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J. E. Mack AND D. G. JOHNSON

The question to which this study addresses itself is the
following: given a completely regular space 27, is the
Dedekind completion of C(.Z”) isomorphic to C(%2/) for some
space 27?7 Here, C(.Z”) denotes the ring of continuous real-
valued functions on .27 under pointwise order. Affirmative
answers were provided by Dilworth for the class of compact
spaces in 1950 and by Weinberg for the class of countably
paracompact and normal spaces in 1960. It remained an open
question whether there were any spaces for which a negative
answer held. In this paper, we provide a necessary and
sufficient condition that the Dedekind completion of C(Z),
for -7~ a realcompact space, be isomorphic to C(Z") for some
%/. Using this, we are able to provide an example of a space
& for which the Dedekind completion of C(Z°) is not
isomorphic to C(%/) for any space Z-.

Specifically, we define and characterize a class of spaces which we
call weak cb-spaces: those spaces .77 with the property that every
locally bounded, lower semicontinuous function on .27 is bounded above
by a continuous function. We then prove that for an arbitrary
(completely regular) space .77, the Dedekind completion of C(.2°) is
isomorphic to some C(%/) if and only if v.2” (the Hewitt realcompac-
tification of .2°) is a weak ch-space. The sufficiency of this condition
actually generalizes Weinberg’s result, as is shown by examples; the
necessity provides the negative result referred to above.

The preliminary investigation of the Dedekind completion is done
in Section 1, in the setting of an arbitrary @-algebra. In Section 2,
we study the connection between the lattice of normal upper semi-
continuous functions on a completely regular space .2 and the minimal
projective extension of .27, This leads to the observation, in Section
4, that for a weak cb-space 22 the Dedekind completion of C(2*) is
isomorphic to C(Z’), where 27 is the minimal projective extension of
2. Weak cb-spaces are studied in Section 3, and Section 4 contains
our main result.

It is a pleasure to acknowledge fruitful conversations and cor-
respondence on the subject of this paper with G. A. Jensen, J. E.
Kist, and E. C. Weinberg. Their contributions and encouragement
are sincerely appreciated.

The Dedekind completion of an arbitrary @-algebra. A @-
algebra is a real archimedean lattice-ordered algebra with identity
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element 1 that is a weak-order unit. A Aomomorphism of a @-algebra
is an algebra homomorphism that also preserves lattice operations.
The kernel of a homomorphism is an & -ideal: a ring ideal I which
satisfies the condition: if ael and |b| < |a|, then bel, If I is an
S7-ideal in A, then A/l is a lattice-ordered algebra and the natural
algebra homomorphism A — A/l is a homomorphism: for ac A, we
let I(a) denote the image of under this natural homomorphism. The
set of positive elements of A is denoted A4,.

@-algebras are studied in [7], where it is shown that for any
@Q-algebra A, the set _Z(A) of maximal <~-ideals of A is a compact
(Hausdorff) space under the hull-kernel topology. Moreover, A is
isomorphic to a @-algebra of extended real-valued functions on .Z (4)
(i.e., continuous functions on _# (A) into the two-point compactification
of the real line that are real-valued on dense subsets of _# (A4)). The
set of real ideals of A (those Me _#Z(A) with A/M the real field) is
denoted ZZ(A); A is a @-algebra of real-valued functions if N F(A) =
{0} (i.e., if <#Z(A) is dense in _#Z (A)).

Let A be a @-algebra. In [8], it is shown that A can be embedded
in a complete @-algebra. Precisely, there is a complete @-algebra A
and an isomorphism « of A onto a subalgebra a4 of A such that the
following conditions hold.

(i) aAis demse in A, in the sense that each ac A satisfies
sup{ab:be A and ab=<a} = a = inf{ab: bec A and ab = a}. It follows
from this that «a preserves all suprema and infima in A.

(ii) A is unique in the following sense: if 8 is an isomorphism
of A onto a dense subalgebra of a complete lattice-ordered algebra B,
then there is an isomorphism v of B onto A such that 76 = «a,

The complete @-algebra A (together with the mapping «) is called
the Dedekind completion of A,

Let A be a @-algebra and A its Dedekind completion. Thus, we
may view A as a dense subring of A which contains the identity
element 1 of A.

For any & -ideal I of A, set

I={becA:|b|=<a for some acl}.

It is readily verified that I is an .&-ideal of A and that if I(1) is a
strong order unit in A/I, then I(1) is a strong order unit in ff/f.
Hence, if M e .<#(A) and if M denotes any maximal <Z-ideal of A
containing M, then Me 9?(@). Conversely, if Me %(ﬁ), then
M Ae (A,

ProrosiTioN 1.1. If A is a @-algebra of real-valued functions,
then so is A,
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Proof. Let 0+ be A; we may suppose b > 0. Since A is dense
in A, there is an element 0 = ae A with 0 < a < b. Take M e FZ(A)
not containing @. If M is any maximal &~-ideal of A containing M,
then a¢ M, so be M. Thus, N.<Z(A) = {0}.

Thus, if A is an algebra of real-valued functions, then we may
view A as a subring of C(<#(A)). By Theorem 5.6 of [7], A=
C(%(A)) if and only if A is closed under inversion: i.e., whenever
aec A with a¢ M for each M e <#(A), we have 1ja ¢ A. Now A forms
an order-convex subset of the set of all extended real-valued functions
on _#(A) ([7], Lemma 3.7). Hence, in order to verify that A is
closed under inversion, it is enough to suppose @ = 0 and to show
that from a ¢ M for each M e .22(A) it follows that there is be A
with & = 1/a. In case A is closed under inversion, it suffices to exhibit
be A with 0 <6 =<a and b¢ M for each M e .ZZ(A).

LEemma 1.2, If A s closed wnder bounded inversion (i.e., if
1/f ¢ A whenever 1 £ feA),andif0=ace A and M e _# (A) are such
that a¢ M for each maximal F-ideal M of A with M 2 M, then
there is bec A with 0 £ b =< a and bg M,

Proof. By the hypotheses on a and M, the <~-ideal of A
generated by ¢ and M is all of A. Hence, there are cc A and de M
with 1 < ac + d. Since A is dense in A, we may choose ¢’e¢ A with
¢ =e¢ s01—d=ac. Since we may also choose ¢/ = 1, we have

1-dL=a
C

since A is closed under bounded inversion.
Set b = (1 — d)(1/¢")) V0. Then 0 <5 =< a, and

M) = [t~ (L] v o) = (L) v o),
since de M. Now M(1/¢') > 0, so bg M.

THEOREM 1.3. Let A be a (ﬁ-algebz"a of yeaf—valued Sfunctrons
that s closed under inversion. Then A = C(ZZ(A)) if and only if
A satisfies the following condition.

If S is a set of positive elemenis of A such that for each
M e B (A) there is an s€ S with s¢ M, then there is 0 < bec A such
that be M for each M e Z(A) and b < c whenever ¢ = s for each
sefl.
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Proof. By the remarks preceeding the lemma above, 4 = C(g?(ff))
if and only if whenever 0 < a e A satisfies a¢ M for each M e Z(4)
there is be A with 0 < b <o and b¢ M for each M e <#(4).

Suppose A satisfies the condition of the Theorem, and let 0 < ac A
satisfy a¢ M for each Me . Z(A). Let S={scA:0=<s=a}. By
1.2, for each M e <Z(A) there is an s S with s¢ M. By hypothesis,
there is 0 <be A such that b¢ M for each M e F(A) and b =c¢
whenever cc A and ¢ = s for each s S. Since ¢ = sup; S = infi{cec A:
¢ = a}, we have in particular that @ = b. Thus, A = C(FZ(A)).

Conversely, suppose A = C(<#Z(A)), and let S be a set of positive
elements of A such that for each M ¢ .#(A) there is se S with s¢ M,
We may suppose that S is bounded above and let o = sup;S. Then
0<acA and ag¢ M for each Me%(ﬁ), so there is be A with
0=b=a and b¢ M for each M ¢ <#(A). Clearly, if ccA and ¢ = s
for each se¢ S, then ¢ = a, whence ¢ = b. Thus, the condition of the
theorem is fulfilled.

2. The lattice of normal upper semicontinuous functions.
Throughout this paper, .2~ will denote a completely regular (Hausdorft)
space and C = C(2") the @-algebra of continuous real-valued functions
on #°. As usual, C* = C*(.2°) represents the set of bounded elements
of C and C denotes the Dedekind completion of C.

A real-valued function f on 27 is loecally bounded if it is bounded
on a neighborhood of each point of .2°. The upper and lower limit
functions of f will be denoted by f* and f,, respectively: for each
xeX

f*(x) = inf {sup,exf(¥): Z is a neighborhood of z} ,
and
Su(®) = sup {inf, e f(y): Z is neighborhood of x} .

Then the extended real-valued functions f* and f, are, respectively,
upper and lower semicontinuous; they are both real-valued if and only
if f is locally bounded. Since .2° is completely regular, f* is a
pointwise infimum of continuous functions if and only if f is bounded
above by a continuous function. An analogous statement holds for
f«. A real-valued function f is normal upper semicontinuous if f,
is real-valued and f = (f,)*; it is normal lower semicontinuous if f*
is real-valued and f = (f*),. The properties of f* and f, given in
[3, Section 3] hold for locally bounded functions as well. Also, the
properties of the star elements listed in §9 of [10] are valid in the
present context.

In [5], Gleason showed that in the category of compact spaces
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and continuous maps the projectives are the (compact) extremally
disconnected spaces and that for each compact space there is a unique
minimal projective extension.

Here we consider the category of completely regular spaces and
fitting maps (a map ¢ from 2 to .27 is fitting if it is continuous,
closed, and z~'(x) is compact for each xze.2”). In view of [6; 1.5],
the program outlined in §4 of [5] carries through for the category
of completely regular spaces and fitting maps. In particular, every
completely regular space 2~ has a minimal projective extension; i.e.,
an extremally disconnected space z7 and a tight fitting map 7 from
Z onto .#° (the mapping ¢ is tight if it maps no proper closed sub-
space of 27 onto #°). Moreover, 2 is essentially unique.

THEOREM 2.1. If .27 is a completely regular space, 7/ its minimal
projective extension and T is the tight fitting map of Z onto 27,
then f— (fo7), is an isomorphism of the lattice of mormal wupper
semicontinuous functions on 27 onto C(Z).

Proof. First, we shall prove the following lemmas.

(I) If f and g are mormal upper semicontinuous functions on
Z and (fo7), =< (go7),, then f = g.

(II) If FeC(%) and f(x) =sup {F(y): y € T\ (x)}, then f is normal
upper semicontinuous on 2°.

Proof of (I). Initially, we show that (fer7), < (go7), implies
(f = F N g)x =0. Suppose (f — f A g)y > 0. Since 7 is completely
regular, there exists AeC such that 0 <A =<f— f Ag. Then
hot +[(f Agotly =(for),. By [10, (9.6)], we have

[(fer) A (goD)]w = (FoT)s A (g0T)s,

whence 4ot + (for), A(got)y < (for),. Since 4 >0, this implies
that (fo7), £ (go7),. Now let us prove (I). Using [10; (9.8)], we
gt fANI=IfADIF=[f=(F—(FADIF=Fe— (F—F A9 = f« when
(foT)x = (g07),; hence f = (f)* = fAg=g.

Proof of (II). Since z7'(z) is compact for each we.Z”, f is a
real-valued function on 2°. Let x,€.2° and ¢ >0 be given, and
choose y, € t7'(%,) so that f(x,) = F(y,). To show that f is upper semi-
continuous, let & ={ye 2': F(y) < F(y,) +¢}. Then & is a neigh-
borhood of =*(x,). Since 7 is a closed mapping, there is a neighborhood
7" of @, such that () € &. Then A(x) < F(y,) + ¢ = fla,) - ¢
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for each xe &#°. Thus, f is u.s.c. To prove that f is normal, let
%, Y, and ¢ be given as above and let % be an open neighborhood of
2,. Then & ={yerv™(%): Fly) > F(y,) — ¢} is an open neighborhood
of ¥,. Since 7 is both closed and tight, ¥ = 2°\t[2/\ & ] is a nonempty
open subset of #°. Clearly, 77 C % and f(x) > F(y,) — e = f(x,) = ¢
on 7.

We now return to the proof of 2.1. For a normal upper semi-
continuous function f on 2, for is upper semicontinuous on 27. It
follows that (fo7), is normal lower semicontinuous on 2. Since Z
is extremally disconnected, (fo7),eC(2’) [3, p. 431]. Clearly, the
mapping f— (fo7), is order preserving. By (I), this mapping is
one-to-one and its inverse is order preserving. It remains to show
that every F'e (C(%) is the image of some normal upper semicontinuous
function on 2°. Let f be the function given by (II). Clearly,
SJor = F. If (for), # F, then there exists a positive number » such
that ¥ = {ye Z: (fo7)(y) > F(y) + r} is nonempty. Then ¥ =
Z\t|27\7/| is a nonempty open subset of 2. Let 4 e C(:2) vanish
on X\ ¥, while 0 <4 =< 1. Then hot + F = (fo7), =< for; hence
for each xze X and yev*(x) we have A(x) + F(y) = f(x). This is
impossible if A(x) > 0. This contradiction completes the proof of
Theorem 2.1.

We now consider the relation that the space 2 in Theorem 2.1
bears to <#(C). Observe that if Me._#(C), then M NCe _#(C).
Conversely, every element of _# (C) is contained in a maximal _&-
ideal of C. Since _# (C) and _# (C) both have the hull kernel topology,
the mapping M — M N C is continuous. Also, since C is dense in C
this mapping is tight. It follows from {9, 3.2] that _# (6’) is extremally
disconnected, Hence .7 (C) is the minimal projective extension of
#(C).

For e X, let M,={feC: f(x) =0}. Then the subspace {M,:
xe Z} of _#(C) is homeomorphic with .27, Let 2 be the set of
elements M in _#(C) such that M oM, for some xeX. Then
2 c (). As in 1.1, it follows that N{M: M € 2/} = {0}; hence 2
is dense in M(C). Therefore, 2/ is extremally disconnected and
Bz = _#(C) [4, 6M]. Since 2 is the preimage of {M,:ze 2, it
follows from |6, 1.5] that 27 is the minimal projective extension of
{M,: xe 2} and hence, also, of the space .27. Similarly, it is seen
that <#(C) is the minimal projective extension of <Z(C) = v.2°. Thus
we have proved the following:

THEOREM 2.2, C(%(CA’)) 18 tsomorphic with the latiice of normal
upper semicontinuous functions on V.72°.
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The question as to whether C(%Z’) and C(<#(C)) are isomorphic
can be stated as follows: If 27 is the minimal projective extension
of &7, must vz be the minimal projective extension of v2°? An
alternative form of this question is: Can every mnormal upper semi-
continuous function on 27 be extended to a mormal upper semi-
continuous function on v.2°? An affirmative answer can be given
when v.2° is locally compact or when .27 is a weak cb-space (see 3.7
below). However, the example given at the end of the next section
shows that the answer to this question is, in general, negative.

We conclude this section by commenting on a problem which is
related to our main question. If 27 is locally compact, then the
minimal projective extension 2z of .2 is locally compact ([4, 10.16]

r |5, 4.3]). Let Cx(C.) denote the lattice-ordered ring of continuous
functlons which have compact support (which vanish at mﬁmty,
respectively). Then CK and C.. are isomorphic to subrings of C*.
Since C* = C*(2’) [3] and since z and ' both preserve compactness
(Where 7 denotes the tlght fitting map from % onto .#7), it follows
that Cx = Cx(2) and C., = C(2).

3. Weak cb-spaces. Let 7 be a topological space. Then 7 is
a cb-space if each locally bounded function on .7 is bounded above by
a continuous function. See [11] for a study of cb-spaces. A space
7 is weak cb if each locally bounded, lower semicontinuous function
on .7  is bounded above by a continuous function, It follows that .7~
is a cb-space if and only if .9~ is both countably paracompact and
weak ¢b [11, Theorem 10].

A subset & of .9 is regular-open if & = intel & and a set &~
is regular-closed if % = clint.&# . Clearly, the interior of a closed
set is regular-open and the closure of an open set is regular-closed.
A zero-set is a set f~Y(0) for some feC(Z); the complement of a
zero-set is a cozero-set. A regular-open (cozero) cover is a cover
consisting of regular-open (resp., cozero) sets. A countable cover will
be termed imcreasing if it can be indexed so as to form an increasing
sequence of sets. A family F' of continuous functions is locally finite
(subordinate to a cover U) if the collection of cozero-sets associated
with F' is locally finite (resp., is a refinement of U). A family F is
a partition of unity if F C[C(F7)]; and Sisepf(®) = 1 for each x .7,

THEOREM 3.1. The following statements are equivalent for any
topological space 7.

(a) 7 is weak cb.

(b) Given a normal upper semicontinuous function h on 7,
there exists f ¢ C(97) such that f = h.

(¢c) Given a positive (nonvanishing) normal lower semicontinuous
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Sunction g on 7, there exists f eC(T") such that 0 < f(x) < g(x)
Jor each xec 7.

(d) For each countable increasing regular-open cover of 7,
there exists a locally finite partition of wnity subordinate to that
cover.

() For each countable increasing regular-open cover of 7,
there is a partition of unity subordinate to that cover.

(£) Each countable increasing regular-open cover of 7 has a
locally finite cozero refinement.

(g) FEach countable inereasing regular-open cover of 7~ has a
o-locally finite cozero refinement.

(h) Each countable increasing regular-open cover of 7 has a
countable cozero refinement.

(i) Given a decreasing sequence { Z,} of regular-closed sets with
empty intersection, there exists a sequence {Z,} of zero-sets with
empty intersection such that 2, > . F, for each n.

Moreover, if .~ is a mormal space, then the word “cozero” may
be deleted from (f) and “closed Gs-set” may be substituted for ‘“zero-
set” in (i).

Each normal and countably paracompact space is weak c¢b. Also,
every extremally disconnected space is weak ¢b [11, Theorem 11]. It
follows from (i) of 3.1 that each regular-closed subspace of a weak
cb-space is weak cb.

ProprosITION 3.2. Each cozero-subspace of a weak cb-space is weak
cb.

ProrosITION 3.3. The product of a weak cb-space and a locally
compact paracompact space is weak cb.

The proofs of 3.1, 3.2, and 3.3 are similar to the proofs given in
[11] for the corresponding theorems for cb-spaces.

ExaMPLE. The local compactness requirement in 3.3 cannot be
suppressed. To show this, we use Michael’s example [12]. Let 2
be the reals with the usual topology refined so as to make the irra-
tionals discrete, and let 2/ be the space of irrationals. Then 27 X 2/
is not a weak cb-space, even though it is the product of a paracompact
space and a metric space. To show that 27 X 27 is not weak cb, let
{7} be a sequence of mutually disjoint, dense subsets of 2. For
each n, define Z(x, ) = n for v e o7, and Az, y) = min {|x — y |, n},
x £y, on ¥, X Z; let & vanish elsewhere, Then % is a locally
bounded, lower semicontinuous function which is not bounded above
by any continuous function.
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This space can also be used to show that a closed subspace of a
weak cb-space need not be weak ¢b. Let I', be the upper half-plane
(including the horizontal axis) with the usual topology refined by
allowing, for irrational x, the set

{(x, O} U {(w, v): (w — @) + (v — ) <77

to be a neighborhood of (x,0) for each » > 0. Then 2’ = {(x, 0):
2 € R} is homeomorphic with the space .2~ above. Now I, X 2 (where
Z/ is, as above, the metric space of irrationals) is weak cb while
&2’ x 2/ is a closed subspace that is not weak ¢b.

ProrosiTioN 3.4. If 77 is a completely regular weak cb-space,
then v.2” is weak cb.

Proof. Let 2 be a locally bounded, lower semicontinuous function
on v.2°, Then 4|.2 is locally bounded and lower semicontinuous on
&°. Thus, there is feC(2°) such that f=#h|2". If f* denotes
the element of C(v.#°) which extends f, then f* — 4 is upper semi-
continuous on v.2° and is nonnegative on the dense subspace .77,

Hence, f* = 4.

ProrosiTioN 8.5. The product of any collection of separable
complete metric spaces is a weak cb-space.

Proof. Let & be any such product and let ¥ denote a X-product
of the same spaces. In [2], it is proved that 2 is normal and countably
paracompact and that & = v3¥. Thus, & is a weak cb-space.

PROPOSITION 3.6. Let 27 be a completely regular space such that
v is locally compact. Then 27 is weak ¢b if and only if v.27 is
weak ¢b.

This proposition is a direct consequence of the following:

LEMMA 3.7. If h is a positive, locally bounded function on X,
then the (extended real-valued) fumction g on v.2° defined by

g = ptwise sup {f*: f € C(2), f = h}

is real-valued and bounded on each compact subset of v.ZZ. Moreover,
g 1s an extension of h..

Proof. Suppose that g is either infinite or unbounded on the
compact set .%". For each positive integer n, set #, = {peyv.z:
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g(p) = n} and choose z, e "\ &,. Since g is lower semicontinuous,
. is a closed set. Thus there exists f, € C(=#) such that f2(x,) = n
while f vanishes on .&,. The local boundedness of % implies that
{#\F:n=1,2, ...} is locally finite on .22, Hence f = VY ,f, exists
in C(#°). Now f = f, implies that f* = f. In particular f*(z,) =
fi(x,) = n» for each positive integer n. This is impossible, since f* is
finite and bounded on the compact set .o

The fact that %, is a pointwise supremum of continuous functions
implies that ¢ is an extension of /..

COROLLARY 3.8. Fach (completely regular) pseudocompact space
is weak cb,

Proof. If 27 is pseudocompact, then v.27 is compact [4, 8A.4];
hence 7~ is weak ¢b, according to 3.6.

If <# is an uncountable product of real lines, then &7 is a weak
ch-space that is not normal. However, there is a normal and countably
paracompact space Y such that C(Y) is isomorphic to C(&?). On the
other hand, the spaces 1" in [4, 3k], £ in [1, p. 116, Ex. 4], and
S x S, where S is Sorgenfrey’s example [15], are weak cbo-spaces for
which C is not isomorphic to the ring of continuous functions on any
normal and countably paracompact space [4, 8.18 and 8A]. Proofs
that these spaces are weak ¢b can be based on Theorem 3.1.

A weak cb-space may fail to be countably paracompact (e.g., the
Tychonoff plank); the example below shows that a countably para-
compact space need not be weak c¢b, even if it is locally compact. It
is not known whether every normal space must be weak ¢b.

ExaMPLE. Let .7~ be a completely regular space and let . and
<% be closed subsets of .~ such that .o N <% is compact. In
9~ x N, identify & x {2n — 1} with &% x {2rn} and <& x {2n} with
F x {2n + 1}, (The construction used here was suggested by the
referee of [11].) Clearly, the resulting topological space .2° inherits
any of the following properties that .2~ may possess: normality,
o-compactness, realcompactness, paracompactness, and countable para-
compactness, Moreover, if & and <# are disjoint, then local
compactness of .7~ will imply local compactness of 2°. If 97 is
countably paracompact but nonnormal and if &7 and <& are disjoint
closed sets that are not contained in disjoint open sets, then .77 is
not a weak cb-space,

In particular, let 27~ and %7 * be the spaces of ordinals less then
and less than or equal to, respectively, the first uncountable ordinal w,,
and set 7 ={(0,7)e ¥ X ¥ *.0=t}. This space is locally compact
and countably compact, but not normal: the diagonal & and the upper
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edge <# are disjoint closed sets which cannot be separated by open sets.
If we set w=(w, ), then 8.9 =7 * =9 U{w} (& % * X Z*).
Next, let 22 and 2°* be the spaces obtained from .77 and 7% by
identifying images of %7 and <#, and those of &7 U {w} and <Z U {w},
respectively, as in the above construction. Then 27 is locally compact
and countably paracompact but not weak ¢b, while 2°* is ¢-compact
(hence realcompact and weak ¢b). Note that 27* is not locally compact.
Since each continuous function on .7~ is constant on a deleted neigh-
borhood of w, it follows that 2= is C-embedded in 2%, whence
F* =v.7°., Thus, &2 is a locally compact nonweak cb-space such
that yv.2° is weak cb.

4. The completion of C(#).

ProposiTION 4.1, If 2~ is a completely regular, weak cb-space
and 27 is its minimal projective extension, then the Dedekind comple-
tion of C(.2°) is isomorphic to C(%).

Proof. On a weak cb-space, each normal upper semicontinuous
function can be identified with an element of C (Theorem 3.1), and
conversely (cf. [3, p. 432]). Therefore, by Theorem 2.1, there exists
a lattice isomorphism from C onto a C(2’). Moreover, the restriction
of this mapping to C preserves the ring operations. Since C is dense
in C, it follows that C and C(2’) are isomorphic as @-algebras.

THEOREM 4.2, Let 2 be a realcompact (completely regular)
space. The Dedekind completion of C(Z) is isomorphic to an algebra
C(z) for some space 27 if and only if 27 is a weak cb-space.

Proof. The Dedekind completion C of C(#) is isomorphic to some
C(%) if and only if C= C(%(C’)). In view of 4.1, it suffices to show
that € = C(%(C’)) implies that 27 is weak ¢b. Since 2 is real-
compact, we may identify 2= with <Z(C) and apply Theorem 1.3,

Suppose that C = C(%(C)) and that ¢ is a normal lower semi-con-
tinuous function with g(x) >0 for each xc X. Let S={seC:0<s=g}.
Then ¢ = ptwise supS. Hence, for each x¢ X, there is an s, ¢S
with s,(x) > 0. By 1.3, there is an feC with 0 < f(x) for each
xeX and f <k for each AeC with 2 = s for each seS. But g* =
ptwise inf {AeC:h = s for each seS}; so f =< g*, whence f <g¢g. By
3.1, % is a weak cb-space,

Thus, C = C(2) for some 2 if and only if v.2° is weak cb.
Moreover, v.2~ is weak cb if 27 is, but not conversely.

ExAMPLE. The space 2~ X %/, considered in the example follow-
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ing 3.3, is a realcompact space which is not weak cb.

Finally, we consider the relation that this paper bears to [3], [14]
and [16]. Theorem 2.1 represents a generalization of Dilworth’s
characterization of the lattice of normal upper semicontinuous functions
on a compact space ([3]). In [16], Weinberg proves that if 2° is
normal and countably paracompact, then C is isomorphic with C(%)
for some space 2. Since a normal and countably paracompact space
is weak ¢b, the examples given following 3.8 show that 4.1 generalizes
Weinberg’s result,

The characterization of the lattice of normal upper semicontinuous
functions could have been developed along the lines of [14]. To see
this, let C,(22°) be the set of locally bhounded functions f on .2 for
which {xe .27 (f* — f.)(x) > r} is nowhere dense for every = > 0,
and let N be the subset of C,(#) consisting of those f for which
(I1f1%)« = 0. Then C/(2°)/N is a @P-algebra which is isomorphic with
the lattice of normal upper semicontinuous functions on Z°.
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