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The present paper deals with the convergence of quasi-
Hermite-Fejér interpolation series {S,(z, f)} satisfying the
conditions
8.1, ) = fQ), Salns, f) = (@) L=v =0, Su(— 1, ) = f(—1)
and

S;(“"%wf):ﬁnu 1§U§TL,
where 8,,’s are arbitrary numbers; 2., =1, @4,n+1 = — 1 and

{x,,} are the zeros of orthogonal polynomial system {p.(x)}

belonging to the weight function (1 —2?)?|z|?, 0< p = %,

0 < q¢ < 1 (which actually vanishes at a point in the interval
[—1, +1]). Further it has been proved that quasi-conjugate
pointsystem {X,,} (similar to Fejér conjugate pointsystem)
belonging to the fundamental pointsystem {x,.} lie everywhere
thickly in the interval [— 1, + 1].

Let there be given a point system

1:xn0>xnl>xw2> "'>xnn>xnm+1:'—l

(L.1) (=12 ")

on the real axis and arbitrary real numbers

ynOy ynly yn‘zy Tty ynny yn;n«f—l 3

(1'2) % * *
Yoty Ynzy * s Yuu »

Then setting

(1.3) D,(1) = Co@ — D) (@ — 2pg) + e+ (@ — 3,) (¢, # 0)
and
(1.4) Lo() = (%) W=1,2 -, n),

0(%,,) (@ — ,.)

the quasi-Hermite-Fejér interpolation polynomial S,(x) [6] is given by
2+1 n
(1.5) Sa(@) = 2 Yntn(@) + 2 Y500 ()

where 7,.(¢) and p,,(x) are called the fundamental polynomials of the
1st and the second kind of quasi-Hermite-Fejér interpolation.
For the fundamental polynomials of the 1st kind we have
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1+ | o)

/rno(“’) - 2 a)n(l)2 y
: 1—=z @, (x)*
1.6 () = . " ,
( ) /r'm ,1( ) 2 wﬂ('_“ 1)2
.. (2) = —-1.:-19_ v, (@), (2)* =12 --.-n)
1 — Ty
where
(1-7) ?),,L,,(.',U) =1+ Cm('q; - C(?n.,) s
(1.8) o = 2% oz, =12 - n
1— xfw w;(a;n.z)
and those of second kind
- 1— 2 . 2 —
(1-9) ‘Onu(ﬂﬁ) - T—z“ (Z(/ - an)an(x) (D - ly 27 Tty ’ﬂ) .

“ny

The polynomials S,(x) are the unique polynomials of degree
= 2n + 1 which satisfy the requirements:

Sn(ﬁcw):ym V:0,1’2’-..yn_{_1’

(1.10) |
S:L(xnn):y;u v:l,Z,-'-,%.

From the unicity of the polynomials S,(x) it follows that for each
polynomial II(x) of degree =< 2n

n+1 n
(1.11) (@) = 5 A (@0)70(%) + 35 1T (%2,) 00 (%)
holds. For the special case II(x) = 1, we have
n+1
(1.12) Zrn»(w) =1.
2. Let f(x) be continuous in —1 =2 =1 and f(z,,) its values
at the points «,,(v=0,1,2,... n+1). Further let y (v=1,2,---n)

be arbitrary real numbers then the polynomials S, (x) in (1.5) written
as

n+1 n
(2.1) Su@, £) = 2 f@u)7(®) + 2500 (2)
are called the generalised quasi-Hermite-Fejér interpolation polynomials.

For y¥ = 0, they are called quasi-step parabolas. In this case for
w,(x) = P,(x), where P,(x) stands for the nth Legendre polynomial,



THE CONVERGENCE OF QUASI-HERMITE-FEJER INTERPOLATION 247

the interpolatory polynomials

Ry @) = f1) X S P+ () L —L P,y

n 1 — a2 P,(x) 2
) T ( Plw,,) (0 — ) )

(2.2)

have been obtained by E. Egervary and P, Turan [2]. They have
shown that if f(x) is a function continuous in the closed interval
[— 1, 1], then the polynomials in (2.2) converge uniformly to f(z) in
[—1,1]. The convergence of the polynomials S,(x,f) in (2.1)
constructed on the roots of P,(x) has been investigated by P. Szdsz
[6]. He has shown that assuming f(x) to be continuous and |y} |< 4,
where 4 is a constant independent of » and v the series S, (z, f) in (2.1)
converges uniformly to f(x) in [— 1, 1].

In this paper we answer the question of P. Turan for the quasi-
Hermite-Fejér interpolation polynomials S,(x, f) which Bal4dzs has
answered [1] in the case of Hermite-Fejér interpolation polynomials.

Does there exist in [—1,1] an orthogonal polynomial system
{g.(x)} whose weight function vanishes some where in this interval
while the series {S,(x, f)} in (2.1) constructed on the roots of {g,(x)}
converges uniformly to the continuous function f(z) in the closed
interval [— 1, 1] provided {y;} are bounded?

The answer to this question is explained in our Theorem 1.

3. Similar to the normal and strongly normal point system due
to L. Fejér [3, 4], the notion of quasi-normal and strongly quasi-normal
point systems have been defined by Szasz [6]. Thus an infinite
sequence of point system,

(3-1) xnly xn‘za cey xnm (/n — 1) 27 ° ')

lying in — 1 < @ < 1, is called strongly quasi-normal if by the nota-
tion of (1.3) and (1.7)

3.2) 1+cn,(x—xw)2_~p>0, —-1=2x=1
=12 :-,mn=12 -..)

where o is a positive number independent of », vy and =.
If X,, indicates a zero of v,,(x) in (1.7), then

(3.3) Xnv:xny“{" 1 , 2)21,2,"',71.
Coav

These points will be called guasi-conjugate points similar to the
conjugate points due to L. Fejér [4]. The quasi-conjugate points lie
outside [— 1, 1] when the fundamental point system is quasi-strongly
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normal, In this connection we shall answer another question of P.
Turan for the case of quasi-Hermite-Fejér interpolation polynomials
which Baldzs [1] has answered for the Hermite-Fejér interpolation
polynomials,

Is it possible to assume in the interval [— 1,1] a fundamental
point system whose quasi-conjugate points (3.3) lie thickly in [— 1, 1]
and the interpolation series {S,(, f)} belonging to this fundamental
point-system converges uniformly to the continuous function f(z) in
[— 1, 1] provided the numbers {y},} are bounded.

In Theorem II we answer this in affirmative.

4. K. V Lascenov [5] has defined orthogonal polynomials
pin’(I)(x) - anxn -+ an~2x”_2 4. PR £ 4% #* Oy D > — 1, q > — 1

over the interval [— 1,1] with respect to the weight function
(L — 2®?| z | which are constant multiples of

P2 — 1), n = 2m

4.1 20 () = {
4.1 D0 () aPE (20 — 1), n = 2m + 1

P~8(t) being the classical Jacobi polynomial of degree n with para-

meters a and S satisfying the differential eguation

42 -t +B—~a—(@+B+29ty +nn+a+B+1y=0.
The position of the roots of (4.1) is given by

(4'3) _'1<x'nm+l<xnm+2<“' <xnn<0<xn1<”' <xnm<1
for m = 2m

and

(4-4) —_1<xnm+2<xnm+3< e <xnn<0:xnm+1<'%‘nl<"' <mnm<1
for m =2m + 1.

Since the roots are symmetrical, we have
(4'5> Ly + Lpppti—y = Oy Y = 19 2: °cc [n/2] .

We shall prove the following:

THEOREM 1. The quasi-Hermite-Fejér interpolation series
{S.(z, )}, constructed on the point system

(4-5) 1 - x%O) x'nl’ tet xnm——ly xnvm mnn+1 - - 1 n = 1) 2) ot

1 From now onward we shall write p,(«) to mean p?9(x).
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where x,,(v=1,2, -+, n) are the zeros of the orthogonal polynomial
system belonging to the weight function®
T—aplel  0<p=—,0<q<1,
converges uniformly to the continuous function f(x) in [— 1, 1] when
lyk | = en’, 1>6/2> 7 =0 and § = min (2p, g).
THEOREM 2. The quasi-conjugate points (3.3)

1

Coy

(4'6) mnu:xnu+ ”:1,2""7’[,;71,:1’2’...,

belonging to the fundamental point system (4.5) lie thickly in the
interval [— 1, 1],

5. Preliminaries. We shall use some well-known faects about
Jacobi polynomials. We have

«, _(m+«a

(.1 o) = (" 1)

a, s — m @, — m m + B
5.2) Peo(—1) = (= ) Peo() = (— 17"+ F)
(5.3) PiePt) = (— D"PEo(— 1) .
Further we have for —1 <2 <1
(5.4) PP @) = 0m™"), a,8> —1
(5.5)
PtB () — 2 (m + a + V)PP (x) — (m + 1) PR ()

" @m +a+ B+ 2) (1 — 2)
and
d (@,B) . 1 (@+1,8+1)

(5.6) —&?Pm t) = —2—(m +a+ B8+ DHPYE®) .

Further let ¢, = cos 8, be the root of the polynomial
PlB(t) = P/**(cos 6)
then for —12=a <1/2, —1/2 < B £1/2,

2v~17€ 0, < 2y -
2m + 1 2m + 1

A

.7 w=1,2 -, m).

2 (1—-2)pjzlefor 0<p= %, 0 < ¢ < 1, actually vanishes at z = 0.
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For 0 < 0, < /2 we have
(5.8) P%P(cos 0,) = ey Pm*

where ¢, is positive numerical constant.

6. In this section we shall obtain certain estimations for the
polynomial p,(x).
We shall first prove:

LEMMA 6.1, For —1 =2 =1 we have

(6.1) (1 — aM)pi(x) = 0(n™) .
Proof of this lemma follows at once from (4.1) using (5.4).

LEvMmMA 6.2, For the roots ,, ¥ =1,2, -+, [-'g—], n=12)---

of the polynomial p.(x), we have

9

y?
dn?

(6‘2) x?/w(l - x;lw) g

Proof. Let 2z, — 1 —coséd,, then (1 — x2)—=sin’6,/2, and
xi, = cos’4,,/2. Hence

(1l —2,) = 4 cosz—g—”l—sin2 O, i sin*4,, .
4 2 2 4
But from (5.7) we have
Y+ L
0,, = ? T > ;z
n I
+ 2
which gives
|sing,,| > I sin 27 ’ P
2n n
Therefore
1 .. V*
22, (L — «2,) = = sin®d,, .
( ) 4 - 4n?

7. We shall need the following lemmas for the estimation of the
fundamental polynomials of the first kind.
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LemMA 7.1, Let x,, be a root of p,(x), then

. G . _q
O ey T e PV z]

except when n =2m -+ 1, and v =m + 1. In this case we have

P A €
W e

Proof. It follows from (4.1) by differentiating with respect to z,
for n = 2m

(7.1) —n,-’L = 4nu "‘\L‘ .
Do(,,) __Ol__P”(np,(q-—l/Q))(t) U,
dt t=20% 1

By the substitution ¢ = 22* — 1, @ = p, 8 =g—1/2, and # = m, the
differential equation (4.2) gives

&
dt*

d
-~———P,(,f’(q—‘l/2” t
(7.2) dt @) .

t=2x,nu—1
1

T (1)

Py&bp,!q-—lﬂ))(t)\

[—2(p+ 1)+ @p+q+3)1—ai)].

Substituting (7.2) in (7.1) we get

73 - [ | gy

If however, n = 2m + 1 and v = m 4 1, then it follows on account
of (4.1) and (4.4) that

__d_z__' P;wpwq—‘rll‘z))(t)

(7.4 Daln) — g, A +- 3.
D) _i P as1i(g) Lo
dt " ag?
t—2x”v—1

But from (4.2) by putting t =22~ 1, a=1p, 8=q -+ 1/2 and
n = m we get
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d2
.

d
v P;p,(q%—llm) t
a5 @ @) e

S S e
= gy A D @ g5 A ah)]

Py(np,(qﬁ»l/?))(t)

substituting (7.5) in (7.4) we get

7.6 Pi@w) 2 [y gy T —l].
(7.6) () m¢@+)1—ﬂ 2

ny

In case n =2m + 1 and y=m + 1, «,, = 0 on account of (4.4).
But the polynomial p,(x) is an odd function of x, therefore 9’/ (x,,) = 0
and in this case

7.7 P
(@) D(,0)

8. Estimation of the fundamental polynomials of the first
kind.

LEMMA 8.1, For —1 =2 =1, we have
n+l
(8.1) VZ:B| ro@) ] =0Q1).

Proof. From (1.7), (1.8) and Lemma 7.1 we get for 1 S v =n

8.2 rle) =1 = 2 e~ L )

ny

From the representation (4.4) of «,’s it is clear that for »n =
2m + 1, and v=m + 1, 2,,,, = 0. Whence from Lemma 7.1 (ii) and
(1.7) it follows that

(8'3) /U'/Lm+l(x) = 1 .
For =0 it follows from (8.2) on account of 0 < ¢ <1 and
0<p= % that

2
_ 2P —qg=1—-—¢>0.

(8.4) 0,,(0) =1 + o

This inequality is also applicable on account of (8.3) when n =
2m + 1, and v=m + 1. For —1 <=0 and 2, =0 we have on
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account of v,,(x,,) =1 and (8.4)
(8.5) V(@) Z21—qg>0 0<g<1.

Since v,.(x) is a linear function in the interval 0 <« < 1 it follows
from v,,(x,,) =1 and @,, = 0 that

(8.6) V(@) =1—qg>0 since 0 <g<1.

We shall now prove the inequality (8.1) in the interval
— 1< ®=0. Inthis interval r,,(x) = 0 for x,, < 0. Also r,(x) and
Poonsi(®) are positive Hence from (1.12)

Zlm(@f = 2 [ra(@) ]+ Z JTa(@) ]

’ILV‘

8.7) = 2 (@) + Z Im(x)l

Tpy=0

=1-3 1-m(x) + 2 J (@)

Tpy>

=1l+22 lm(%)l

Typ>

On account of (8.2), (1.6) and (1.4) we obtain

N 11— 2 { I, __q_} _
x;?,,—‘;ol Tnu(a/) I - xnzy‘>0 1 . x?,,‘“, .'X;m, “——'—1 — x?w 2 (x mnu)
p.(%)
PE(@,) (& — @,.)°
(8.8) - 1—a Da(®)
= Tpy>0 1-— x%w p;f(xn») (90 - xnﬂ)g
1 — 2%)pi(x)
+2p (
xn"Z;D | xnv I (1 - xn») p (wi) (x
. 2 2
+(2p+q) 1-v 1. p"(x)

Tny>0 (1 - xn») lxn»1 pf(xnv) l T — Xy | )

Since —1 <& =0and 0<%, <1, therefore |z —x,.|>|z,|
Hence from (8.8),

1— o° 1 B
S |7l S0+ 2p 4 q) 5 =0 L Ta@)
who> Tpy>0 1 - xnu 903“, pn (xnv)

+2p| g 5t e o

8.9)

Owing to (4.1) we have

4z, P22 (20— 1) for n = 2m

8.10)  pl(z.) =
@100 Phe) = 1y proswnmi oy 1) for m = 2m 1.

Thus for n = 2m, using (8.9) and (8.10); for n odd using (8.8),
(8.10) and 2* < (x — z,,)%, we have
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3 >0| 7/.7“(%) I

2 ( —1/2)) _ 2
e +aptg s L ONE T ES )]
| e = P |

t= 2.1': y—1
|
(8.11) _ | for n = 2m
Tl raprgy L) [PrOEE — DF

‘( 16 >0 (1 — @3,)%0, [ a P <qT1/2>)(t)]
l dt t=222, ~1
|

| for n =2m + 1.

Now Lemmas 6.1 and 6.2, with (5.8) give

m 4 yq+2 _l
[y,Z:lO(n 2p+4 + ZO(’)’L M W
@12 X r@i={ . . o :f a
[S007) 5 2o+ S0 55+ 2]

for n=2m +1

and since 0 < p < %, 0<g<1l, (8.12) gives

(8.13) Z laﬂ @) =0@1) .

Tyy>

By a similar reasoning we can obtain for the interval 0 < a < 1
and x,, = 0, that

(8.14) 2 @)= 0Q) .

Tpy<

Hence from (8.13) and (8.14) we get the lemma for 1 < v < =, and
—1<2<1 Foryv=0and n -+ 1 it is easy to see from (1.6) with
®,(xy = p,(x) and (5.4) that

7@ =O0@1) and  r,,.(@) =0@1).

At © = + 1, the lemma is trivial.

9. Estimation of the fundamental polynomials of the second
kind. In this section we shall estimate the quantity

Slon@)] .
We shall prove the following:

LEMmmA 9.1, For —1=ac=land n=1,2 ... we have
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@) Xeu(@| = 0@, where = min(2p,q) >0.
v=1
Proof. From (1.9) and (1.4) with w,(x) = p,(x)

0.9 S0u0) = @ - w02 P ()

1 xzw p:’bz(xnv) (x - xny)2 '

Now setting

(9.3) lem(%)l = 2 [Oow(@) | + Z | On(@) |

y=0

and considering the interval — 1 < x =< 0, we have for z,,’s > 0

o — @, | > |2,
Thus from (9.2) and (8.10)

[1 1 A—a) [P (20 — 1P

T T W= [ ppim|
dr ™ t=242 —1

! for n=2m
1 5, 1 (1—a) [Ppese (s — 1P

16 #n>0 2,0 (1 — a2)? [Cfli P@a+y )(t):l

t= ‘>x —-1
for n =2m + 1
which on account of (5.8) and the Lemmas 6.1 and 6.2, gives,

v 2p+3 q+2

ZO

g (/n/ nq—r%}
for n = 2m

pae

0.4 3 jen@)| = nt
Ty > . + ZO(%

2p+4

Z O(n

”‘:T
for n=2m+1

Since 0 < p = % and 0 < g < 1, it follows from (9.4) that

9.5) 5} [0ul®) | = O) ~1<z=0
where 6 = min (2p, q) > 0.
Again let 2,, <0, —1 <2 =<0 and

9.6) > [ow@) = 2 [ou@)[+ 2 low@[=2"+2".

Tpyv=0 Tpy= 1o Tpv=
1=y, | Sn /2 la:—-:c’,wl>'n.""5/2
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On account of (9.2) the following holds in the interval — 1 < x < 0.
01 Fpu@)] < any LTI

- 1 — a2)p(x,.) (@ — ©,.)°

n ., (L— ) Da()
s .
T - = " e @ -
= Ty <
=Ti—q ° @ =Ty

From (9.6) we have

N/ §/2 s (1 _ /UE) pn(x)
2" (@) | = 03 T o) o)

But owing to (8.10), we have

(o, 1 (1Y) Do)
| 16 wh, (1 —a5,) [ d Pypa- 1/2>>]
| dt =222 —1
= oula)| éJ for n = 2m
o (1= oY) Pa()
16 (1 — a3,)? [_g_P;p,(q-y—um)(t)]Z )
t t=207 —1
for n =2m + 1

which by (5.8), and Lemmas 6.1 and 6.2 gives
(9.8) 27| o, ()]
%512[20(n—1)_n_ pirs L io( _1)_2 ))Hz:l

Y2 plptt = V2 pat3
for n = 2m

sz ( ®) Pi(a) N
n¥ [‘_—(0)* + Som & 2+ Somy 22

nQ+5

IA

for n =2m + 1.
For n = 2m + 1 we obtain by using (6.2)

A —2)pu(@) _ (1 — 2t Pa. i O™
0:(0) [P (m La+1 )2
2
m

From this as well as from (9.8) we see that in the interval
—1<2=0

(9.9) 3 on(@)] = O~ .
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Similarly it follows in the interval 0 < « < 1 that

311 0ul@) | = 0= .
At ¢ = & 1, the lemma obviously holds.

10. The proof of the Theorem 1. We now apply the usual
argument. We have S,(xz, f) our interpolating polynomial and II(x)
an arbitrary polynomial of degree 2n at most. Then there holds

(10.1) Su(@, f) — f@) = S,(x, f — 1) + (H(w) — fl2)) .
From (2.1) and (1.11) we get
(10.2)
Su(#, f) = f(@) = 3 @) = @)} @) + 3 W5 — T@.)0m @)
Now by Weistrass approximation theorem for —1 <2 =<1
(10.3) () — f(@) = ol) .
Now

S { (@) — H(@,)}r (@)
(10.4) =

= max [ f@) — 4@ 5 7@ = o)

owing to (10.3) and Lemma 8.1
If M = max. II'(x) then in the interval —1 =<2 <1

(10.5) |3 (b — 7 (@) 0u(@) | = (en" + M) 3] 0,uf@)| = o(1)

in consequence of Lemma 9.1 and |B,,| =< cn”, where 0 <7 < % <1

and 0 = (2p,q) > 0.
Thus (10.2), (10.8), (10.4) and (10.5) complete the proof of our
Theorem 1.

11. Proof of Theorem 2. The conjugate points belonging to
our point-system owing to (4.6), (1.8) and Lemma 7.1 (i) are given by

Xn” = xnv + x"“’
2{ P g}
(11.1) 1—aj, 2
:xny[2p+(1—2p—Q)(1—xiv)] v, # 0.
2p — (2p + @) (L — a32,)
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If however %,, = 0 i.e., in the case when n»=2m 4+ 1 and v =
m + 1, then it follows from (4.6), (1.8) and Lemma 7.1(ii) that

‘Xver{—l)m-H = o .

Now we shall make use of the following statements in the proof
of Theorem 2.

Let (a, B) be a fixed part of the interval [— 1, 1] but as small as
we please. Consider the fundamental point system (4.3) or (4.4). We
prove that for any value of » sufficiently large at least one member
of the series of triangular matrix of the fundamental point-system lies

within the interval («, 58). Let
Ofor ~1=2<a
fy=H(x—a)y(f—x) fora=z=ac =8
0 for B<a=1,

Then f(x) is apparently continuous in the interval — 1 =2 < 1. Let
us assume that it is not so then there is a series n, < 5, < My <My v« -+
such that no member of the point group belonging to these indices
Loivty Tuivzy ** %y Lasns (0= 1,2, --+) lie in the interval («, 8). Therefore
in the interval — 1 =« =1 lim,_.S,,(f, ) = 0 holds. On the other-
hand according to Theorem 1 in place of v = « + B/2

. a+BY_[(a—BY
lim S,(f, @) = f(T) — <T) =0
contradicts the foregoing inference, i.e., point-system (4.3) or (4.4) lie
thickly in the interval — 1 <o < 1. It can also be proved that the
conjugate point-system belonging to (4.3) or (4.4) thickly cover the
interval — 1 =2 = 1.

The conjugate points belonging to points z,, %= 0 can according
to (11.1) be obtained from the function

1—q—(1~2p—q)x2]
(2p + @x* — ¢
in the places z,,. In the interval —1 =2 =1, ¢'(x) < 0. Therefore

the function g(z) in the interval (— v'¢/2p 4 ¢, 1/q/2p + q) which on

account of 0 < »p < —;- and 0 < ¢ <1 forms a part interval of [— 1, 1]

g(x) = x[

diminishes continuously, is continuous and its value includes all values
from + o to — oo, There must also be two points a, and b, different
from each other within the interval [— V/¢/2p + q, 17¢/2p + ¢] so
that g¢g(e,) = —1 and g¢g(b) = 1. Since g'(x) <0 it follows that
—1=g() =1 holds in the interval b, <z =< a, Let a, and b, be
again two different real values for which — 1 < a, < b, < 1 holds.
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Then there must obviously lie in the interval (a, b)) two different
points ¢, and b, such that g(a,) = a, and g(b,) = b,. Since we have already
proved that at least one point of each series of the point-system (4.3) or
(4.4) must belong to the index »n within the interval (a,, b;). There-
fore it follows that the conjugate points belonging to the fundamental
points lying within the interval (a, 8) must owing to monotony of
g(z) from this index onwards lie within the interval (a., b,), @, and b,
can lie as near to each other as we please. Thus Theorem 2 is proved.
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