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The abstract integro-differential equation
13
(1) du(t)dt = Ault) + S B(t — syuls)ds + f(b)
0

is studied, where u(t) and f(f) are functions of [0, ) to a
Banach space X, A and B(f) are linear operators on X to itself,
A is closed with domain <2 (A4) and B(t) and f(t) are strongly
continuous on [0, o), Let A be the infinitesimal generator of a
semi-group of linear operators of class (C;) and let u(t) e &' (4)
on [0, o), where u(0) is a prescribed initial value, It is then
shown that there exists a unique strongly continuously differ-
entiable solution of both the homogeneous and inhomogeneous
problem. By the method of successive approximations,
absolutely convergent series expansions of the solutions are
obtained. Further it is proved that the solution operator of
the ®-adjoint homogeneous problem equals the ®-adjoint of the
solution operator of the homogeneous equation.

It is well known [1] that for B(t) =0 and w(0)e =(4) the
formally simpler homogeneous linear differential equation

(2) du(t)/dt = Au(t)

has the unique solution wu(t) = T(¢)u(0) e &7(A), where on [0, o) T(t)
is the semi-group of class (C,) with infinitesimal generator A and there
exists positive real numbers M and 8 such that || T(t) || = M exp (5t).
If we restrict the adjoint problem of (2) to the e-adjoint Banach space
X0 = 2(A4%), the solution of du®(t)/dt = A®u®(t), with initial value
u®(0) € = (A49), is given by T®(t)u®0). Both A® and T®(¢) are restric-
tions of A* and T*(t) to X°. T®(t) is generated by A® and is like-
wise a strongly continuous semi-group on [0, ). Both solutions w(t)
and u®(t) are strongly continuously differentiable on [0, o).
The more general problem with time-dependent A,

(3) du(t)/dt = A(t)u(t)

when the initial value #(0) is prescribed was investigated by Kato
[2, 3]. A special case of this,

(4) du(t)/dt = Au(t) + B(t)u(t)
with given initial value %(0), u(t) € 2 (4) on [0, ) and where B(¢) is
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a strongly continuously differentiable one-parameter family of bounded
linear operators on [0, -] has been treated by Phillips [4]. This
differential equation has a unique solution U(¢)u(0) where U(t) is on
[0, =) a strongly continuous family of linear transformations on % to
itself. Again w(t) is strongly continuously differentiable in [0, o).
U(t) can be represented by a series expansion 3.7.,S,(f), absolutely
convergent in the uniform operator topology, uniformly in each finite
interval of [0, o).

Dealing now with integro-differential equations of type (1) some
properties of solutions of (2) or (4) remain valid for solutions of (1).
Specifically we obtain:

(@) The homogeneous problem has for «w(0)e < (A) and ¢ = 0 the
unique strongly continuously differentiable solution wu(t) = U(t)u(0) e
2 (A) where U(t) is strongly continuous on [0, =), U(0) = I, || U(®) || =

Mexp (8 + M)0), M, = M ||| B ds and U) = 3 8,(1),

Sy(t) = T(t), S.(t) = S:T(t — s)ds S:B@ — 0)S,_(o)xds,  weX.

The series expansion converges likewise absolutely in the uniform
operator topology, uniformly in each finite subinterval of [0, o).

(b) The inhomogeneous problem has for #(0)e =7 (4) and ¢t =0
the unique strongly continuously differentiable solution <7 (A4) s u(t) =

U©u(0) + 35 9.(0),

au(t) = S:T(t — $)f(s)ds and g,(t) = S:T(t — $)ds S:B(s — ), _(0)do .

The convergence of the sum is absolute and uniform in each finite

interval of [0,0) and || u(t) || = M(1 + K,) exp ((8 + M,)t) || u(0) || where
i

K, = [ 176 1 as.

(¢) The solution u®(t) of the e-adjoint problem
due(®)/dt — A®u®(t) + StB@(t — yu(s)ds ,

u®(t) ¢ Z(A®) on [0, =) with given initial value u®(0) and B®(t) strongly
continuous on [0, «) has all the properties of the solution of (1) listed
under (a) and we have uw®(t) = U®(t)u(0), U®(t) being the e-adjoint
operator of U(t).
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2. Existence and uniqueness of a strong solution of the
homogeneous problem (1). Let A be a closed linear operator on a
Banach space X to itself with domain <7 (A) dense in X and let (%)
be the Banach algebra of all bounded linear transformations on % to
itself. We choose A such that the resolvent R(\, 4) for n =1, 2, --.
and some real numbers M > 0 and 8 = 0 satisfies

(5) B, Al = M(v— 87" for A >8.

By the Hille-Yosida-Phillips theorem [4, Theorem 2.1] this implies that
A generates a semi-group of class (C;) of linear operators on the
semi-module [0, «) to E(X):

( i) T, + i) = T(tl) 1(.), t;, £, €10, o),

(i) T(0) = I,

(iii) T(t) is strongly continuous on [0, <) and

(iv) [T | = Mexp (51).

(6)

For ¢ > 0 T(t) and A commute on < (A) [1, Theorem 10.3.3] and for
xe 2(A) T@)x is strongly continuously differentiable in [0, «) and is
the unique solution [1, Corollary to Theorem 23.8.1] of the differential
equation dT(t)x/dt = AT(t)x with initial condition T(0)x = x. Instead
of this we first investigate the homogeneous integro-differential equa-
tion

(1) dU@)e/dt = AUG)s + StB(t — ) U(s)ads

for U(t)x e &(A), t = 0 where the initial condition is U(0)x = . We
take B(t) as a strongly continuous family of operators on [0, «) to
E(X). We have now the following theorem:

THEOREM 1. Let B(t) be a strongly continuous function of
[0, ) to G(X) with M, = MY[[B(S)H ds. Then it ewists a unique
one-parameter family of bom;cled linear operators U(t) on [0, ) to
E(X) satisfying

(1) U(@) is strongly continuous on [0, o),

(ii) For ze &2(A) Ult)x is strongly continuously differentiable
in [0, o) and

(iii) s the unique solution of the integro-differential equation
(T) with

(iv) U(0) = 1.

(v) U(t) has the representation

(8) Ut) = 5, 8.(t)
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where S|(t) = T(t) and

S.(f) = gtT(t — 8)ds gsB(s — 0)S,_(oYedo .
0 0
The series expansion converges absolutely in the wniform operator
topology, uniformly in each finite subinterval of [0, =) and
(vi) |U@®) || = Mexp (B + M,)1).
In order to prove the theorem we need the following lemma [4, Lemma
6.1]:

LEMMA 2. Let F(t) and f(t) be strongly continuous functions on
[0, o) to GX) and to X respectively. Then g{t) = StF(t — 8)f(s)ds
exists in the strong topology and s itself strongly contmouous ot [0, o)
to X, If f(t) is strongly continuously differentiable then so is g(t) and
with ¢'(t) = dg(t)/dt we have

g0 = FOS0) + | Fit — 9)f(s)ds .

First of all we prove the uniform and absolute convergence of
sum (8) for U(t). Since B(t) is strongly continuous on |0, ), || B(t)||
is bounded and measurable in each finite interval of [0, ). Hence

Stu B(s) || ds exists and we take
(9) M, =M\ || Bis)l|ds .

We suppose that for some n = 0 S,(¢) is strongly continuous on [0, <o)
and that

(10) 18,(t) || = Mt"M; exp (8t)/n! .

Applying twice Lemma 2 we see that S,.;(¢) is also strongly continuous
on [0, ). Further an estimate for S, ,(¢) shows that (10) holds like-
wise for n + 1, Because Si(t) is strongly continuous and || Sit)|| =
Mexp (Bt) (10) is valid for each » = 0, hence in every finite interval
of |0, «o) expansion (8) is absolutely and uniformly convergent in the
uniform operator topology that proves (v). (vi) follows immediately
from (10) and (iv) holds since S,(0) = I and S,(0) =0, % > 0. Let

(11) Ut = 58.) .
k=0
For n— o U,(f) converges to U{t) in the uniform operator topology,

likewise absolutely and uniformly in each finite interval of [0, ).
Statement (i) then follows from the strong continuity of U,(#). In
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order to prove (ii) we consider the sum
12) We = 3, Sit)e,  weZ(A).

Since for x e &7 (A4) S,(t)x is strongly continuously differentiable Lemma
2 together with the definition of S,(t) indicates the strong continuous
differentiability of S,(t)z for all n = 0. For n >0

S, () = SZT(s)ds Sth — §)S,_(t — o)rdo

hence
Si(t)e = S‘T@)B(t — )8, _(0)ads + S:T(t — 8)ds SSB(S — 0)S,_(o)xdo .

If » = 1 one obtains, using Sy(t)x = T(t)Ax,
1 Si || = MM (||« || + t || Ax|]) exp (51)
and we get for n = 1 inductively
1S || = Me" M| » || + t [[ Az [[) exp (88)/(n — DI

This shows that the series expansion (12) is absolutely and uniformly
convergent in every finite interval of [0, «). Therefore W(t)x is
strongly continuous on [0, ) and, by (11) and (12), for ze Z(A4)
W(t)x is equal to the strong derivative U’(t)x of U(¢)z. By (11) we
have

U.(t)e = T(t)e + g:T(t — 5)ds S:B(S — O\U,_(0)eds, n>0.

Taking the strong limit for n — < on both sides we get an integral
equation for U(t)x, x e %:

(13) Ultys = T(t)s + §:T<t — s)ds S:B(S — ) Ulo)ado .

With the use of (13) and the definition of the infinitesimal generator
A of T(t) on =(A) by the strong limit

(14) Az = lim L (T(¢) — De,

8§04+ 6

we obtain for xe =7 (4)
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Uty — AT(t)z = Jim % [S:” T(t + & — s)ds S:B@ — o) U(o)zdo
—~ S:T(t — 8)ds S:B(s — ) U(o)xdo]
= lim (70) — DU — Tte)
+ S:B(t — §)Uls)ads .

We know that U’(t)x — AT(t)xr € X. Hence the last limit exists in the
strong topology, by (14) U(t)x — T(t)x € =7 (A) and so also U(t)x e =7 (4)
and we get the integro-differential equation for x e < (4)

(15) dU)/dt = AU + S:B(t — $)U(s)xds .

In order to prove that for x ¢ & (4) the solution u(t) = U(t)x is unique
and thus (iii) of Theorem 1, we show that every nul solution, i.e.,
every strongly continuously differentiable solution w(¢) of (15) with
initial value «(0) = 0 vanishes for ¢t = 0. We take a ¢, > 0 such that

M “ exp (Bs)ds < 1 and assume wu(t) =0 for ¢e]0, nt,] and some

to
integer » = 0. Multiplying both sides of (15) by T(c — ¢) and integrat-
ing over [ni, ¢] where nt, =< o = (n + 1)t, we get

u(o) = Sa

n

T(o — )it S:B(t — syuls)ds .
Let C, = sup[|ju(t)i]; t e [nt,, (n + L)t]]l. Then for e [nt, (n + 1)t]

lut) | = C.M | exo (8t — opdo | 1| Blo — )|l ds

t ¢
nt ntg
and

C,=C.M, Sto exp (Bs)ds

so that C, =0 and u(t) =0 for te<[0, (n + 1)¢,]. Since u(0) =0 it
follows at once by recursion that w(t) = 0 on {0, ).

3. The inhomogeneous problem.
THEOREM 3. Let B(t) be a strongly continuous function of

[0, o) to &X) with M, = MS | B(s)|| ds and let f(t) be a strongly

t
0
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continuously differentiable function of [0, ) to £ with K, =
t

S | f(s)]|ds. Then the inhomogeneous problem

0

(16) du(t)/dt = Au(t) + S:B(t — syu(s)ds + f(s)

has for each u(0) e ' (A) a unique continuously differentiable solution
u(t) on [0, o) to Z(A). u(t) has the representation

u(t) = Ut)u(0) + i 7.(t)

where U(t)u(0) is the solution of the homogeneous problem described
t

wn Theorem 1, g,(t) = S T(t — s)f(s)ds and for n >0
0

0.(t) = | Tt = 8)ds | Bis — o), (0)do .

The sum converges absolutely and uniformly in each finite interval
of 10, co). Further ||u(t)|| = M(1 + K,)exp ((8 -+ M,)t) || w(0) ||

Proof. Through repeated application of Lemma 2 it follows in-
ductively that for » = 0 the g,(¢) are strongly continuously differenti-
able. We obtain in an analogous way as in the proof of Theorem 1

ai(t) = TO)F0) + S:T(t — $)f'(s)ds
0.t = | T(t - 9)ds | Bs — 0)gi(0)d0

and for n = 0

| 9.8} || = Mt"K, M exp (8t)/n!
[ gu(t) || = Mt "L, M7 exp (Bt)/n!

where L, = || f(0)]] + S: [|f'(s) || ds. This shows that the sum 377, 9.(¢)

is a strongly continuously differentiable function g(¢) of [0, =) to %,
where ¢g(0) =0, Due to the uniform convergence of 3.7, ¢,.(s) in |0, {]
we get from the definition of g¢,(¢) an integral equation

a(t) = gt) + lim | 'T(¢t — 5)ds | 'B(s — 0) 31 0,(0)do
— S:T(t —8) [f(s) + S:B(s — o)g(a)da]ds .

Similarly; to the manner in which we derived the integro-differential
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equation (15) from the integral equation (18), we obtain

(17) g'(t) = f©) + | Bt — s)g(s)ds + lim % (T0) — Da(®) .

Since for fixed ¢ the limit exists in the strong topology we have
g(tye &7 (A) and the last term on the right side of (17) equals Ag(¢).
Hence g(¢) is a particular solution of (16) and by Theorem 1 u(t) =
U@t)yu(0) + ¢g{t) is a solution of (16) where wu(0)e =7(4) implies
u(tye &7(4),t = 0.

To pove the unigueness of this solution we suppose to have two
solutions of (16) with same initial value. Then the difference of these
two solutions is a solution of the corresponding homogeneous equation
with initial value equal to zero. Due to the uniqueness of the solution
of the homogeneous problem (Theorem 1) this nul solution vanishes.

4. The adjoint problem. Since A is a linear transformation
with domain <7 (A) dense in X the adjoint A* of A is a closed linear
transformation on & (A*)C X* to ¥, But in general <7(A4*) is not
dense in ¥* so that A* is not necessarily the infinitesimal generator
of a strongly continuous semi-group in X*, Therefore we restrict the
treatment of the adjoint problem of (7) to the e-adjoint space X® of
%, defined by X¥® = <7(A*). In case Aec@X) or if X is reflexive we
have X® = X*, else ¥° may be a proper subset of X*. Given a linear
operator @ on X to itself with dense domain we denote by Q° the
restriction of @* with domain <7(Q®) = [¢*; x* ¢ Z(Q*) N X®, Q*x* € X¥],
Let T*(t) then be the adjoint transformation of T(¢) and T®(¢) the
restriction of T*(t) to X® in the sense described above, Then by [1,
Theorem and Corollary to Theorem 14.4.1] T®(t) € G(X®) is a semi-group
of class (C,) and its infinitesimal generator is A®, Clearly we have
HT@) [ = | T(¢) || = M exp (8¢).

We suppose the e-adjoint B®(t) of B(t) to be a linear operator on
[0, o) to E(X®), likewise strongly continuous (this is the case if B(¢)
is uniformly continuous) and state the e-adjoint problem
(18) AV($)r®/dt = A°V()a® -+ StB@(t — ) V(s)a®ds
0
for V(t)a®e =7 (A®), t = 0 and the initial condition V(0)2® = 2®, Then

Theorem 1 applies for B(¢), U(t), T(t), A, X and x replaced by B®(t), V{(t),
T®(t), A®, X® and x® respectively and we have the following

THEOREM 4. Let B®(t) be a strongly continuous linear transfor-
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mation on |0, o) to G(X®). Then the solution V(i) of the e-adjoint
problem (18) is identical with the e-adjoint U®(t) of the solution
U(t) of problem (7).

Proof. By Theorem 1 V({) has the representation
V(t) = 3 V.0
where Vy(t) = T®(¢), for x®cX® and » > 0
V.(t)a® = SZT@(t — s)ds 3213@(3 — ) V,_(0)e®do

is strongly continuous on [0, ) and the expansion converges absolutely
in the uniform operator topology.

We now prove that V,(¢) is identical to the e-adjoint S2(¢) of the
term S,(¢) oceurring in (8). This is trivial for n =0. For n >0
S,(t) is bounded so that S*(t) exists as a bounded linear operator on
X* to itself, for each xcX and z* ¢ X* defined by

[Sk(t)z*le = a*[S.(t)x]
— x*[gt S ‘T(t —8)) H {B(s, — t)T(t; — Sm)dsidti}x]

where we take s,., = 0,¢t, =1t and B{t) = T(t) =0 for ¢ < 0. Since
[|#*|| < o= we have

[SE(t)o*|w = St g :x*[T(t — 5 1T {Bls. — £ T(t; — siﬁ_l)dsidti}x]

t t n
= S tee S [T*(tn) I AB*(Sazivi — tacis) T* (b — Sn-i+1)d8idti}x*]x .
0 0 i=1
Substituting ¢; =¢t — s, ;1, Si=1 —t, ;0,0 =1, ---, n we get, apply-
ing the theorem of Fubini and suppressing apostrophes

[SH(t)z* ] = St ... gt[T*(t —8) [[ (B*(s; — t;) T*(t; — sm)dsidti}x*]x )
For a* = x® ¢ X® it follows since T®(¢) and B®(t) are strongly continuous
and elements of E(X®)

[Si)xCle = [V.(t)a®le,
therefore S}(t)2® ¢ X® and we have for each 2®¢ %X®

V.(t)a® = SO(t)x® .

For @ € &(X) the transformation @ — @Q* is an isometry of E(X) into
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E(Xx*). Due to the absolute convergence in the uniform operator
topology of expansion (8) we then have

U(t) = [}Viﬂ i Sn(t)]* =581 .

Thus for x®c%® we get

o £

Ur()z® = 2, Sp(t)a® = 3, V,(0)a® = V(£)a®,

n=0 n=0

hence U*(t)a®c X® and

Vit) = U(t) .

Acknowledgments. The author is indebted to Professor Dr. A.
Pfluger at the Department of Mathematics of the Swiss Federal Institute
of Technology for many valuable discussions.

REFERENCES

1. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc.
Colloquium Publ. Vol. 31, rev. ed., 1957.

2. T. Kato, On linear differential equations in Banach spaces, Comm. on Pure and
Appl. Math. 9 (1956), 479-486.

3. , Integration of the equation of evolution im a Banach space, J. Math. Soc.
Japan 5 (1953), 208-234.

4. R. S. Phillips, Perturbation theory for semi-groups of linear operators, Trans, Amer,
Math. Soc. 74 (1953), 199-221.

Received August 2, 1965.

EIDG, INSTIUT F. REAKTORFORSCHUNG, 5303 WURENLINGEN
SWITZERLAND



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON J. DUGUNDJI
Stanford University University of Southern California
Stanford, California Los Angeles, California 90007
J. P. Jans RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. Yosipa

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo Japan



Pacific Journal of Mathematics

Vol. 20, No. 1 September, 1967

Leonard Daniel Baumert, Extreme copositive quadratic forms. Il . . .. ...... 1
Edward Lee Bethel, A note on continuous collections of disjoint

COMPIMUA . . .« oo vttt et e e e e e e e e et e e e e e 21
Delmar L. Boyer and Adolf G. Mader, A representation theorem for abelian

groups with no elements of infinite p-height......................... 31
Jean-Claude B. Derderian, Residuated mappings ......................... 35
Burton L. Fein, Representations of direct products of finite groups. . ........ 45
John Brady Garnett, A topological characterization of Gleason parts. .. .. .. 59
Herbert Meyer Kamowitz, On operators whose spectrum lies on a circle or

aline ... ... 65
Ignacy 1. Kotlarski, On characterizing the gamma and the normal

AISTFIDULION . . . .o e e 69
Yu-Lee Lee, Topologies with the same class of homeomorphisms .......... 77
Moshe Mangad, Asymptotic expansions of Fourier transforms and discrete

polyharmonic Green’s functions ..............c.ouuuiiiieeennnnnn. 85
Jurg Thomas Marti, On integro-differential equations in Banach spaces .... 99
Walter Philipp, Some metrical theorems in number theory................. 109
Maxwell Alexander Rosenlicht, Another proof of a theorem on rational

CTOSS SECHOMS . . e e e e et e e e e 129

Kenneth Allen Ross and Karl Robert Stromberg, Jessen’s
Riemann sums for locally compact groups . . ........
Stephen Simons, A theorem on lattice ordered groups, res
Namioka and Banach, and a front-ended proof of Le
PREOTEML . . oot
Morton Lincoln Slater, On the equation ¢(x) = [ “*T1K(
Arthur William John Stoddart, Existence of optimal contr
Burnett Roland Toskey, A system of canonical forms for ri
sum of two infinite cyclic groups ...................
Jerry Eugene Vaughan, A modification of Morita’s charac
diMension ............. i nnn..




	
	
	

