ON DUAL SERIES RELATIONS INVOLVING LAGUERRE POLYNOMIALS

K. N. Srivastava
ON DUAL SERIES RELATIONS INVOLVING LAGUERRE POLYNOMIALS

K. N. SRIVASTAVA

In this paper, we shall consider the problem determining the sequence \(\{A_n\} \), such that
\[
\sum_{n=0}^{\infty} \frac{A_n}{\Gamma(n + \alpha + 1)} L_n^\alpha(x) = f_1(x), \quad 0 \leq x < y,
\]
\[
\sum_{n=0}^{\infty} \frac{A_n}{\Gamma(n + \alpha + 1/2)} L_n^\alpha(x) = f_2(x), \quad y < x \leq \infty, \alpha > -1/2,
\]
where \(L_n^\alpha(x) \) is a Laguerre polynomial, the functions \(f_1(x) \) and \(f_2(x) \) being prescribed. By expressing the sequence \(\{A_n\} \) in terms of a sequence of integrals involving an unknown function \(g(u) \) the problem is reduced to that of solving an Abel integral equation for \(g(u) \).

In recent years, dual series relations involving Fourier-Bessel, Dini series, trigonometric series and series of Jacobi polynomials have been investigated by various workers [1, 2, 5 to 12]. Here we shall apply the method developed by Sneddon and Srivastava for obtaining a solution of the dual series relations involving Laguerre polynomials.

As pointed out by Sneddon and Srivastava [6], with a view to simplify the calculations, we split the problem posed by the pair of dual equations given above into two parts: Problem (a). Determine the constants \(\{A_n\} \) satisfying the dual series relations
\[
\sum_{n=0}^{\infty} \frac{A_n}{\Gamma(n + \alpha + 1)} L_n^\alpha(x) = f_1(x), \quad 0 \leq x < y,
\]
\[
\sum_{n=0}^{\infty} \frac{A_n}{\Gamma(n + \alpha + 1/2)} L_n^\alpha(x) = 0, \quad y < x \leq \infty, \alpha > -1/2.
\]

Problem (b). Determine the constants \(\{A_n\} \) satisfying the dual series relations
\[
\sum_{n=0}^{\infty} \frac{A_n}{\Gamma(n + \alpha + 1)} L_n^\alpha(x) = 0, \quad 0 \leq x < y,
\]
\[
\sum_{n=0}^{\infty} \frac{A_n}{\Gamma(n + \alpha + 1/2)} L_n^\alpha(x) = f_2(x), \quad y < x \leq \infty, \alpha > -1/2.
\]

The solution of the general problem is obviously obtained merely by adding the solutions of problem (a) and (b). We suppose that functions \(f_1(x) \) and \(f_2(x) \) satisfy the following conditions:

(i) \(F_1(x) = x^\alpha f_1(x) \) is finite and continuously differentiable for \(0 \leq x < y \),
(ii) \(F_t(x) = \int_x^\infty e^{-z}f_t(x)dz \) is finite and continuously differentiable for \(y < x \leq \infty \).

As we shall presently see the classes of functions \(f_t(x) \) and \(f_s(x) \) for which the problem under discussion is solvable, must satisfy the above conditions,

2. In this section we list some results for ready reference. By combining the results \([3, p. 292 (2), (3)]\), we have

\[
(2.1) \quad \int_0^\infty x^\gamma e^{-x}L_n(x)L_n(x)dx = (n + 1)_{m} \cdot \delta_{mn} ,
\]

where \(\delta_{mn} \) is a Kronecker delta. From \([4, p. 193 (27), (28)]\) we have

\[
(2.2) \quad \frac{d}{dn} \{x^\alpha L_n(x)\} = (n + \alpha) x^{\alpha-1}L_n^{\alpha-1}(x) ,
\]

\[
(2.3) \quad \int_0^\infty e^{-y}L_n^{\alpha}(y)dy = e^{-x}L_n^{\alpha-1}(x) .
\]

We shall also require the following results which are easily derived from the more general results given in \([3, p. 293 (5), p. 405 (20)]\). For \(\alpha > -1/2 \)

\[
(2.4) \quad \int_0^\infty (y - x)^{-1/2}e^{-y}L_n^{\alpha}(y)dy = \frac{1}{\Gamma(1/2)}e^{-x}L_n^{\alpha-1/2}(x) ,
\]

\[
(2.5) \quad \int_0^\infty (x - y)^{-1/2}y^{\alpha}L_n(y)dy = \frac{\Gamma(n + \alpha + 1) \Gamma(1/2)}{\Gamma(n + \alpha + 3/2)} x^{\alpha+1/2}L_n^{\alpha+1/2}(x) .
\]

We also note that if \(f(x) \) is continuously differentiable then Abel integral equation

\[
(2.6) \quad f(x) = \int_0^x \frac{\phi(y)}{(x - y)^{1/2}} dy
\]

has a continuous solution given by the equation

\[
(2.7) \quad \phi(y) = \frac{1}{\Pi} \frac{d}{dy} \int_0^y \frac{f(x)}{(y - x)^{1/2}} dx .
\]

Furthermore, if \(f(x) \) is continuously differentiable then the integral equation

\[
(2.8) \quad f(x) = \int_0^\infty \frac{\phi(y)}{(y - x)^{1/2}} dy
\]

has a continuous solution
ON DUAL SERIES RELATIONS

This can be easily established by simple methods given in [13, p. 229]. The analysis given here is purely formal and no attempt is made to justify the interchange of various limiting processes.

3. Solution of the problem (a). Let us suppose that for \(0 \leq x < y \)

\[
(3.1) \quad \sum_{n=0}^{\infty} \left\{ \frac{\Gamma(n + \alpha + 1)}{\Gamma(n + \alpha + 1/2)} \right\} L_n(x) = -\beta \Gamma(n + \alpha + 1/2) \int_{x}^{y} \frac{g_i(u)}{(u - x)^{1/2}} \, du.
\]

Using the orthogonal property (2.1), it can be shown that

\[
(3.2) \quad A_n = -\frac{\Gamma(n + \alpha + 1/2) \Gamma(1/2)}{\Gamma(n + \alpha + 1)} \int_{0}^{\infty} x^a L_n(x) \left(\frac{d}{dx} \int_{x}^{y} \frac{g_i(u)}{(u - x)^{1/2}} \, du \right) dx.
\]

Since

\[
(3.3) \quad -\frac{d}{dx} \int_{x}^{y} \frac{g_i(u)}{(u - x)^{1/2}} \, du = \frac{g_i(y)}{(y - x)^{1/2}} - \int_{x}^{y} \frac{d}{du} \frac{g_i(u)}{(u - x)^{1/2}} \, du
\]

we obtain with the help of (2.5), the equation

\[
(3.4) \quad A_n = \Gamma(n + 1) \Gamma(1/2) \int_{0}^{\infty} g_i(u) u^{n-1/2} L_n^{-1/2}(u) \, du, \quad n = 0, 1, 2, \ldots
\]

If in the equation (1.1), we substitute for the coefficients \(A_n \) from (3.4), on interchanging the order of summation and integration, we get

\[
(3.5) \quad f_i(x) = \int_{0}^{\infty} g_i(u) u^{n-1/2} K_i(u, x) \, du, \quad 0 \leq x < y,
\]

where

\[
(3.6) \quad K_i(u, x) = \sum_{n=0}^{\infty} \frac{\Gamma(n + 1) \Gamma(1/2)}{\Gamma(n + \alpha + 1)} L_n^{-1/2}(u) L_n(x)
\]

with the help of equations (2.1) and (2.4) it can be shown that

\[
(3.7) \quad K_i(u, x) = e^{u} x^{-\alpha} (x - u)^{-1/2} H(x - u)
\]

where \(H(t) \) is Heaviside's unit function. (2.7) is easily proved. Let

\[
K_i(u, x) = \sum_{n=0}^{\infty} \alpha_n L_n(x)
\]

where the coefficients \(\alpha_n \) are given by
Thus the equation (3.5) is equivalent to

\(F_t(x) = x^\alpha f_t(x) = \int_0^x g_t(u) u^{\alpha-1/2} e^u du, \quad 0 \leq x < y. \)

This is Abel integral equation, since \(F_t(x) \) is finite and continuously differentiable, its solution is given by

\(u^{\alpha-1/2} e^u g_t(u) = \frac{1}{H} \frac{d}{du} \int_0^x \frac{x^\alpha f_t(x)}{(u - x)^{1/2}} dx. \)

The coefficients \(A_n \) may now be calculated with the help of the relations (3.4) and (3.9).

4. Solution of the problem (b). We start with the assumption that \(y < x \leq \infty \)

\(\sum_{n=0}^\infty \{A_n/\Gamma(n + \alpha + 1)\} L_n^\alpha(x) = x^{-\alpha} \int_x^\infty \frac{g_t(u)}{(x - u)^{1/2}} du. \)

This is equivalent to assuming that

\(A_n = \Gamma(n + 1) \Gamma(1/2) \int_{y}^\infty g_t(u) u^{\alpha-1/2} e^{-u} L_n^{\alpha-1/2}(u) du, \quad n = 0, 1, 2, \cdots \)

If we multiply both sides of the equation (1.4) by \(\exp(-x) \) and integrate with respect to \(x \) from \(x \) to \(\infty \), \(y < x \leq \infty \), we obtain

\(F_z(x) = \int_x^\infty e^{-x} f_z(x) dx = \sum_{n=0}^\infty \{A_n/\Gamma(n + \alpha + 1)\} e^{-x} L_n^{\alpha-1}(x). \)

Substituting the values of the coefficients from (4.2) in the equation (4.3) we find on interchanging the order of summation and integration that

\(e^x F_z(x) = \int_y^\infty g_t(u) e^{-u} K_t(u, x) du, \quad y < x \leq \infty, \)

where

\(K_t(u, x) = \sum_{n=0}^\infty \frac{\Gamma(n + 1) \Gamma(1/2)}{\Gamma(n + \alpha + 1)} L_n^{\alpha-1/2}(u) L_n^{\alpha-1}(x). \)
From the relations (2.1) and (2.5) it easily follows that

\[K_2(u, x) = e^{u-a+i/2}(u - x)^{-i/2}H(u - x). \]

Consequently the equation (4.4) reduces to the integral equation

\[F_2(x) = \int_y^\infty \frac{g_2(u)u^{1/2-a-e^{-u}}}{(u - x)^{1/2}} du, \quad y < x \leq \infty. \]

Since \(F_2(x) \) is finite and continuously differentiable, the solution of the above equation is given by

\[g_2(u) = -\frac{e^u u^{a-1/2}}{H} \frac{d}{du} \int_0^u \frac{F_2(x)}{(x - u)^{1/2}} dx. \]

The coefficients \(A_n \) are given by the relations (4.2) and (4.8).

REFERENCES

Received June 29, 1965.

M. A. COLLEGE OF TECHNOLOGY, BHOPAL
INDIA
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsu-sha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
S. J. Bernau, *The spectral theorem for unbounded normal operators* 391
Lu-san Chen, *Asymptotic behavior of solutions of parabolic equations of higher order* ... 407
Lawrence William Conlon, *An application of the Bott suspension map to the topology of E IV* ... 411
Neal Eugene Foland and John M. Marr, *Sets with zero-dimensional kernels* ... 429
Stanley Phillip Franklin and R. H. Sorgenfrey, *Closed and image-closed relations* ... 433
William Jesse Gray, *A note on topological transformation groups with a fixed end point* .. 441
Myron Goldstein, *K- and L-kernels on an arbitrary Riemann surface* 449
George Joseph Kertz and Francis Regan, *The exponential analogue of a generalized Weierstrass series* 461
Walter Leighton, *On Liapunov functions with a single critical point* 467
Bernard Werner Levinger and Richard Steven Varga, *On a problem of O. Taussky* ... 473
Lowell Duane Loveland, *Tame subsets of spheres in E^3* 489
Erik Andrew Schreiner, *Modular pairs in orthomodular lattices* 519
K. N. Srivastava, *On dual series relations involving Laguerre polynomials* ... 529
Arthur Steger, *Diagonability of idempotent matrices* 535
Walter Strauss, *On continuity of functions with values in various Banach spaces* ... 543
Robert Vermes, *On the zeros of a linear combination of polynomials* 553
Elliot Carl Weinberg, *On the scarcity of lattice-ordered matrix rings* 561
Harold Widom, *Toeplitz operators on H_p* ... 573
Neal Zierler, *On the lattice of closed subspaces of Hilbert space* 583
Irving Leonard Glicksberg, *Correction to: “Maximal algebras and a theorem of Radó”* ... 587
John Spurgeon Bradley, *Correction to: “Adjoint quasi-differential operators of Euler type”* ... 587
Stanley P. Gudder, *Erratum: “Uniqueness and existence properties of bounded observables”* ... 588