SUB-STATIONARY PROCESSES

RICHARD MANSFIELD DUDLEY
SUB-STATIONARY PROCESSES

R. M. DUDLEY

This note supplements the longer paper [3]. It is proved in § 2 that if T is a bounded Schwartz distribution on \mathbb{R}^n, e.g. an L^∞ function, then its Fourier transform $\mathcal{F} T$ is of the form $\partial^n f / \partial t_1 \cdots \partial t_n$ where f is integrable over any bounded set to any finite power. This follows from the main theorem of [3], but the proof here is much shorter.

Secondly, § 3 shows that a p-sub-stationary random (Schwartz) distribution has sample distributions of bounded order. This generalizes a result of K. Ito for the stationary case.

Third, in § 4 it is shown that p-sub-stationary stochastic processes define p-sub-stationary random distributions if $p \geq 1$.

In [5], K. Ito introduced stationary random Schwartz distributions L with second moments. He obtained the “spectral measure” representation of the covariance of L. Using this, he proved for each such L:

(I) There is a finite n such that almost all the sample distributions of L are nth Schwartz derivatives of continuous functions.

The spectral measure also yields

(II) Almost all the sample distributions of L are tempered distributions, and their Fourier transforms are first Schwartz derivatives of locally square-integrable functions.

In [3], (II) was proved for random distributions L which are “p-sub-stationary” for some $p > 1$, i.e. for each f in the Schwartz space \mathcal{S},

$$
\sup_k E | L(\tau_k f) |^p < \infty ,
$$

where $(\tau_k f)(t) = f(t - k)$. Also, “locally square-integrable” was strengthened to “locally integrable to any finite power”. In § 2, we shall give corollaries of this result for fixed distributions and stochastic processes with much easier proofs. In § 3, we first prove (I) in the p-sub-stationary case for any $p > 0$, using some lemmas from [3] but no Fourier analysis. Then we obtain a result on the Fourier transform of the covariance for $p = 2$. In § 4, we show that for $p \geq 1$ a p-sub-stationary stochastic process is also a p-sub-stationary random distribution.
2. Fourier transforms of bounded functions and distributions.

All three theorems in this section are immediate corollaries of the main theorem of [3], but perhaps the easier proofs here will make that result more accessible.

We use the notations of L. Schwartz [8], e.g. $\mathcal{D}, \mathcal{D}', \mathcal{F}, \mathcal{F}'$. \mathcal{F} is the Fourier transform operator. The results say that if a distribution B is bounded or belongs to a suitable “stochastically bounded” class, then $\mathcal{F}B$ is of the following type:

Definition. A distribution C in $\mathcal{D}'(R^k)$ is an FB-distribution ($C \in FB$) if and only if there is a measurable function f on R^k such that

$$C = \partial^k f/\partial t_1 \cdots \partial t_k$$

in the sense of distributions, and

$$\int_K |f(t)|^r dt_1 \cdots dt_k < \infty$$

whenever $0 < r < \infty$ and K is compact.

Beurling [1] has called a distribution on R a “pseudomeasure” if it is the first derivative of a locally integrable function. Thus the pseudomeasures include the class FB on the real line. The work of Beurling, Kahane and Salem [6] and others on pseudomeasures has apparently been primarily devoted to the question of which compact sets carry pseudomeasures of certain types. I do not know of any mutual implications between our results.

A distribution B in $\mathcal{D}'(R^k)$ is called bounded ($B \in \mathcal{B}'$) if for every f in \mathcal{D},

$$\sup \{|B(\tau_h f)| : h \in R^k\} < \infty$$

(cf. Schwartz [8, tome I, Théorème IX(b) p. 72; tome II, “Autre définition des distributions bornées”, p. 61]). It follows immediately from the main theorem of [3] that if $B \in \mathcal{B}'$, then $\mathcal{F}B \in FB$.

We shall use here the Hausdorff-Young inequality for Fourier transforms rather than for series as in [3]. Suppose $1 < p \leq 2$, $q = p/(p - 1)$, and $f \in L^p(R)$. Let

$$f_n(t) = \begin{cases} f(t), & |t| \leq n \\ 0, & |t| > n \end{cases}$$

Then the functions $\mathcal{F}f_n$ are in $L^q(R)$, and for some h in $L^q(R)$, $\mathcal{F}f_n \to h$ in L^q (Zygmund [9, 12.41 p. 316]). In the sense of tempered distributions, we have simply $\mathcal{F}f = h$.
To illustrate our method, we first prove

Theorem 2.1. If \(f \in L^p(R) \), then \(\mathcal{F}f \in FB \).

Proof. Let \(g(t) = f(t) \) for \(|t| \leq 1 \), \(g(t) = 0 \) elsewhere, and \(h = f - g \). Then by the Paley-Wiener theorem, \(\mathcal{F}g \) is an entire analytic function, hence so is its indefinite integral, and \(\mathcal{F}g \in FB \).

Let \(j(t) = h(t)/t \). Then \(j \in L^p(R) \) for all \(p > 1 \), so \(\mathcal{F}j \in L^s \) for all \(q \geq 2 \). Thus

\[
D(\mathcal{F}j) = \mathcal{F}(-2\pi itj) = \mathcal{F}(-2\pi ih) \in FB,
\]

so \(\mathcal{F}h \in FB \). Hence \(\mathcal{F}f \in FB \).

In [3], there was an example of a bounded function \(f \) (the Heaviside function) with \(\mathcal{F}f = D\phi \), so that \(\phi \in L^r \) on each bounded set for \(r \) finite, but with \(\phi \) unbounded near zero.

Next suppose \((\Omega, \mathcal{B}, P)\) is a probability space. A jointly measurable map

\[
\langle t, \omega \rangle \rightarrow x(t, \omega)
\]

of \(R^k \times \Omega \) into \(R \) will be called a *measurable stochastic process* on \(R^k \), which is *p-sub-stationary* if

\[
\sup_t \int |x(t, \omega)|^p \, dP(\omega) = M < \infty.
\]

We let \(X_\omega(t) = x(t, \omega) \), and \(E = \text{integral with respect to } P \).

Theorem 2.2. Suppose \(x(\cdot, \cdot) \) is a p-sub-stationary process on \(R \) and \(p > 1 \). Then for \(P \)-almost all \(\omega \), \(\mathcal{F}X_\omega \in FB \).

Proof. Let \(Y_\omega(t) = X_\omega(t) \) for \(|t| \leq 1 \), \(Y_\omega(t) = 0 \) elsewhere, and \(Z_\omega = X_\omega - Y_\omega \). Then for \(1 < r \leq p \),

\[
E \int_{-\infty}^{\infty} |Z_\omega(t)|^r \, dt \leq \int_{|t| \geq 1} (E |X_\omega(t)|^p)^{r/p} |t|^r \, dt \leq 2M^r(r - 1).
\]

Thus \(Z_\omega(t)/t \in L^r \) for almost all \(\omega \), so

\[
\mathcal{F}(Z_\omega(t)/t) \in L^s \quad \text{for } \frac{p}{p-1} \leq s < \infty.
\]

Thus \(D\mathcal{F}(Z_\omega(t)/t) \in FB \), and hence \(\mathcal{F}Z_\omega \in FB \). Now \(Y_\omega \) is almost surely integrable with compact support, so \(\mathcal{F}Y_\omega \) and its indefinite integral are entire functions, \(\mathcal{F}Y_\omega \in FB \), and \(\mathcal{F}X_\omega \in FB \) for almost all \(\omega \).

Now we generalize Theorem 2.1:

Theorem 2.3. If \(T \in \mathcal{B}'(R^k) \), then \(\mathcal{F}T \in FB \).
Proof. T is a finite sum of partial derivatives of bounded functions (Schwartz [8, tome II, Théorème XXV p. 57]). Clearly FB is closed under multiplication by polynomials. Thus we may assume T is a function f in $L^\infty(R^k)$.

For each subset A of the finite set $\{1, 2, \ldots, k\}$, let S_A be the set of all t in R^k such that $|t_j| > 1$ if and only if $j \in A$. Let $f_A = f$ on $S_A, f_A = 0$ elsewhere. Then for each A,

$$
g_A = f_A/\prod_{j \in A} t_j \in L^p(R^k) \quad \text{for all } p > 1,
$$

so that $\mathcal{F}g_A \in L^q(R^k)$ for all $q \geq 2$. Taking indefinite integrals in the x_j for $j \in A$, we obtain $\mathcal{F}f_A = \partial^k h_A/\partial x_1 \cdots \partial x_k$, where

$$
\int_K |h_A(x)|^r \, dx_1 \cdots dx_k < \infty
$$

whenever $0 < r < \infty$ and K is compact. Thus

$$\mathcal{F}f = \sum_A \mathcal{F}f_A \in FB.$$

The converse of Theorem 2.3 is not true, since it is easy to construct examples of 2-sub-stationary stochastic processes whose sample functions are unbounded (as distributions) with probability 1.

3. p-sub-stationary random distributions are of finite order. Let (Ω, \mathcal{B}, P) be a probability space and let $M(\Omega)$ be the linear space of \mathcal{B}-measurable complex-valued functions on Ω modulo functions which vanish P-almost everywhere. On $M(\Omega)$, let $T(P)$ be the topology of convergence in probability. $T(P)$ is metrizable, e.g. by the metric

$$
d(f, g) = \int \|f(x) - g(x)/(1 + |f(x) - g(x)|)\|dP(x),
$$

but it is not locally convex in general.

DEFINITION. A random distribution is a sequentially continuous linear map from $\mathcal{D}(R)$ into some $M(\Omega)$ with topology $T(P)$.

It follows from a theorem of R. A. Minlos [7] (see [4, Chapter 4, § 2, # 4, Theorem 6]) that for any random distribution L there is a countably additive measure Q on \mathcal{D}' such that for any f_1, \cdots, f_n in \mathcal{D} and Borel set $B \subset C^n$,

$$Q(M: \langle M(f_1), \cdots, M(f_n) \rangle \in B) = P(\omega: \langle L(f_1)(\omega), \cdots, L(f_n)(\omega) \rangle \in B).$$

The subsets of \mathcal{D}' on which Q is given form an algebra (the "cylinder sets"). The unique countably additive extension of Q to the
generated \(\sigma\)-algebra will be called the \textit{Minlos measure} of \(L\).

For any \(f\) in \(\mathcal{D}(\mathbb{R})\) and integer \(n \geq 0\) we let

\[
\|f\|_n = \left(\sum_{j=0}^{n} \int_{-\infty}^{\infty} |D^j f(x)|^p \, dx \right)^{1/p}.
\]

Also, for any finite interval \((a, b)\), \(\mathcal{D}[a, b]\) will denote the space of \(C^\infty\) functions vanishing outside \((a, b)\), with its relative topology from \(\mathcal{D}\). This relative topology is defined by the countably many norms \(\| \|_n\) (although that of \(\mathcal{D}\) is not). For \(A\) and \(B\) in \(\mathcal{D}'\) we say \(A = B\) on \((a, b)\)" if \(A(f) = B(f)\) for all \(f\) in \(\mathcal{D}[a, b]\). The distribution defined by a locally integrable function \(f\) or derivative \(D^p f\) will be written \([f]\) or \([D^p f]\) respectively.

Clearly a continuous linear functional \(A\) on \(\mathcal{D}[a, b]\) for \(\| \|_n\) has the form

\[
A(f) = \sum_{j=0}^{n} \int_{a}^{b} D^j f(x) \overline{g}_j(x) \, dx
\]

for some \(g_j\) in \(L^2[a, b]\). Thus, integrating by parts and adding, we have

\[
A(f) = [D^ng](f) = [D^{n+1}h](f)
\]

for some \(g\) in \(L^2(a, b)\) and absolutely continuous \(h\) on \((a, b)\).

Theorem 3.1. Let \(L\) be a \(p\)-sub-stationary random distribution for some \(p > 0\). Then there is a positive integer \(n\) such that the Minlos measure of \(L\) is concentrated in the set of \(M\) in \(\mathcal{D}'\) such that \(M = D^n f\) for some continuous function \(f\) (depending on \(M\)).

Proof. The hypothesis becomes stronger as \(p\) increases. Thus we may assume \(0 < p \leq 1\). For each \(g\) in \(\mathcal{D}\) let

\[
A(g) = \sup_{\tau} (E \mid L(\tau, g) \mid^p)^{1/p} < \infty.
\]

Note that \(A\) will not generally be a pseudo-norm for \(p < 1\). By Lemma 4 of [3], there exist \(K\) and \(n \geq 0\) such that \(A(g) \leq K \|g\|_n\) for all \(g\) in \(\mathcal{D}[0, 1]\), hence for \(g\) in \(\mathcal{D}[b, b+1]\) for any real \(b\).

Now given \(c > 0\), there exist \(f_1, \cdots, f_m\) in \(\mathcal{D}\) such that

\[
\sum_{j=1}^{m} f_j(t) = 1 \quad \text{for } |t| \leq c,
\]

and such that the diameter of the support of each \(f_j\) is at most 1 (cf. [3, proof of Lemma 5]). Let \(g \in \mathcal{D}[-c, c]\). Then for each \(j\),
Thus for some $M_c > 0$,
\[
A(g) = \left(\left(\sum_{j=1}^{m} (gf_j) \right)^{p} \right)^{1/p} \leq \left(\sum_{j=1}^{m} (A(gf_j))^{p} \right)^{1/p} \leq K \left(\sum_{j=1}^{m} \|gf_j\|_\infty \right)^{1/p} \leq M_c \|g\|_\infty
\]
for all g in $\mathcal{D}[-c, c]$.

Now $\mathcal{D}[-c, c]$ is a nuclear space (see e.g. Gelfand and Vilenkin [4, Chapter I, §3, #6]). Thus a theorem essentially due to Minlos ([7], [4, Chapter IV, §2, #3, Theorem 4]) implies that the Minlos measure of L restricted to $\mathcal{D}[-c, c]$ is concentrated in the set of distributions continuous for $\|f\|_{n+r}$ for some r (actually $r = 1$). Thus the Minlos measure is concentrated in the set of all M of the form

$$M = [D^{n+r+1}f]$$

where f is continuous and depends on M. Given M, f on $(-c, c)$ is determined up to an additive polynomial of degree at most $n + r$. Fixing f on $(-1, 1)$, say, we obtain

$$M = [D^{n+r+1}f]$$

for some continuous f (not necessarily bounded on R). The proof is complete.

A simpler form of the last proof yields

Theorem 3.2. Let L be a random distribution, $p > 0$, and (a, b) a finite interval. Suppose $E|L(f)|^p < \infty$ for all f in $\mathcal{D}[a, b]$. Then for some n, the Minlos measure of L is concentrated in the set of all M in \mathcal{D}' equal on (a, b) to $[D^n f]$ for f continuous on $[a, b]$.

Proof. L is continuous from $\mathcal{D}[a, b]$ to $L^p(\Omega)$ [3, Lemma 2]. Thus for some n and $\varepsilon > 0$,

$$\|f\|_n < \varepsilon \quad \text{implies} \quad E|L(f)|^p < 1,$$

and

$$(E|L(f)|^p)^{1/p} \leq \|f\|_n/\varepsilon$$
for all \(f \) in \(\mathcal{D}[a, b] \) by homogeneity. Now we use nuclearity of \(\mathcal{D}[a, b] \) and can proceed as in the last proof.

Suppose \(L \) is a random distribution with finite second moments, i.e., its range in \(M(\Omega) \) is included in \(L^2(\Omega, \mathcal{A}, P) \). Then there is a unique \(B \) in \(\mathcal{D}'(R^2) \) such that

\[
E(L(f)L(g)) = B(f \otimes g)
\]

where \((f \otimes g)(s, t) = f(s)g(t) \) (see e.g. [2, §3]).

Lemma. If \(L \) is 2-sub-stationary, then \(B \) is bounded.

Proof. We must show that for any \(h \) in \(\mathcal{D}(R^2) \), \(B(\tau_z h) \) remains bounded as \(z \) runs over \(R^2 \). We know this for \(h \) of the form \(f \otimes g \), \(f, g \in \mathcal{D}(R) \).

For a general \(h \), we have \(h(s, t) = 0 \) outside some square \(C_M: |s| \leq M, |t| \leq M \). Let \(g \in \mathcal{D}(R) \), \(g(s) = 1 \) for \(|s| \leq M \), and \(g(s) = 0 \) for \(|s| \geq 2M \). We expand \(h \) in a Fourier series:

\[
h(s, t) = g(s)g(t) \sum_{m, n} a(m, n) \exp(i(\pi ms + nt)/2M)
\]

for all \((s, t)\) in \(R^2 \). Since \(h \) on \(C_M \) extends to a \(C^\infty \) function periodic of period \(4M \) in \(s \) and \(t \), we know that for any polynomial \(p \) in two variables, \(p(m, n)a(m, n) \) is bounded.

Now, by Lemma 4 of [3] there exist \(k \) and \(N > 0 \) such that

\[
\sup_{\omega} (E | L(\tau_{\omega} f) |^2)^{1/2} \leq N \| f \|_h
\]

for all \(f \) in \(\mathcal{D}[-2M, 2M] \). Let

\[
h_m(s) = g(s) \exp(i ms / 2M).
\]

Then

\[
\| h_m \|_k = \left(\sum_{j=0}^{k} \int_{-2M}^{2M} | D^j h_m(s) |^2 ds \right)^{1/2} \leq T(1 + m^5)_k
\]

for some \(T > 0 \) (depending on \(M \) and \(g \), but not on \(m \)). Now

\[
h(s, t) = \sum_{m, n} a(m, n) h_m(s) h_n(t)
\]

and \(a(m, n)(1 + m^5)^{k+1}(1 + n^5)^{k+1} \) is bounded in \(m \) and \(n \), so

\[
\sup_{z} | B(\tau_z h) | \leq \sup_{z, t} \sum_{m, n} | a(m, n) B(\tau_z h_m \otimes \tau_t h_n) |
\]

\[
\leq N^2 \sum_{m, n} | a(m, n) | \| h_m \|_k \| h_n \|_k < \infty.
\]

From the lemma just proved and Theorem 2.3, we can infer that
for any 2-sub-stationary random distribution L,

$$E(L(f)L(g)) = C(\mathcal{F}f \otimes (\mathcal{F}g)^\vee)$$

for some $\mathcal{F}B$-distribution C, i.e.

$$C = [\partial^2 f(x, y)/\partial x \partial y]$$

for some measurable function f integrable to any finite power over any compact set. When f is of bounded variation on \mathbb{R}^h, L (or B) is called harmonizable. Clearly such a B is a bounded continuous function: $B \in \mathcal{C}(\mathbb{R}^h)$. We have the following inclusions of subsets of $\mathcal{D}'(\mathbb{R}^h)$:

$$\text{harmonizable} \subset \mathcal{C} \subset L^\infty \subset \mathcal{B}' \subset \mathcal{F}^{-1}(\mathcal{F}B) \subset \mathcal{F}^{-1} \text{ (pseudomeasures)}.$$

For none of these classes do we have a simple characterization both of the distributions and of their Fourier transforms (such as the Bochner, Plancherel and Paley-Wiener theorems and their generalizations and other results of Schwartz). Thus which will yield the most useful theory remains unclear.

4. Stochastic processes and random distributions.

Theorem 4.1. If $p \geq 1$, a p-sub-stationary stochastic process $x(\cdot, \cdot)$ is a p-sub-stationary random distribution.

Proof. Let $f \in \mathcal{D}(\mathbb{R}^h)$. For any h in \mathbb{R}^h, let

$$A(f, h) = \left\{ \left[\int_{\mathbb{R}^h} f(t - h)x(t, \omega)dt \right]^p dP(\omega) \right\} \geq \left[\int_{\mathbb{R}^h} f(s)x(s + h, \omega)ds \right]^p dP(\omega).$$

Let C be the support of f and let λ be Lebesgue measure. We apply Hölder's inequality to the inner integral, with $q = p/(p - 1)$, obtaining

$$A(f, h) \leq ||f||_p^p \int_{\omega} |x(s, \omega)|^p ds dP(\omega) \leq ||f||_p^p \lambda(C) \sup_s \int |x(s, \omega)|^p dP(\omega) < \infty.$$

Thus a random distribution L is defined by

$$L(f)(\omega) = \int_{\mathbb{R}^h} x(t, \omega)f(t)dt.$$
and is p-sub-stationary.

For $p < 1$, it seems unclear whether a p-sub-stationary stochastic process defines a random distribution at all.

I thank C. M. Deo for pointing out some corrections to [3] which were incorporated in the published version, and for suggesting that (I) should hold for p-sub-stationary processes.

REFERENCES

Received December 10, 1966. This research was partially supported by National Science Foundation Grant GP-3977.
Putting the journal's editors, associate editors, and supporting institutions together.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edward Dewey Davis</td>
<td>Ideals of the principal class, (R)-sequences and a certain monoidal transformation</td>
<td>197</td>
</tr>
<tr>
<td>Richard Mansfield Dudley</td>
<td>Sub-stationary processes</td>
<td>207</td>
</tr>
<tr>
<td>Newton Seymour Hawley and M. Schiffer</td>
<td>Riemann surfaces which are doubles of plane domains</td>
<td>217</td>
</tr>
<tr>
<td>Barry E. Johnson</td>
<td>Continuity of transformations which leave invariant certain translation invariant subspaces</td>
<td>223</td>
</tr>
<tr>
<td>John Eldon Mack and Donald Glen Johnson</td>
<td>The Dedekind completion of (C(\mathcal{X}))</td>
<td>231</td>
</tr>
<tr>
<td>K. K. Mathur and R. B. Saxena</td>
<td>On the convergence of quasi-Hermite-Fejér interpolation</td>
<td>245</td>
</tr>
<tr>
<td>H. D. Miller</td>
<td>Generalization of a theorem of Marcinkiewicz</td>
<td>261</td>
</tr>
<tr>
<td>Joseph Baruch Muskat</td>
<td>Reciprocity and Jacobi sums</td>
<td>275</td>
</tr>
<tr>
<td>Stelios A. Negrepontis</td>
<td>On a theorem by Hoffman and Ramsay</td>
<td>281</td>
</tr>
<tr>
<td>Paul Adrian Nickel</td>
<td>A note on principal functions and multiply-valent canonical mappings</td>
<td>283</td>
</tr>
<tr>
<td>Robert Charles Thompson</td>
<td>On a class of matrix equations</td>
<td>289</td>
</tr>
<tr>
<td>David Morris Topping</td>
<td>Asymptoticity and semimodularity in projection lattices</td>
<td>317</td>
</tr>
<tr>
<td>James Ramsey Webb</td>
<td>A Hellinger integral representation for bounded linear functionals</td>
<td>327</td>
</tr>
<tr>
<td>Joel John Westman</td>
<td>Locally trivial (C^r) groupoids and their representations</td>
<td>339</td>
</tr>
<tr>
<td>Hung-Hsi Wu</td>
<td>Holonomy groups of indefinite metrics</td>
<td>351</td>
</tr>
</tbody>
</table>