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The I-kernel which was first considered by Schiffer for
plane regions is extended to arbitrary open Riemann surfaces
for a number of significant subspaces of the space of square
integrable harmonic differentials I'». The l-kernel for each
of the subspaces considered is expressed in terms of the
principal functions, Thus if W is an open Riemann surface
and p and ¢ the L, principal functions of W with singularities
Re 1/z and Im 1/z respectively, then the following result is

proved,
TrEOREM. The differential dp — dg* is an l-kernel for

the space I';.
The l-kernel and another kernel function called the k-

kernel by Schiffer are applied to the solution of some well
known extremal problems on open Riemann surfaces.

It should be noted here that these problems have also been con-
sidered by G. Weill [9]. Finally, the properties of the kernel functions
are used to obtain a test for when a surface is of class 04,.

M. Schiffer in [7] defined the k- and l-kernels for plane regions
G. The k-kernel reproduces the value of every square integrable
analytic function on G at a prescribed point while the I-kernel is
orthogonal to the space of square integrable analytic functions on G
with Dirichlet metric. Schiffer showed that these kernel functions
can be expressed in terms of the Green’s function thus enabling one
to actually construct them for a given region.

An important question is whether the k- and [-kernels can be
generalized to arbitrary open Riemann surfaces and, if so, whether
they can be expressed in terms of functions depending only on the
surface as in the case of place regions. We shall answer this question
in the affirmative for a number of significant subspaces of the space
of square integrable harmonic differentials. In addition, we shall see
that these generalized k- and I-kernels have important extremal

properties.

1. Principal functions

2. In this section we shall briefly review certain results on
prineipal functions (see cf. [1] pp. 148-186) that will be needed later

on,
Let W be the interior of a compact bordered Riemann surface w
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with border 8. Consider a regularly imbedded boundary neighborhood
W'c W with compact complement and with relative boundary «, and
a continuous function f on «. Then L,f is defined to be the harmo-
nic function on W' with boundary values f on a and with vanishing
normal derivative on 8. L,f is unique.

Let P be a partition of the contours of W, That is, 8= U 8;,
where the £; are disjoint unions of contours. We then define (P)L.f
to be the harmonic function on W’ with boundary values f on « and
constant values on each £, such that the flux across 5; vanishes, L,
and (P)L, are called the principal operators.,

Let W now be an arbitrary open Riemann surface, and W’ a
fixed regularly imbedded subregion — W with compact complement
and relative boundary a, negatively oriented with respect to W’. We
can extend the definitions of the principal operators to W' as follows.
Let {2,}, with borders {a U 8,}, be a regular exhaustion of W', L,(%2,)
and (P)L,(92,), the principal operators on 2,, are well defined and by
taking the limit as 2, tends to W', we obtain the principal operators
on W', For brevity, we shall used L, for (P)L,.

3. The principal functions p, and p, of an arbitrary open Riemann
surface W are defined as follows.

DEFINITION. Suppose at a finite number of points ;€ W, there
are given singularities of the form

(3.1) Re S\ b'(z — ()" + ¢

where the ¢’ are real and subject to the condition >)¢ =0, The

principal functions p, and p, are by definition harmonic on W, except
for the singularities (3.1), such that L., = p, and L,p, = p, in W',

These functions are unique and independent of W', save for an
additive constant (cf. [1] p. 169).

2. Harmonic differentials on Riemann surfaces

4. We shall consider here the space of square integrable harmo-
nic differentials 7°, and some significant subspaces of I7,. The main
tool to be used is the general formula for partial integration which
states that if f is of class C', and if « is a 2- chain, then

holds for all differentials w e C* and thus in particular for all we I';.
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The k-kernel of any closed subspace I';. of I", is defined as follows.

DEFINITION, A differential +r is said to a k-kernel of I, provided

(4.2) el
(4.3) for all we Iy, (@, ) = aiu(:)
X

where w = du near (.
The l-kernel of I", is defined as follows.

DEFINITION. A harmonic differential 4§ on W — {{} with a harmo-
nic pole at { is said to be an Il-kernel of I", provided

4.9 (w,0)=0 for all we ", where the inner product is taken in
the Cauchy sense.

The k-kernel is easily seen to be unique while the [-kernel depends
on the singularity, However the following result on the l-kernel is
valid,

THEOREM 1. If 6, and 0, are two l-kernels of I', with the same
singularity, then 6, = 6,.

Proof. Since 6, and 6, have the same singularity, 6, — 8,¢ I',.
By property 4.4, (6, — 6,, 6, — 8,) = 0 and thus 6, = 4,.

Consequently, we can say that the [-kernel of I, is unique up to
a singularity.

We shall now relate the %- and l-kernels of I', to the principal
functions and thus obtain constructive proofs of the existence of the
k- and [-kernels,

Let W be an arbitrary open Riemann surface with ideal boundary
B, and denote by r, the L, principal function of W with respect to
the identity partition of 8 and for any singularity. The following
auxiliary result is valid.

LEMMA 1 (Rodin [6]). If we I, then
(5.1) [ ro=0.
B

Proof. Let Q denote a canonical subregion of W with border
Bo, and 7, the L, principal function of 2 with respect to the identity
partition of 8,. Since », is constant on B,, it follows that

(.2) Ssﬂ“‘” ~0.
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By 4.1, the right hand side of the above equation is dominated by
| (dr — dr,, @*),|. Consequently, using Schwarz’s inequality, we find

that
(5.3) [S m} < \dr — drylall @l

In Ahlfors and Sario [1], it is shown that lun lldr — dr,|| = 0. Hence

the right hand side of 5.3 tends to 0 as Q “tends to W which implies
the result of the lemma.

Let ¢ denote an arbitrary point on W and p and ¢ the L, principal
functions of W with respect to the identity partition of & and singu-
larities Re 1/z and Im 1/z respectively at £, We can now state the
following result.

THEOREM 2. The differential dp — dg* is am l-kernel of the
Hilbert space I',. Explicitly

(5.4) (w, dp — dg*) = 0

for all we ;.

Proof. Let 4 denote a parametric disc with center at ¢ and
corresponding to {z:|2z| <7 <1}. In 4, p=Re(l/z) + h(z) and ¢ =
Im(1/2) + v(z) where h(z) and v(z) are harmonic. From the definition
of the inner product, it follows that

65 (@ dp—dglyo= || @ner =[] doo
By 4.1 and Lemma 1, we may rewrite 5.5 as follows.
6.6) (@, dp — dg*)y_s = | _qo — po* .

By the linearity of the scalar product, we may assume without
loss of generality that ® is real. Therefore in 4, we can write
@ = du where w is harmonic. Since Re (1/z) = Im (¢/2) and Im (1/2) =
Im (1)z), we obtain from 5.6, the following result.

61 @ dp— gy, =Tm| SEIE L ki edu

On the circle |2| = 7, Z = r*/z and therefore

du -+ idu* 0.

lzi=r

(5.8) Im g

R
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Since % and w* are of bounded variation on |z| = », it follows that

(5.9) S( hdu* + vdu = o(l) .
zl=r

Consequently,

(5.10) (,dp — dg*)w_s = 0o(1) .

Letting » tend to 0, we obtain the desired conclusion.
It was shown by Rodin [6] in his doctoral dissertation that the
corresponding k-kernel of I", is — (1/2x)(dp + dg*).

6. We shall now consider the space of square integrable harmo-
nic exact differentials I,,. The I-kernel of I",, is defined as follows.

DEFINITION. A harmonic exact differential & on W — {{} with a
harmonic pole at { is said to be an I-kernel of I',, provided

(6.1) (w,0) =0 for all we I",, where the inner product is again taken
in the Cauchy sense.

‘We shall now prove the following lemma.

LEMMA 2. Let W be an arbitrary open Riemann surface with
border B, and let p denote the L, principal function of W for any
singularity, Then

(6.2) S udp* = 0
8
for all duerl,,.
Proof. As before 2 will denote a canonical subregion of W with
border B,. Since p,, the L, principal function of 2 with the same

singularity as p, has vanishing normal derivative on B,, it follows
that

(6.3)

S udp* | = H u(dp* — dpo*)

Ba Bo

The rest of the proof now follows in the same manner as that of
Lemma 1,

Let p,, denote the L, principal function of W with respect to
the identity partition and singularity s = Re (1/z), and »,, denote the
L, principal function of W with singularity s. Applying Lemma 2,
we obtain in a manner similar to the proof of Theorem 2 the follow-
ing result,
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THEOREM 8. The differential dp,,, + dp,, is an l-kernel of I',.

It should be noted that the I-kernel of I';, is also unique up to
a singularity. This remark follows in the same manner as that of
Theorem 1,

The corresponding k-kernel [6] of I7;, is — (1/27)(dDirs — dDos).

Let us now turn to the space of square integrable harmonic
semiexact differentials 7°,,.. We recall that a differential (not neces-
sarily square integrable) is said to be harmonic semiexact on an
arbitrary open Riemann surface W if it is harmonic with vanishing
periods along all dividing cycles of W. This leads us to the following
definition,

DEFINITION., A harmonic semiexact differential ¢ on W — {{} with
a harmonic pole at { is said to be an [-kernel of I,,, provided

{6.4) (w, 8) =0 for all we Iy, .

By a method of proof similar to that of Lemma 1, we obtain the
following result.

LemMA 3. If p denotes the L, principal function of W with
respect to the canonical partition for any singularity, then

6.3) S pw = 0
B
for all wel™,,,.

Denote by p., the L, principal function of W with respect to
the canonical partition and with singularity ¢ = Im (1/2). Applying
the result of Lemma 3, we can establish in a manner similar to the
proof of Theorem 2 the following.

TurorEM 4. The differential (dp.;, — dpi) s an l-kernel of
['hse-

We again note that the l-kernel of I',,, is unique up to a singu-
larity. The corresponding k-kernel {6] is — (1/27)(dp.;, + dpi).

7. The k-kernel of I',, can also be characterized in terms of a
complete orthonormal set of square integrable harmonic exact differ-
entials on any surface W¢ 0z, In fact, if {du)}, v=1,2,.--, is
such a complete orthonormal set, then as an immediate consequence
of the Riesz Fischer theorem we obtain the following result.



K- AND L-KERNELS ON AN ARBITRARY RIEMANN SURFACE 455

THEOREM 5.

(AP, — ADyy) = 24—~

__1__ & ou(f) du
2r v=1 dx v

3. Analytic differentials on Riemann surfaces

8. We shall now consider some important subspaces of the space
of square integrable analytic differentials I",. The Il-kernel of I, is
defined as follows.

DEFINITION, An analytic differential 6 on W — {{} with a pole
at { is said to be an I-kernel of I, provided

8.1) (»,0) =0 for all we ', where the inner product is taken in
the Cauchy sense,

With the same notation as before, we obtain the following result.

THEOREM 6. The differential dp — dg* + i(dp* + dq) s an
l-kernel for I,.

The proof is similar to that of Theorem 2. Of course, the I-kernel
is again unique up to a singularity.
Rodin [6] has shown that the k-kernel of I, is

_ 1 (dp + dg* + i(dp* — dqg)) .
4

Let us now consider the space of square integrable analytic semi-
exact differentials 7”,,,. If in the definition of the I-kernel of I", we
replace the word analytic by analytic semiexact and the space I", by
the space I',,,, we obtain the definition of the I-kernel of I,,..

Denote by p,,, the L, principal function of W with singularity
s = Re (1/2) at { with respect to the canonical partition. As a con-
sequence of Lemma 3, we have the following result.

THEOREM 7. The differential dp., — dpiy + i(dph, + dp.g.) 18
an l-kernel of I',,,.

The corresponding k-kernel [6] of I, is

— = AP + APl + (AP, — AP.2) -

We shall now consider the space of square integrable analytic
exact differentials, If in the definition of the [-kernel of I, we



456 MYRON GOLDSTEIN

replace the word analytic by analytic exact and I', by I",,, we obtain
the definition of the I-kernel of the space of square integrable exact
differentials I°,,.

Let us now consider a planar Riemann surface W. On a planar
surface every cycle is dividing and consequently P, = p,, + ipiy, and
P, = py, + 103, become single valued meromorphic functions. Thus
we obtain the following result.

COROLLARY 1. Omn a planar surface, the differential dP, + dP,
18 an l-kernel of I,,.

The corresponding k-kernel [6] is —(1/4x)(dP, — dP,).
9. The k-kernel of I, can also be characterized in terms of a
complete orthonormal set of square integrable analytic differentials.

To be precise, if W¢O0,, and if a,(z)dz,v =1,2, .-, is such a com-
plete orthonormal set, then the following result is valid.

THEOREM 8.

—-L(dp + dg* + idp* — dg)) = 3} 0. @)z .

The proof is similar to that of Theorem 5.

4. Extremal problems on Riemann surfaces

The properties of the k- and [-kernels of the space I°,, can be
used to solve certain extremal problems for harmonic functions on an

arbitrary open Riemann surface. Thus if we let B(p) = g dp*, we
8
obtain the following result.

THEOREM 9. The function (1/2)(D., + Do) Minimizes the expres-
sion B(p) in the class of all harmonic functions p with singularity s.

Proof. Since dp,;, + dp,, is an l-kernel or I",,, it follows that

0N  0s|dp— 2@+ )|, = 1wl

2
HW—A

(A, dpurs + APo)w_s + % | dDszs + Doy s

and that
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= 11 dp [fy—s

.

02) |a(p = 5 u + 2.0)

- ";“ (dp; dplls + dpos)W_A + 0(1) .

Consequently

9.3 (dp, Ay, + APos)w_s = —%— [| dDirs+ APos |[r—s + 0(1) ’

and therefore
(9.4) %u Apors + ADos |y < 11D s + 0(1) -

Applying 4.1 to 9.4, we obtain the following.

03 B3 u+5)) = |+ i+ 25 e+ 7))

= B(p) — S pdp* + o(1) .

lzl=r

Letting r tend to 0, we obtain the desired result.

Theorem 9 was first proved by Sario [9] by another method. The
proof presented here is considerably shorter thus showing the power
of the l-kernel concept.

We also have the following extremal property of the k-kernel of
the space [',..

THEOREM 10, In the class of all harmonic functions wu, the
erpression

9.6) ldu|f — 4z ___‘%ff)

1s minimized by the function P,, — Dirs .

Proof. By the reproducing property of the k-kernel, it follows
that

9.7 ldu | — 4z 24E)
ox
— [l du — (dpo; — dPus) I — [ dPos — AP, [

However
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(9.8) lldu — (dpo, — dpus) IIF — 11 dPoy — dpir, |

2 a — 1Is
< — |1dpy, — dpur, |F = [l dpy, — dpus, || — 4 LW — P - W@

Actually in the course of the proof we have shown more, namely
that the value of the minimum is —|| dp,, — dp,,|°. Again we see
that the proof is very easy once the reproducing property of

'_—_}— (dplls - dpos)
27

is established. For another proof of this theorem the reader is re-
ferred to [9].

10. The k-kernel of the space I',, also possesses an extremal
property with respect to the class of analytic functions. Let dk(z, )
denote the k-kernel of I',,. Then the following result is valid.

THEOREM 11. The function 4zmk(z, () minimizes the expression
l|df|? — 4 Re a(f) in the class of all analytic functions f on W
where a(f) is the coefficient of z — { in the Taylor expansion of f
about L. Moreover a{drwk(z,l)) is monnegative and 2ma(drk(z, () =
D(rk(z, )) where in general D(f) denotes the Dirichlet integral
of f.

The proof follows from the reproducing property of the k-kernel
and is similar to that of Theorem 10. The existances of the k-kernel
of I',, follows from the existence of the k-kernel of I", and the
orthogonal decomposition 1", = I",, + I",, where I',, denotes the space
of all square integrable analytic Schottky differentials.

If we call a(47k(z, £)) the span, then by Theorem 11, we have
the following result.

THEOREM 12, An arbitrary open Riemann surface is of class
0. tf and only if the span vanishes for all choices of C.

The span a(drk(z, {)) is a generalization of the well known Schiffer
span which was defined by him for planar surfaces,
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