.7) and (1.8). In the
computations of this section we will also set the stage for computation
of 7.4(2) ® Z, which will be completed in §8.

A description the of Z,-algebra H*(z, n; Z,;), = a finitely generated
abelian group, will be essential. Since, in §8, we will also need a
description of H*(m, m; Z;), we here discuss the general case of
H*(m,m; Z,), p an odd prime. For the proofs of our assertions ecf.
[6], especially exposés 9, 15, and 16.

Let I = (a, a,, +-+), a sequence of integers almost everywhere
zero. I will be called admissible if

a; =0 or 1 mod (2p — 2)

a; = Phiyy .
The degree of I is defined as ¢(I) = Ja,. I is said to be of the first
kind if a; 1, vi. Otherwise I is said to be of the second kind., If
I=(,---,a,0,0,---) is of the first kind, then one obtains an I’
of the second kind by setting

I'=(a,-++,a,1,0, ::).
Define the numbers

9(I) =[pa,/(p — 1)] — q(I)
n(I) ={pa./(p — 1)} — q(I)
where [b] denotes the greatest integer <b and {b} denotes the least

integer =b. Finally, let P?,7=0,1,2, ..., denote the Steenrod reduced
p-powers, B the mod p Bockstein, and define cohomology operations

St* = P*, b = 2k(p — 1)

St = BP*, b= 2kp—1) + 1
St! = St'o St o ... I admissible.

TrEOREM 7.2. (H. Cartan) If I is admissible of the first kind
and if n(I') £ n, then
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St': H*(x, n; Z,) — H"" (7, n; Z,)
18 @ monomorphism. If also n(l) < n, then
St': H™(xt, n; Z,) —— H"""(w, n; Z,)

18 @ monomorphism. Let A*(w, n; Z,) be the direct sum of the images
of all of the above monomorphisms, graded by n + q(I') and n + q(I)
respectively. Then the operations St' define a graded homomorphism

A*(z, n; Z,) — H*(w, n; Z,)
whick 18 an isomorphism onto the image of suspension
o: H*(w,n + 1, Z,) — H*(z, m; Z,) .

Let M,C A*(w, n; Z,) be the graded subspace consisting of the direct
sum of the images of those of the above monomorphisms where
I' (respectively I) is required to satisfy the additional condition
g(I'y < m (respectively g(I) < m). Then the algebra. H*(x,w; Z,) s
the free graded commutative Z,-algebra generated by M,.

A further remark that is of use is that

Hr, n; Z,) ~ Hom (z, Z,)
H"z, n; Z,) ~ Hom (,7, Z,)

where ,mC 7 is the subgroup of elements of order p. One also notes
that if ,7 = 7z, then

B: H¥x, n; Z,) — H"(mw, n; Z,)

is a bijection,

In the remainder of this section we understand p» to be 3. By
the Adem relations [13] one has P* = PP, P!, P? and 8 are trivial on
H*(2; Z;) since the nontrivial dimensions in this graded vector space
are all of the form 8&. Consequently P* is also trivial on H*(2; Z,).

We kill the class x,¢ H¥Q; Z,) by a fibration

KZ7)— X,— 2.

An application of (7.2) gives the following classes as a basis of
H*(Z,7; Z) in dimensions <25 (where dim (y) = 7): 1, v PX(y), BP'(y),
P(y), BP*(y), PX(y), BP*(y), P°P'(y), BP*P'(y), y- P (y), y-BP*(y), y- PX(y),
y-BP*y), P'(y):BPYy), (BP(y))’. By straightforward computations
using the spectral sequence of this fibration, one obtains
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LemMMA 7.8. In dim < 25, H*(X,; Z,) has basts {1, u,, B(u.,), P (u),

BP (uy,), g, Ugy B(Ug)y P (1), Uns® B(Us)y Ussy BP(Uy), (B(%:1)), o}, where
the dimension of an element is indicated by its subscript.

In (7.8) the classes x, ., are the pull-backs of the classes in the
base 2 that were denoted by the same symbols. u, and u, restrict
respectively to P'(y) and P%y) in the fiber. w,, corresponds to y-x3
in the E® term of the spectral sequence. Using these facts and the
Adem relations [13] one verifies the following relations:

BPB(uy) = 0
P u,) =0
PB(uy) = —B(uy)
BP*B(u;,) = 0
P*B(uy,) = BP¥uy,)
BP*B(u,) = 0.

Next kill ,, by a fibration
K(Zg, 10) I— X2 - Xl .

By (7.2), a basis for H*(Z,, 10; Z,) in dimensions =24 is given by the
following classes (dim(y) = 10):1, y, B(y), P'(y), BP'(y), P'B(y), BP'B(y),
P(y), BP*(y), P*B(y), BP*BY), v*, y-BW), PXy), BPy), P*B(y), BP*S(y),
y-Py).

LEMMA 7.4, Transgression
t: H%(Z,, 10; Z,) — H“(X,; Z5)
18 bijective.
Proof. Otherwise the first nonvanishing H(X,; Z;) for ¢ >0

occurs for ¢ = 15, and this would give 74(Q) ® Z; ~ 7,(X.) ® Z, + 0,
contradicting (1.4).

Applying all of this information to the spectral sequence of the
fiber space X, we obtain.

LemmA 7.5, In dim = 24, H*(X,; Z,) has a basis {1, U, Uy, S(Uis),
Usgy P'(%yg), P B(Usg)y oz, PH(thsg), Tos)e

These classes satisfy the following relations:
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P2(u15) = ’“BPIB(uis) mod .,

B(xﬂ) =0
BP*u,) = 0 (a consequence of the above two)
B(u,) =0

PYuy) = 0 mod u,,
BP(u;) = 0 mod 2, .

Note that, by (1.5), 74(2) ~ Z + (Z,)}, hence to kill u, we need
a fibration

K(Z, 15) I— X3 I— Xz .
Using (7.2), (7.5), and the above relations, we obtain,

LEMMA 7.6, In dim < 24, H*(Xy; Z,) has a basts {1, wy, B(Uy),
Usg, Uggy PB(Usg), Uys, P(tsy), o)} Satisfying the relations: BP'B(ug) =0
mod @5 B(Us) = 0; P (thy) = 0 mod 255 BP(tyg) = 0 mod @,

COROLLARY 7.7, m(Q) ~ Z,.
Proof. By (7.6), m4(2) Q Z, ~ Z,. By (5.5), ny(2) ~ Z, or Z,

This completes the proof of (1.7).
Next we kill u, by

K(Z,1T)— X, — X, .

Using the spectral sequence and (7.6) one readily obtains:
LeEMMA 78. Hi(X;Z)~0,0< 35 <19, and HX,; Z:) ~ Z,.
COROLLARY 7.9. 7 (Q)~ Zy,, + Z..
Proof. By (5.6) and (7.7) there is an exact sequence

0_‘)Z9 + Zy+ Z, + Zz—”ﬂig(g)'_—’zs_—_’o .
By (1.8), m4(2) Q Z, ~ Z,, Hence 7,(Q) ~ Z,, + Z; + Z; + Z,.

This completes the proof of (1.8). Evidently in the above lemmas
we have obtained information on the cohomology of the spaces X; in
dimensions higher than necessary for the purposes of this section,
This information will be used in the next section to help prove (1.12).

8. Partial determination of m,(FEIV). Notice that by the
theory of [8] there is an exact sequence
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7724(S16) — 7[24(‘89) > 71'24(EIV) — 7r23(S16) > 77:23(S9)
which gives explicitly
BY)  (Z) — Zuy + (Z.f — T EIV) — Zyy—— Zs + Z; .

Thus, to prove (1.12) we must compute 7, (EIV) ® Z; and 7, (EIV) Q) Z..

Recall the fibration K(Z;, 17) — X,— X,. Recall also from (7.6)
the relation BP'B(u,) = 0 mod z,,. Replacing x,, with its negative if
necessary, we obtain just two possibilities:

BPIB(’M%) =0
or _
BP'B(tsg) = @y
In order to determine a basis for H*(X,; Z,) it will be necessary to

consider these two possibilities.

LemMA 8.2. If BP'B(ug) = 0, then, in dim < 24, H*(X,; Z;) has
as @ basis {1, Uy, s, Us1, B(Usr), Uz, P (Uhsy), Wes, Toi}. The following rela-
tions are also satisfied: B{uy) = 0; P 1) = 0 mod uy,; BP () = 0 mod ..

Lemma 8.3. If BP'B(uyg) = ¥, then, in dim < 24, H*(X,; Z;) has
as @ basis {1, U, Usg, Uy, B(Usr), P (1hsy), Usst With B{tye) = 0, BP () = 0,
P'(u,) = 0 mod w.s.

We kill u,, by
K(Z,, 18) — X, — X, .

The use of K(Z,, 18) is dictated by (7.9). The 3-primary component
of my(X;) is 0.

Note that by (7.2) a basis of H*(Z.,, 18; Z;) is given by {1, ¥:s, Vs,
P(y,), BP (Ys), P(Yss), BP(y:,)} in dim =< 24. Here B(y;) = 0.

Lemma 8.4, Transgression
t: H¥(Zy, 18; Z;) — H*(X,; Zs)
18 brjective.

Proof. Otherwise, w.(X;) ® Z, ~ Z,, contradicting the construction
of X,.

COROLLARY 8.5, Hi(X,, Zy) ~ 0, 0< i< 21, while H*(X;; Z:) ~ Z;
and is generated by (the pull-back of) .. B(Us) # 0.
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LEMMA 8.6, t(P'(Yy) = =Uss.

Proof. In either the hypothesis of (8.2) or of (8.3), t(Pys) =
Pi(u,) = 0 mod u,,, We must show P'(u,) #= 0. Suppose the contrary.
Then, killing u,, by K(Z;, 20) — X,— X;, one shows that H(X; Z,) ~ 0,
0<1<22 and H¥(X;; Z,) ~ Z;,. Thus 7,(2) Q Z; ~ m(X;) Q Z; ~ Z,
contradicting (1.11).

LEMMA 8.7. In the hypothesis of (8.2), t(BP yy) = +a.,.

Proof. By (8.2), t(BPY(yy)) = BP (1) = 0 mod x,,, We must show
BP"(uy) #0. Suppose the contrary. Kill u,, e H*(X;; Z,) by K(Z,, 20)—
X;— X;. Using (8.2), (8.4), (8.5), and (8.6), one shows 7, (Q)R® Z, ~
T(Xe) & Zs~ Z, + Z,, Here the two generators of H*{X;; Z,) come
from the w, of (8.2) and from BP'(y,). This information, together
with (8.1), implies that the 3-component of 7,(2) is Z, + Z,. Thus if
Wy, Vs € H®( Xy, Z,) are the two generators, S{w,) and B(v,) will be
linearly independent. But B(w,) and B(v,) are = 0 modx,, so that
we have reached a contradiction.

LEMMA 8.8, In the hypothesis of (8.3), t(BP'(ys) = 0.
Proof. tBP ys) = BPY(u) = 0 by (8.3).
Putting all of this information together, one obtains.

LEMMA 8.9, In either the hypothesis of (8.2) or of (8.3),
H*(X,, Z;) has as a basis in dim = 23 classes 1, wy,B(%y), Was.

PrROPOSITION 8.10., The 3-primary component of 7.,(Q) is Z,.

Proof. By (8.9) and the process of Killing u,;, one finds 7:,(2) ®
Z,~ Z,. The assertion now follows by (8.1).

There remains the task of finding the 5-primary component of
7 (EIV). Here we make use of (1.2) and of the mod 5 Steenrod
algebra. Recall from |3, 19.6] that if «; generates H'(¥(W); Z;), 1 =9, 17,
then PY(x,) = +2x,,.

Kill x, by

K(Z,8)— X, — X(W).

This gives the following lemma.
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LEmMMA 8,11, In dim =< 25, H*(X,; Z;) has a basis {1, ty, Uy,
B(thsy), Uy} with relations B(uy) = 0, P'(uy) = B(Usy) mOd Uy,

Since 7, (X(W)) ~ Z + (Z,)°, one needs
KZ,16) — X, — X,
to kill u,,.

LEMMA 8,12, H(Xy;; Z)~ 0, 0 < i< 24, and HXX,; Z;) ~ Z,
COROLLARY 8.13. The 5-primary component of T, (Y(W)) is Zy.

Proof. By (8.12), m(X(W)) Q Z; ~ Z,. The corollary now follows
by (8.1).

Now by (8.1), (8.10), and (8.13) we can conclude (1.12).
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