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Let K be a field of characteristic p, p zero or prime, and
let L be the algebraic closure of K. Let M, (K) denote the
matrix algebra of n-square matrices with elements in K. The
commutator of A, Bc M,(K) is defined by (4, B) = AB — BA.
It is the object of this paper to examine the following two
questions,

I. Given exactly one of the three matrices A, B, C € M,(K),
to determine necessary and sufficient conditions in order that
the other two matrices will exist in M,(K) such that

(1) C=(A,B), (C,A)=0,C=0.

II. Given exactly one of the three matrices 4,B,C e M(K),
to determine necessary and sufficient conditions in order that
the other two matrices will exist in M,(K) such that

(2) C=(A,B),(C,A)=0,(C,B)=0,C+0.

We shall obtain complete solutions to all these problems,
except that, in Question I when C is the given matrix and
0 < p = n, we obtain only a partial solution. As a consequence
of our results, we are able to find conditions that are
sufficient, and sometimes necessary and sufficient, in order

that solutions exist in M, (K) for certain complicated families
of commutator equations related to (1) or (2).

Our proofs use only the theory of matrix similarity. Certain of
our results (Theorems 1, 3, 4) are close to known results in the
theory of Lie algebras. Nevertheless, we present full proofs.

Question II has already been examined by McCoy [4] when K is
the complex number field. In our discussion of Question II, we obtain

results that partially duplicate and partially complement McCoy’s
results.

2. Additional notation. Let 0,; denote an a x 8 matrix of
zeros, let I, denote the a-square identity matrix. Frequently we
simply write 0 and I. We let » be an indeterminate and if m(\) =
My + MN + + oo + m,_ N+ N, we let C{m(\)) be the companion
matrix of m(\). It is the matrix 2.2 on p. 252 of [5] when r >1,
and C(m(\)) = (— m,) when » = 1, For the informed reader we take
our companion matrices to have the stripe of one’s on the diagonal
just above the main diagonal. Let 7, be a linear combination of
powers of C(A\%). Then 7, is constant on each diagonal parallel to
(or equal to) the main diagonal, and T, has only zeros strictly below
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the main diagonal. We use 7T, to define « x B8 stripe matriz M.
For a < B, M = (04,50, T); for « =8, M= T,; for a > f,

T
M= [ ? J )
0sp.e

The direct sum of matrices 4, B is denoted by A - B or by
diag (4, B).

Given matrix 4 ¢ M,(K), the nonconstant polynomials on the main
diagonal of the Smith canonical form of the polynomial matrix
A — A are called the invariant factors of A. Each of the invariant
factors of A can be factored into a product

pl()/)elpz()b)ez oo

of powers of distinct polynomials p,(\), p,(\), - -+, which are irreducible
over K, We call these powers of irreducible polynomials

pl(k’yly p2(>\’)629 M)

the elementary divisors of A over K, Within M,(K), A is similar to
the direct sum of the companion matrices of its elementary divisors
over K.

3. Question I.
THEOREM 1. Let p =0 or p >n. Let C, U, V,e M (K) satisfy
(3) C=3(U, V), (C,U)y=0,1=i=5s.

Then C is nilpotent. Conversely, if C is wnilpotent, A, Be M, (K)
exist such that

(4) C = (4, B), (C,A)=0.

THREOREM 2. Let 0 < p=n. LetCe M, L). Then A, Be M,/ L)
exist satisfying (4) of and only if C is similar within M, (L) to
some matriz C, + -++ + C, in which: (1) for 1 =1 = t, C; has a single
eigenvalue vv; (i) whenever v, # 0, C; partitions as

Ci = (Cirxﬁ)1§ay5§k(i) s
such that block C..p is an e, X e, stripe matriz, and e, = e, =0

(mod p), 1 = a, B = k(2).

THEOREM 3. Let A, B, Cec M, (L) satisfy (4). Then A*, Bte M, (L)
exist such that C = (A*, BY), (C, A") = 0, A™ is mnilpotent, and for
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p # 2, BT has zero trace.

THEOREM 4. If Ce M (K) is wilpotent then Be M, (K) exists
such that

(5) C = (C, B).

Moreover, if p + 2, B may be chosen to have zero trace.

Proofs. We first establish part of Theorem 1. Suppose (3) holds.
After a similarity transformation by an element of M,(L), we may
suppose C is in Jordan canonical form: C =C, + C, + .- + C, where
C; has a single eigenvalue v, and v, # v; for ¢ s j. Partition U, =
(Uiap)rgarssts Vi = (Viap)icapse, conformally with the partitioning of C.
Then (C, U;) = 0 forces C,U;p = U;pCe, 1 =, 8=t 1 =0 =s. It
is well known that, because C, and C; do not have a common
eigenvalue when « =+ B, this equation implies U,,; =0 for a = 8.
Then (3) immediately yields

Cﬂ:i(Uiam Viaa)y 1§a§3,
i=1

which forces trace C, =0, hence v,=0, for all «. Hence C is
nilpotent. This proves half of Theorem 1. This half of Theorem 1
is well known in the theory of Lie Algebras. The proof usually given
there uses Newton’s identities on symmetric polynomials. Our proof
avoids use of this device from outside linear algebra,

We next establish part of Theorem 3, After a similarity trans-
formation by an element of M,(L), we may suppose A in Jordan
canonical form, hence let A = A, -+ ... 4 A, where A4, has a; as its
only eigenvalue and «; # a; if 7+ j. Then (C, 4) =0 forces C =
C,+ ---+C, Partition B = (B)i<i,j=c. Then C = (4, B) yields
C, = (4;, B;;) and (C, A) = 0 yields (C;, 4,) =0;1 = ¢ =¢. If we put
Ar=diag(4,—a.l, A;—a,l, ---, A,—a,I) and B* = diag(B,,, By, +++, B,,),
then easily C = (4%, BY), (C, A*) =0, and A* is nilpotent, This
proves part of Theorem 3,

We now prove Theorem 4., It suffices to establish the result when
C is in rational canonical form. Since the rational canonical form of
a nilpotent matrix is the direct sum of matrices of the form C(\").
it suffices to assume that C = C(A"). Let

B=pI, —diag(n —1,n—2,---,1,0),
where ¢ K, Then
C(v) = (C(\"), B) .



292 R. C. THOMPSON

Moreover, trace B = n8 — n{n — 1)/2. If n = 0 (modp) then Bec K
can be found to make trace B=0. If n =0 (modp) and p is odd,
then trace B = 0 for any S¢ K. This proves Theorem 4, An appeal
to Theorem 4 completes the proof of Theorem 1.

We now prove Theorem 2. We may, as in the proof of Theorem
l,assume C=C, + --- - C,, A=A, 4+ -+ + A,, B=(B};):<i,j<1, Where
C; has +v; as its only eigenvalue, Then C, = (4;, By), (C;, 4;,) =0,
1=<17=t. Let us simplify the notation and now denote C,, A4;, B;;
by C, A, B, respectively. Then (4) holds, C has v as its only
eigenvalue, and by Theorem 3 we may take A to be nilpotent. After
a similarity transformation by an element of M,(L), we may take

(6) A=C01+C00)+ - +CNH), ez Z e,

Let B = (Bij)léi,jék’ WheI‘e B,;j iS 6i><ej. It iS Well known that
(C, A) = 0 forces C = (C;,)1<i,;<r Where C;; is an e;Xe; stripe matrix,
Moreover C = (4, B) yields

( 7) C’ij = C(Vi)Bij - BMC(VJ') ’

for 1 =<14,5 = k. From (7) follows: whenever ¢; = ¢;, trace C;; = 0.
Thus all square blocks in C have trace zero.

We now have to show that if v+ 0 then ¢, =0 (mod p) for
1 =<4 =k, Suppose, for some fixed 7 with 1 <47 =k, that ¢; =0
(mod p). Choose integers %, v such that all the e;-square blocks in
C are C,; with u < @, 8 = v. Since ¢; = 0 (mod p) any e;-square C,g
must have zero main diagonal since it has trace zero, Hence the
first column of any C,; with w<a,B8=v is a zero column. If
a=uand S>uorif u<<a=<vand 8 >wv, then the first column
of C,; is a zero column since any such C,; is an e, X ez stripe matrix
with e, < es. If @ > v and B > u then the first column of C,, is all
zeros, except (perhaps) for the top element. Thus the columns of C
passing through the first columns of C,,,.1, Ciuss, * -+, Cip are entirely
zero except for a fixed set of £ — v positions, Since bk —u >k — v,
these columns must be dependent. Thus C is singular., But v is the
only eigenvalue of C and v # 0. Hence ¢; = 0 (mod p).

To complete the proof of Theorem 2, we show that if C =
(Ciihsins<r With each C;; an e¢;xe; stripe matrix such that e¢; =¢; =0
(mod p), then with A given by (6), we can find B = (B;)):<;, ;< Such
that B;; is e;xe; and (7) holds for 1 =4,7 < k. First let e; > e,.
Put row a of B;;equal to (@ — 1) (rowa — Lof C;j)) for2 = a < ¢; + 1,
and put all other rows of B;; equal to zero. Then (7) holds. Next
suppose that ¢; = e¢;, Then set row « of B;; equal to (a — 1) (row
a—1of C;,) for 2 < a = ¢, and set the first row of B,; equal to
zero. Then, because ¢; = 0 (mod p), (7) holds. Finally suppose ¢; < e;.



ON A CLASS OF MATRIX EQUATIONS 293

This time put column ¢; — a of B;; equal to (— «) (column ¢; —a + 1
of C;;) for 1 < a < e;, and put all other columns of B;; equal to zero.
Then again (7) holds. This finishes the proof of Theorem 2. Note
that, when ¢ =j, trace B, = ce/e; — 1)/2, where ¢ is the (1, 2)
element of C,,. Since ¢; = 0 (mod p), we find trace B;; = 0 whenever
p is odd. Combining this fact with Theorem 4 yields the remaining
part of Theorem 3.

Theorem 2 is somewhat unsatisfactory in that whether Ce M, (L)
can be represented in the form (4) depends only on the similarity
class of C, and hence the necessary and sufficient condition should be
a condition on the elementary divisors of C. In one particular case
it is possible to obtain a condition involving the elementary divisors
of C,

THEOREM b5, Let Ce M (L) and let 0 <p=<mn. () Suppose
A, Be M, (L) extst to satisfy (4). If C is not nilpotent let v = 0 be
an eigenvalue of C of multiplicity < 2p. Then the full set of
elementary divisors (over L) of C belonging to v is given by (M — 7)°
(t — b times) and (A — ¥)*™ (b times), where a, b, t are integers
such that 0 b <t,a >0, p=at+ b (ii) Suppose that each nonzero
etgenvalue v of C satisfies the following condition: the elementary
divisors belonging to v come in disjoint sets of the form (A — 7)*
(t — b times), (n — v)*** (b times), where integers a, b, t satisfy
0=sib<t,a>0at +b=0(modp). Then A, BeM,L) exist to

satisfy (4).

Proof. Suppose (4) holds. Then, by Theorem 2, we may take
C=0C,+ --- 4 C, where, say, C, has eigenvalue v. From the fact
that the multiplicity of v is < 2p and the form of C,, it follows that
C, is a p-square stripe matrix. We have merely to determine the
elementary divisors of the stripe matrix C,. This was accomplished
by Gantmacher in {2]. Here is an alternative proof which establishes
a result slightly more general than Gantmacher’s,

LEMMA 1. Let W = (Wap)icapse D& n-square. Let t be o fized
integer, 1 =t < n, Let w,; =0 whenever B — a <t and W, # 0
whenever B — « =t. Then the elementary divisors of W are \°
with multiplicity ¢ — b and "' with multiplicity b, where n =
at +b,0=b<t.

Proof of Lemma. Suppose, for a fixed » with 1 < r» <n —¢,
that w;; = 0 for all ¢, j for which 1 <7< », 7 —1 >t. Fix integer
s so that s<n and s — » < ¢ Perform the following similarity
transformation of W: add — (w,,,..) 'w,, times column ¢ 4+ » to column
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s, then in the resulting matrix add (w,,,.,)'w,, times row s to row
t + r. The matrix obtained this way satisfies all the hypotheses
imposed on W, has the same elements on diagonal (4, j) with 7 — 1 =
t as W, has the same row r as W except that position (r, s) is now
zero, Thus, in W, we may, one by one, replace the elements to the
right of w,,,,, with zeros, and we may do this for r =1,2, .-«, n— ¢t — 1,
So in W we may assume w,; = 0 whenever j — 7 3= {.

If S=diag(d, 0, +++,0,) with 6, = «++ =0, = 1, 0,4y = (W;,;2:0:)"
for 1 =<7 =<n —t, then in SWS~, all positions (4, j) with j — 1 % ¢
are zero, and all positions (4,7) with j —4=1¢ are one. So in W
assume w;; =0 if j—1=#¢, w,; =11 -1 =1¢.

Now consider [, — W. Given 4, 1 ¢ <n —t, find integers
a, BSsuch that it =at + 8,1 =2F=¢t, a=0. In N, — W add a**
times column ¢ + ¢ to column 8 for 1 <7 = n — ¢, Call the resulting
matrix W. As columns 1,2 ... ¢ of W, are entirely zero down to
row % -—t, we may add appropriate multiples of row a to rows
a+1lLa+2 ..., nforla=mn-—t sothat the resulting matrix,
call it W,, becomes a generalized permutation matrix (has exactly one
nonzero element in each row and in each column). The nonconstant
entries of W, cccur in the lower left ¢x¢ block of W,, and they give
the elementary divisors of W,

To apply Lemma 1 to Theorem 5, let C, be an #-square stripe
matrix with diagonal element v, then let W = C, — «vI,. This proves
Theorem 5 (i).

For Theorem 5 (ii) let m = at + b. We now know that m-square
matrix " with elementary divisors (A — v)* (¢ — b times) and () — ~v)**
(b times) is similar to the m-square stripe matrix 77, whose first row
is (+,0,0,.--,0,1,0, ---,0), where the 1 occurs at position ¢ + 1.
Then if B has zero first row and row 7 of B is (¢ — 1) {row ¢ — 1 of
') for 2 =1 =m, wefind I', = (C(\™), B), (I, C(\™}) = 0. By taking
direct sums in an obvious manner we obtain Theorem 5 (ii).

THEOREM 6. Let Ce M (K)and let 0 < p < n. Suppose for each
nonzero eigenvalue v of C, each elementary divisor (M — v)¢ of C
over L belonging to v occurs with muliiplicity k = 0 (mod p) whenever
e %= 0 (mod p). Then A, Be M, (K) ewist such that (4) holds.

Proof. Form the elementary divisors of C over K, The elemen-
tary divisors of C over L are obtained from the elementary divisors
of C over K by decomposing the elementary divisors over K into
products of powers of distinct linear factors. Let p(\)* be an elemen-
tary divisor of C over K, where p(\) is irreducible over K. Either
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p(N\) has simple roots or else »(\) has multiple roots and in the latter
event p(n) is a polynomial in A?, First suppose that p{)) has multiple
roots or that p(\) has simple roots but ¢ = 0 (mod p). Let p(\)* =
@+ an A eee + O N A", Then a,=0 if j == 0(modp), and
m =0 (mod p). Put B =diag(l,2 3, ---,m). Then C(p(\)*) =
(C(p(\)Y), B) since ja;_, =0 if =1 (mod p) and ja,,=a,,,if j=1
(mod p).

Now let p(,)* be an elementary divisor of C over K such that
e = 0 (mod p) and p(\) has simple roots, Let )\, be a zero of p(\).
Then (A — )\)¢ is an elementary divisor of C over L, hence appears as
an elementary divisor of C over L with multiplicity % = 0 (mod p).
Consequently p(\)* is an elementary divisor of C over XK with
multiplicity % = 0 (mod p). Let I" = diag(C(p(\)%), ---, C(p(\)%)), (k
direct summands). Then it will be shown in the proof of Theorem 9
that A, B exist over K such that I"= (A4, B), (I, 4) = (", B) = 0,
This completes the proof of Theorem 6,

THEOREM 7. Let Ac M (K). Then B, Ce M (K) exist satisfying
(1) of and only <f at least one elementary divisor of A over L is
nonlinear.,

Proof. Suppose each elementary divisor of A over L is linear.
After a similarity transformation of (1) by an element of M, (L), we
may suppose A=A, 4 .- + A,, where A, is scalar with diagonal
element «;, and «; #a«a; if 47, Then (C,A) =0 forces C =
C,4 -+ 4 C,. Partition B = (B;;}1<i,,<;. Then C, = (4, B;)=20 as
A; is scalar. Hence C = 0,

Suppose now A possesses an elementary divisor over I which is
nonlinear., This means that A possesses an elementary divisor p(\)*
over K which has multiple roots. If p{\) has multiple roots then
p(A) (and hence p(\)*) is a polynomial in a\»:

p()\,)e =Gy b AN A e G, AT A A,

where a; = 0 if 5 % 0 (mod p), and m = 0 (mod p). Let B = (b;,) be
m-square, with b;,.,,, =14 for 1 =¢=<m — 1, and all other b, zero.
Then I, = (C{p{(\)?),B), because ja, = 0 since a; = 0 if j = 0 (mod p)
and § = 0 (in K) if j = 0 (mod p). Clearly (I, C{p(\)*)) = 0.

To complete the proof we may suppose that, for each elementary
divisor p(\) of A over K, the polynomial p(\) has simple roots,
Hence for at least one elementary divisor p(\)° over K, we have
¢ > 1. Now when p(\) has simple roots, C(p(\)%) is similar over K to
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(C(p(x)) I; 0 0--r 0 o

0 Cipny I 0--- 0 J

el 00 s g0 o
| : : : : :

. . . . . . l

0 0 0 0---Cr0) I

) 0 0 0-.- 0 C(p(\)) )

In R there are ¢ blocks C(p(\)) on the main block diagonal, and f is
the degree of p(A). To prove this, one need only show that R and
C(p(\)*) are similar in M,(L), and this is not difficult. If we set
B = diag{l;, 2I;, -+, el;), then C = (R, B) = 0 and (C, B) = 0.

TaeoREM 8. Let Be M(K). Then A, Cec M/(K) exist such that
(1) holds: (1) when n > 2 or when n=p =2, if and only if B 1is
not scalar; (i) when n = 2 % », if and only if the eigenvalues of
B are distinct and in K.

Proof. We may assume B is in rational ecanonical form: B =
C(pl(x)) ”f‘ C(pz(N)) + b + C(;OT(N», where pl()u), p2<k)y Tty Pr(?v) are
the invariant factors of B; p,(\)|p;.(0) for 1 <4 < ». First suppose
r>1 and p,(\) is not linear. Let X be a (degree p,(\))x(degree
p,(\)) matrix whose only nonzero element is a one at the top left
corner. Let Ae M, (K) have X occupying the extreme top right
corner; all other positions in A are zero. Let C = (A4, B). Then C is
all zeros except that the upper right corner is

(8) — Co.0X + XC(p.(V)) .

Since p,(\) is not linear, the top element of the second column of (8)
is 1. Hence C = 0., But CA = AC = 0, hence (C, A) = 0.

This calculation fails if » =1 or if p,(1\) is linear., When p,{\)
is linear, B is scalar. So let » = 1. Let n = 3 and let B be a com-
panion matrix. Take matrix A to be entirely zero except for a single
one in extreme lower left corner. Then C = (A, B) %0 and CA =
0 = AC,

Now let n=2=p. Let B=C(N+B:N+5,). Put A=C(+(1+8)).
Then C = (4, B) = 0 but (C, 4) = 0.

Finally let n =2 p. If C= (A, B) and (C, A) = 0, then also
C=(A B—pBI) and (C, A) =0. Therefore in searching for C, A
belonging to a given B, we may change B to B — BI, and hence
assume we are working with a B which has zero trace. Cast B into
rational canonical form. Since B clearly cannot be scalar if we are
to have C =0, we may suppose B = C(\* — ). Now note that if
C=(A B) with (C,A) =0 then also C=(A—al B) with
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(C, A —«al)=0, and also aC = (a4, B) with (aC, a4d) = 0. By com-
bining these two observations we may assume that the (1, 1) element
of A is zero and that one of the nonzero elements of A is a one,
Thus we may assume A is in one of the following three forms:

0 1 0 0 0 0
A= i A= ;. A= .
a, a, a, 1 10

In each of the last two possibilities ({4, B), 4) = 0. Thus we may
confine our search for A to the first possibility. Then

c:(A,B):[ﬁgal ;iﬁj

— aj(a, + B) 28— ay) — aé]
2o (a, — B) — a3B B + ) )

If @, =0 then (C, A) = 0 forces # — «a;, = 0, which in turn forces
C =0, Since we want C = 0, we must have a, = 0, Then (C, 4) =

(€, 4) :[

0 forces @, = — B and then a2 = 48. Thus 8 must be a square in X,
and then
28— 28"
C— 8 S _
2% — 28

Thus for C # 0, 8 must be a nonzero square in K. Let p, — o be
the eigenvalues of B. The 8 = ¢* so that 5 is a nonzero square in
K if and only if p, — o are distinct and in K. Moreover when 8 is
a nonzero square in K and a, = — 8, ai =48, wefind C = (4, B) = 0
but (C, A) = 0. In terms of the original B with arbitrary trace, we
find that B must have its eigenvalues distinet and in K, This
completes the proof.

4. Question II. Let C, 4, B,c M, (L) satisfy
0
(9) C:EI(A¢,B¢), (C,4,)=(,B)=0,1=p =0,

where ¢ is a fixed positive integer. After a similarity transformation
of (9) by an element of M,(L), we may assume C =C, + .-- 4 C,,
where C; has v, as its only eigenvalue and v, == v, if 7= J. Then
(C,A,)=(C, B,) =0 forces A, = A, 4+ «++ + Ay, B, = By + +++ + By,
and then

8

C; = > (A, B), (Cy Ay) =(Ciy B,) =0, 1 =i =k.

=1

So let us change notation and consider (9) when C has a single
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eigenvalue v and is in Jordan canonical form. Sc now we let C =
C,+ -+ 4 C, where C; is ¢;-square, with e, < e. =< ..+ = ¢, such that

‘m/ 16 6-.-0 O

‘0 v~ 1 6.--0 O‘

| i

10 0 1.---0 0[ .

C_[ ] 7 . .o if e, >1,

. \
o Dol

0.0 0 0.y 1

0 0 0 0---0 m,)‘

= (v) if ¢, = 1. Partition A, = (A,;)i<i;j<cr a0d B, = (Byij)i<i iz
where A,; and B,; are e;xe;. Then (C,A4,)=0 and (C,B,) =0
yvield C;A4,;; = A,:;;,C;, C;B,;; = B,;;C;, and it is well known that these
equations force A,;;, B,;; to be stripe matrices; 1= p <0;1 <1, 5 < k.
We now require additional notation, Let the first row of e¢;xe;

stripe matrix A,;; be
(Oy Oy O Qoijiy Cgijey ** 7y atpijei)
22
>

jTe

when ¢; = ¢;, and
(Qpijiy Qpiizy * %y Upije;)
when e¢; = ¢;, Similarly we let b, b,:,, -+, be the not necessarily
zero elements of the first row of the stripe matrix B,,,.
From (9) we get

6 k
(10) ZII L“ (A!pitB(oti - B[pitAqoti)y 1 =1 = k.

= A
A routine computation shows that the first row of the stripe matrix
A,i:B,.; 18 e;-tuple

(11) (07 07 Y Oy aqazzlb(ptily aw’tlb<pti2 4+ a’qoitzb(ptily * ')
——

e;—et

if ©=t; and

(12) (O) Oy ] Oy aqoitlbq)tily azpz’tlbzpti2 + aq)imb(oitly o )
if t = 4. In (11), the second nonzero coordinate is absent ¢, — 1. In
(12), all coordinates are zero if ¢, — ¢; = ¢,, and there is only one
nonzero coordinate if e, — ¢, = ¢, — 1.

From (10), (11), (12) we find that the (1, 1} element of C; is

)
(13) Z‘ Z (a vitiDptis — bq:-;tlaqzm) ,

t#z
eg=e;
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and if ¢; > 1, the (1, 2) element of C; is

[
1= Zl Z (a'(ambcpm - bqoitla’cptil)

=1

t:
(14) leet—-ei|:1
+ Zl tZ (a¢itlb(pti2 + aqoitzbq:th - bq)itla’qﬂti2 - b(pitzagat'il) .
=0
er=e,

A

Note that, in (13) and (14), the terms with ¢ = 7 collapse to zero,
hence it is necessary to sum only over values of ¢ different from <.

Suppose v = 0. Then it follows from (13) that at least one ¢ = 1
exists such that e, =e¢,. Fix ¢, andlet ¢ +1,9 + 2, .-+, ¢ + 7 be all
o with e, = ¢, Let j, s be two fixed integers such that ¢ +1 =<
j<s=4q-+r. Then in sum (13) for C,, the terms

9
(15) ;};1 (@gjs1bgsjs = bgjslysin)

are contributed by C,, whereas in the sum (13) for C,, the terms
9
(16> :pz-—‘-l (afpsjlbszl - bqosjlalpjsl)

are contributed by C;. Note that (15) and (16) add to zero. This
means:

2y r=0.

j=q+1
Consequently the number » of integers a with e, = e; satisfies » = 0
(mod p). This means: if v 0 and (A — v)°* is an elementary divisor
of C over L with multiplicity #, then » = 0 (mod p).

Now let v =0, Select an integer 4 such that e, > 1. Recall
that ¢, e, < --- < ¢, Find the set S of consecutive integers of
maximal length containing 4 such that whenever @ and «« + 1¢ S then
Cais — € = 0y With 0, =0 or 1, Let S={g+1,¢+2 ---,¢+7rhL
Then either ¢ =0 or ¢ > 0 and ¢, < ¢,,, — 1; and either ¢ + » =k or
g+r<kand e, >e., + 1.

Because of (14), there exists at least one integer ¢ # 4 such that
e, —¢; = 0 or =1, Thus the length of S is at least two. We wish
to examine the circumstances under which e,., > 1. So assume
ey > L.

Let 5 <'s be two members of S. If ¢, —e; = 0 then in the sum
(14) for C;, C, contributes the terms

[}
(17) 2} (aw'slbqasaz + a¢js2b¢sj1 - b¢jsla¢sj2 - bw‘sﬁawsﬂ)
o=
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whereas in the sum (14) for C,, C; contributes the terms

[
(18) Zl (a’gosjlb(ﬂjsﬂ + a(osjzbqajsl 'ﬁ bqosjla<pjs2 - b(psj2aq7jsl) .
o=

Note that (17) and (18) add to zero. If e, — ¢, =1 then in the sum
(14) for C;, C, contributes (15) whereas in the sum (14) for C,, C;
contributes the term (16), and (15) and (16) sum to zero. If e, —¢; > 1,
then C, contributes no terms to the sum (14) for C; and C, contributes
no terms to the sum (14) for C,. Because of the maximality of S,
no integer outside S contributes any terms to the sum (14) for C,,
where ¢ is any integer in S. By virtue of these remarks we find
a+r

1=0.

+

<
-

Hence r = 0 (mod p). This argument does not work when e, =1
since then equation (14) does not exist when ¢ = ¢ + 1. This completes
the proof of the first part of Theorem 9.

THEOREM 9. Suppose C, 4,, B,c M (K) and satisfy (9). Then
the elementary divisors of C over L can be classified into disjoint
sets of the types (20), (21), (22) below. Conversely, tf Ce M,(K) is
such that its elementary divisors over L classify into disjoint sets
(20), (21), (22), then A, Be M, (K) exist such that

(19) C=(4,B), (CLA=(,B)=0.

(20) AL, A2 e AT with e, =1, ey — e, =0, =00r 1, 1 =1 < r;

(21) A, N2, oo N with e > 1, € —e; =0, =0o0r 1, 1 =1 <,
and r = 0 (mod p);

(22) (» — ), v # 0, with multiplicity r = 0 (mod p).

Note if p =0 or p > un, C cannot have any elementary divisors

in classifications (21) or (22).

We now have to establish the converse part of Theorem 9.
Consider the elementary divisors of C over K. If p(\)° is such an
elementary divisor then either p(A) = ) and then p(\)° falls into clas-
sification (20) or (21); or else p(\) #= . In the latter event let

(23) POV, p(N)2, + -, DOV

be all the elementary divisors of C over K involving p(\). Let ve L
be a zero of p(\) with multiplicity v. Then all the elementary divisors

of C over L involving v are

(24) (’\’ - 'Y)yelr (>\' - V)yez: Yy ()J - V)yet .
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By the hypotheses of the theorem, the multiplicity of
()\, . ,y)uel

is » = 0 (mod p). This implies that the number of integers e, ¢, -+ -, ¢,
equal to ¢, is ». Hence the multiplicity of

PV
in (23) is » = 0 (mod p).
To complete the proof it will suffice to assume that
(25) C = CEO)) + -+ + ClpOY™)

and that either p(\) = A and the integers r», e, ---, ¢, satisfy (20) or
(21) above; or else that p(\) == )\ and

(26) e, =¢=--+ =¢,=¢; r= 0(modp).

If in each of these three cases we find A, Be M, (K) such that (19)
holds, then the general case will follow by taking direct sums.

Suppose in (25) that p(A\) = » and that the integers e, «-:, ¢, r
satisfy (20). We may assume ¢, = 1, ¢, = 2, since in the more general
situation we need only consider 04 C, 04+ A4, 04+ B. So assume
e, =1, e, =2, We present A = (A,p)i<ap<- in partitioned form, where
block A.p is e,xep and is zero whenever 8+ a — 1. We set

@2mn Appos = (r + 1 —a)l, if €, = e,_s;

8 W [('r +1—a)l,

‘”'1} ife,—1=e,,;
0

Leg—1
2 <a=r. We present B = (B,p)i<a,p<, in partitioned form also, where
block B, is e,xe; and is zero whenever 8 # a + 1. We set

(29) Baori = CO\) if e, = €40
(30) Ba:tH—l — <Oew>ly Iea,,) lf ea+1 = ea + 1 ;

l1=a=<r—1. Then with C given by (25), (19) holds.

Next let p(A) =\ and let the integers e, ---, ¢, » satisfy (21)
above. We use the A, B just constructed. Because » = 0 (in K),
(19) still holds, where C is given by (25).

Now suppose e, ---,¢, satisfy (26). We now set A4,..=
(r+1—a)Cp(\)°) for 2=a =7, Byan=1;, for 1=2a=r—1;
here f = degree p())°. Otherwise we keep A, B exactly as constructed
above, Then with C given by (25), (19) still holds, since r = 0 (in K).
This completes the proof of Theorem 9 (and also of Theorem 6).
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THEOREM 10. Let Ae M, (K). Then B, Ce M,(K) exist satisfying
(2) of and only if: (i) when p = 2, at least one eigenvalue of A has
a nonlinear elementary divisor over L; (ii) when p # 2, at least one
etgenvalue of A has multiplicity not less than 38 and a nonlinear
elementary divisor over L.

Proof. Suppose C, A, B satisfy (2). By Theorem 7, A must
have a nonlinear elementary divisor over L. Suppose p # 2 and that
each eigenvalue possessing a nonlinear elementary divisor over L has
multiplicity < 8, hence multiplicity 2. After a similarity transforma-
tion by an element of M,(L) we may suppose A = A4, 4+ -.- 4+ A, where
A; has «, as its only eigenvalue and «; # «; for 4 = j. Our assump-
tions imply that A, is either scalar or 2-square. From (C, A) = 0 we
get C=C, 4 - 4 C,. Let B=(B;;)izi,i<z» Then (C, B) = 0 implies
(Ci, B;)) = 0; (C, 4) =0 implies (C;, 4;) = 0; and C = (4, B) implies
Ci=(A,B,); 1=i1=k. If A, is scalar, (4,, B;) =0. Thus C;# 0
is possible only if C, is 2-square. Any 2-square matrix is either scalar
or nonderogatory. If C; is nonderogatory then (C;, 4;,) =0 and
(C;, B;;) = 0 force A;, B;; to be polynomials in C;, hence commutative,
hence C; =(4,;, B;) = 0. If C, is scalar, C;, = (4,, B;;) forces trace
C, =0, hence C; = 0. Thus C = 0. Therefore the conditions of the
theorem are necessary.

Suppose the conditions of the theorem are satisfied. Consider the
elementary divisors of A over K. These are of the form p(\)° where

p(\) is irreducible over K. Either all p(\) have simple roots or else
there exists an elementary divisor p{\)° in which p»(\) has multiple
roots. In the latter event let m = degree p(\)°. In the proof of
Theorem 7, Be M, (K) was found such that I, = (C(p(\)°), B). This
completes the proof of the theorem if some p()\) has multiple roots.

We may therefore assume that for each elementary divisor p(\)*
of A over K, p(\) has simple roots. Suppose ¢ = 3 for some elementary
divisor p(»)* over K. Then C(p(\)*) is similar over K to the matrix
R in the proof of Theorem 7. Let

e O

(0 0---0 C 0

(0 0--0 I 0]
B = 0 0 0 0.
© e

|

Then if C = (R, B), C is entirely zero except for a block I, in the
upper right corner. We find that (C, R) = 0 and CB = BC = 0.
To finish the proof we may now assume that ¢ < 2 for each
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elementary divisor p(A)® of A over K. For p == 2, the conditions of
the theorem imply that A has either a couple of elementary divisors
over K of the form p(\)%, p(\)%; or else a couple of elementary divisors
of the form p(\), p(\)°. In the first event, if we take

C(p(\)) I 0 0
L0 Ce) o o
0 0 Cowy I
0 0 0 Clin)
00 0 0
00 0 I
B = Ly
000 0
00 0 0

then (2) holds. In the second event, if we take

Clo(V) I 0
A= 0 C(p(\) 0 ,
0 0 C(p(\)
[0 00
B=0 0 I,
[0 0 0

then again (2) holds.

The calculations of the above paragraphs hold if p = 2. To finish
the proof we need only consider the case when p = 2 and A = C(p(\)%).
But p()\*) is a polynomial in A\, hence as in the proof of Theorem 7,
I = (C{p(\*), B) for a certain B over K, This completes the proof of
Theorem 10.

It should be pointed out that much of the argument of §4 is very
close to arguments first found by McCoy [4].

5. The number of similarity classes of commutators, In §5
only, we let p(n) denote the number of partitions of 7 and p%n)
denote the number of partitions of # into distinet summands.

THEOREM 11, Let p=0 or p>mn. Then: (i) the number of
stmilarity classes of matrices Ce M (K) for which a representation
(8) or (4) exists in M (K) is p(n); (ii) the number of similarity
classes of matrices Ce M (K) for which o representation (9) or (19)
exists in M (K) is p*n).



304 R. C. THOMPSON

Proof. In view of Theorem 1, (i) is just a count on the number
of similarity classes of nilpotent matrices; the result is well known
and trivial, To prove (ii) we use the fact that (20) of Theorem 9 is
the necessary and sufficient condition for (9) or (19) to hold, when
p=20 or p>mn. Then from e, , —e¢ =4, for 1 =<4 <7, and from
e+ +++ + e, =mn, we get

r—1

(31) r+ S(r—310;=mn.
2=1
Since each d; is 0 or 1, the result immediately follows from (31).

6. Some lemmas. Suppose Ce M, (K) has elementary divisors

(32) A, )\Jez, ceey, Aor
with
(33) ¢y —e€=0,=0o0r 1l 1=7<r,

and with e, > 1. Let B = (Bughca,psr Where e, X e matrix B,; is zero
if 8#=a+ 1, and B,, ... is given by (29) or (30), for 1 = a < 7.

Let o(1) = 0 and for 4 > 1 define g(7) to be the number of integers
o« for which ¢, = e,,, 1 S a < 1.

LEMMA 2. (1) If o(r) < e, then the elementary divisors of B are:
N with multiplicity one if e, < €441, ond with wmultiplicity two vf
Gy = €ar, L= a <7, together with N with multiplicity e, — a(r).
(i) If o(r) = e, let u be the largest integer for which o(u) < e,.
Then the elementary divisors of B are: \* with multiplicity one if
Cy < Cqui, amd with multiplicity two if e, = €.y, for 1 = a < u; W
with multiplicity equal to the mumber of integers 8 = u for which
es = w (always at least once); if w < e, N with multiplicity equal
to the number of integers B for which es = a (always at least once),
for all a such that w < a = e,.

Proof. Note that
(34) e, =1—0(t) +e — 1,

(verify by induction on ¢) and if « is the largest integer < ¢ for
which e, = e,,,, then

(35) o(i) = ola) + 1.

Given i, 1 = ¢ < r, define ¢; X e; matrix M;; for j < 1, as follows,
If e <e;, then M;,;=0 for all j, 1<j=<4 If ¢ —e¢;,, and
o(1) < e, then M;, is entirely zero except for A* occupying position
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(e;, ¢, — a(z)), and M, M, ---, M, are all zero matrices. If ¢, = ¢;,,
and ¢(¢) = ¢, then all M;; are zero matrices except for

M’i »i—ei+1
which has
A%

in position (e¢;, 1) as the only nonzero element,

At a later point it will be necessary to observe that a certain
matrix I”, is a generalized permutation matrix, For this purpose
observe the following facts., If B is the smallest integer for which
€s = €z, then ¢(B) = 0 and M,, has its nonzero element in the extreme
lower right corner. If 7 > £ is such that o(¢) < e, and e; = e, let
« be the largest integer < ¢ with e, — e,.,. Then (35) implies that
the nonzero element of M,, occurs one column to the left of the non-
zero element of M,,. If o(r) = e, take w to be the largest integer
for which o(u) < e, Then o(u + 1) = ¢, = o(u) + 1and e, = ¢,,,. If
u < 7, it follows that M,, has a nonzero element in the extreme lower
left corner, Next observe that, because of (34), 1 —¢; + 1=10(t) —e,+2,
so that if o(¢) = e, and ¢; = ¢;,,, then M;, = 0 and, in addition, if «
is the smallest integer for which & > 7 and e, = ¢,.,, then (by (35)),
a—e,+1=(—e + 1)+ 1,

Next, given integer ¢, 1 =t < », define ¢, xe; matrix N,;, for
j =t as follows. For nonnegative ¢ < min{t — 2, e, — 2), let N,,,_; be
all zeros except for M\ occupying position (2 +1,1). For =
min(t — 1, e, — 1) let N,,_; be all zeros except for A occupying all
positions (a, 8) with a — B8 =14. For 7> min(t —1,e — 1), set
N, tot—i 0.

Note that, when ¢ < e, then for 7 = min(t — 1, ¢, — 1), we have
t — 4 =1 and N,, ; has A! occupying the diagonal of positions («a, 8)
with @« — £ =1¢ — 1, and that the number of zeros to the right of \!
in the last row of N,,._; is o(t) (by 34)). Moreover, if ¢t < ¢, then
by (34), o(t) < e, so that if ¢ is the largest integer < ¢ with ¢, =
¢,.1, the nonzero element in the last row of 3, is one column to the
right of the nonzero element in the last row of N,. When ¢ > e,
then with ¢ = min(¢ — 1, e, — 1), we havet — 1 =1¢ — ¢, + 1 = 2; and
for this 4, N, , has

At

in the extreme lower left as the only nonzero element., Moreover, if
« is the largest integer < ¢t with ¢, = e,.,, then

t—e¢ +1=(@—e,+1)+1,
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Finally note that no two of N,, N,, ---, N,, have a nonzero element
in the same row. These remarks will also be used below to see that
I", is a generalized permutation matrix,

For fixed ¢, 1 <t < », let I, be a polynomial matrix presented
in partitioned form as follows. For ¢ < ¢, block row ¢ of I, is
(M, My, --+, M;;,, — B;,;.,,0, ---,0). (Observe that each row of block
row 4 has exactly one nonzero element,) Block row ¢ of I, is
(N, Ny, +-+, Ny, — By 11, 0, -+-,0) when ¢ < 7, and block row ¢ of
r,is (N,, N, ---,N,,) when ¢t =+. For all ¢, t <7 <7, block row
i of I', is

(0, Tty Oy XIeiy - Bi,i—{—lv Oy cT O)
where the block
A

€q

appears in the main block diagonal position. For ¢ < =, block row »
of I, is

(0’ 0! .t .7 0! )"Ier) d

Observe that each row in block row » of I', contains exactly one
nonzero element.

Note that when ¢ =1, I, = — B. This is so since for ¢ =1,
min(t — 1, e, — 1) = 0, and then N,, = \I,. We now supply elementary
row and column operations that successively convert [, into
r,r, . ... I.

Tet t <r. To convert I', into I",,, first add )\ times the row of
I, passing through row ¢ of the block — B,,., to the row of I,
passing through row ¢ + 1 of the block

M,

f41?

for 1 <1 = e, — 1. Call the resulting matrix 7,. Block row ¢ + 1
of I} is 10w (Nyyii, =, Nitoyiss, — Bistess, 0, < ¢+, 0) (— Byyy,40 18 absent
if t+1=7). In I the columns of I", passing through columns
2,8, -+, 6, of block — B,,., are entirely zero except for — l’s ap-
pearing in — B,,.,. So if we add appropriate multiples of these
columns of I} to the columns of 77, to the left of block — B,,,.,, we
can replace all elements in blocks N,, N, -+, N,, with zeros, except
that, when ¢, = ¢,.,, the nonzero element in the last row of the block
N,,_;, with ¢ = min(¢ — 1, ¢, — 1), cannot get replaced with zero. If
o(t) < e, (34) implies ¢ < e, hence ¢t — 1 =min(t — 1, e, — 1), hence
the element that does not get replaced with zero is A’ at position
(e, &, — o(t)) in N,,. Thus when e, = ¢,,;, and o{t) <e, our column
operations convert N,, into M,,. If o(t) = e, then (34) yields ¢ > e,
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so that min{t — 1,¢, — 1) = ¢, — 1, hence the element that does not
get replaced with zero is

P
at position (e,, 1) of
Ntyt-—et—H .
Thus, whether o{t) < e, or o{t) = ¢, the blocks N, ---, N,, in ["] are
converted into M,, ---, M,,. Hence ["; becomes I",,.

The remarks above show that ', is a generalized permutation
matrix. As each nonconstant element of I, is a power of X, to
obtain the invariant factors we need only locate all of the nonconstant
polynomials in I7,.

Let o(r) < e,. Then from the block M, in I'. we obtain »*
precisely when ¢, = ¢,,,, 1 £ a < ». From the block N,,. ., we get
A 0= a < r— 1. From the block N,, we obtain 1" exactly e, — a(r)
times, This completes the proof of (7).

Let o(r) = e¢,. Since (1) = 0 < ¢, o(r) = e, there exists a largest
positive integer w with o(u) < e,. Since ¢(2) £ 1 < e, clearly u = 2.
We must have o(uw + 1) = ¢, and also that ¢, = ¢,,,. From (34) with
v =u+ 1, we get ¢,., =u. Hence u =¢, =¢,.,. Let a <u., Then
o(a) = o(u) < e. Thus the only one of blocks M,, My, -+, M,
which can be nonzero is M,,, and in M, we find a nonzero element,
2\, if and only if ¢, = ¢,.,. Let o > u, but @« < r. (Such an & need
not exist in all cases.) Then o(a) = e, so the only block among
M1y Mooy -+, Mo, that can be nonzero is M,,q. 4+, 2nd in this block
we find a nonzero element, »°¢, if and only if e, = ¢,,,. Thus if
Jj > u, we pick up A exactly as many times as there are integers «
with ¢, = ¢, (= 7). And we pick up \* as many times as there are
integers a > u with 4 = e, = e,.,. Since o(u) < e, and ¢, = ¢,.,, We
also pick up A\* once in block M,. Finally, in the Dblocks
N,y Nypoosy oy Nypppo o we pick up X, 2, -+, A7, each exactly once.
This completes the proof of Lemma 1.

COROLLARY 1. Let e, = 1, Then the elementary divisors of B
are

Proof. If o(r) =10,thene < e < ++- <g,80¢ =1tfor1 <7 =r,
hence Lemma 2(7) gives the result. If o(r) =1 then o(r)= e.
Because ¢, = 1, (34) gives ¢, =1, so e, < u. Hence \* occurs as
many times as there are integers B with u = ¢;. Because o(u) < ¢, =
1, ou)=0. So 1=¢ <e <+ +» <e,, <e,=mu, hence for a < u,
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A% occurs exactly once, hence exactly as many times as there are g8
with e; = a. This completes the proof.

For the next Lemma, let ¢, ---,e. be positive integers with
e =6 =-+=e. Set ¢ =0, Let A= (Aup)icap<, Where A, is
e. X eg and A, =0 if a # B + 1, and where

a.l,
Aa,a——l = |j o jl ’
Oem—ew—l’ea——l
for 1 < « £ r, with each a, == 0.

LEMMA 8. The elementary divisors of A are N~ with multi-
plicity e; — e;_,, for 1 =1 = 7.

Proof. For ¢ < a let M,, be an e; X ¢, matrix constructed ac-
cording to the following rule: the element of M,, at position (¢, &) is
At for all £ such that e, <& =<e¢. (If e¢,_, =e¢;, there are no
such &) All other elements of M, are zero. Now let 4, = (4,:)1ciri<r
be presented in partitioned form, as follows. Block 4,;; is e; X e;;
diyiyia = — Ay for 21 =5 4, = My, for 1 =9 =85 4, = N\, for
all ¢+ > ¢; and all other blocks 4,; in 4, are zero.

Note that 4, =X — A. We now supply elementary row and
column operations to convert 4, into 4,.,. In 4, add (a,,;)~*\ times the
column passing through column 7 of block — A,.,, to the column of
4, passing through column ¢ of block I, , , for 1 <7 <e¢,. Call the
resulting matrix 4;. In 4}, we find M,,,.,, My,,41, +++, M,.1,.4, OCCUPYING
the first ¢t + 1 positions in the block column ¢ + 1. Moreover, in 4,
the rows passing through the first ¢, rows of block — A4,.,, are
entirely zero, except for the nonzero elements in the main diagonal
of — A,,,,. By adding appropriate multiples of the rows of 4] pas-
sing through the first ¢, rows of — A,.,, to the rows of 4, above
block — A4,,,,,, we can replace blocks M,,, M,, ---, M,, in 4; with zero
blocks. This converts 4, into 4,,..

It is not difficult to verify that 4, is a generalized permutation
matrix. The nonconstant entries appear in the blocks M,,, «--, M,,;
from block M;, we pick up N~ exactly e, — ¢;_, times. This
completes the proof.

For the next Lemma let A = (4.p)i<a,p<r Where each A,z is m-
square, A, =0 if a = B+ 1, and A4,,,_, is nonsingular for 1 < a < r.

LEMMA 4. The elementary divisors of A are N with multiplicity

Proof. LetS = diag(Im, Agy ApAgyy oo A, A, o, o+ Ay). Then
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S is nonsingular and S—'AS has the same structure as A, except now
the block in position (o, — 1) is I,, for 2<a =< r. To complete
the proof apply Lemma 1 to the matrix S—A4S,

7. Chains of commutators. We say matrix C ¢ M, (K) supports
a chain of commutators (type I) of length ¢ if matrices X, Y; e M, (K)
exist such that

(36) Y =X, Y), (Yi, Y)=0,1=s1=¢,

with C = Y,. We say Ce M,(K) supports a chain of commutators
(type II) of length ¢ if matrices X;, Y;e M,(K) exist such that

@ Y=, X), (Y, X)=(Yiy, Y) =0, 15151,
with C = Y.,

THEOREM 12, Let 0 < p = mn. Then Ce M, (L) supports a chain
of commutators (36) of typve I and length t if and only if C satisfies
the condition of Theorem 2. Moreover, if C supports some com-
mutator chain of type I, C also supvorts a commutator chain (36)
of type I and arbitrary length t in which ¥, = Y, = .- =Y, X, =
X, = .-+ =X, Y, is nilpotent, and when p+ 2, X, and X, have
trace zero (hence are commutators).

Proof. If C supports a commutator chain of type I, Theorem 2
applies to € and hence C satisfies the condition of Theorem 2,
Conversely, if C satisfies the condition of Theorem 2, then by Theorem
3, C = (A", BY) with (C, A%) = 0, with A" nilpotent, and (for p == 2)
with trace BF¥ =0, If X, = — B*, Y, = A%, then C = (X, Y)), and
(C, Y) =0, Since Y, is nilpotent, Theorem 4 shows Y, = (X, Y1)
for some X, which has trace zero when p = 2. Iterating this last
identity produces the desired commutator chain for C, This also
proves Theorem 13,

THEOREM 13. If Ce M, (K) is nilpotent then C supports a com-
mutator chain (36) of type I of arbitrary length t within M (K) in
which C=Y, ==Y, X =--- =X, and (for »+2) trace
X, =0.

Suppose now Ce M, (K) supports a commutator chain (37) of type
II. Then Theorem 9 applies and so the elementary divisors of C over
L classify into the types (20), (21), (22) of Theorem 9. In the next
theorems we provide sufficient conditions on the elementary divisors
of C over K in order that C support a commutator chain of type II
of arbitrary length ¢.
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THEOREM 14, Let Cec M, (K). Suppose the elementary divisors
of C are given by (20). Then C supports a chain of commutators
B7) of type II of arbitrary length t within M/(K) in which
C,Y, Y, -, Y, are similar elements of M(K) and X, X, ---, X,
are similar elements of M, (K). In addition, if p =0 0r p = r and
if the multiplicity of integer © in ey, €, «- -, e, 1S Monotone NONINCreas-
ing as i increases, we may also have X, similar to C.

Proof. In the proof of Theorem 9 we found certain A, Be M, (K)
such that (19) holds. Corollary 1 may be used to show that B is
similar to C. So set X, = A, Y, = B. Then the elementary divisors
of Y, satisfy (20) of Theorem 9, so Y, = (X, Y,) with (Y, X,) =
(Y, Y,) =0, and with Y, similar to Y,. Moreover X, depends on the
elementary divisors of Y, in the same way as X, depends on the
elementary divisors of C. Hence X, is similar to X,. An iteration
now produces the desired chain,

Let m(2) be the multiplicity of integer 7 in ¢, e, ---, ¢,. In the
second assertion of the theorem, we know m(l) = m(2) = -+ = m(e,).
Choose integers k, < k, < -+ < k,; so that

m(l) = m(2) -+ = mk) > mlk, + 1) = mk, +2) = ---
=mky) > mky + 1) = o0 > oo >mky +1) =« =m(k,) ,

where k; = ¢,. Let C, be a matrix with elementary divisors
(38) Ny MG AZ e ee WK
for 1 =4 =d. Then C is similar to

diag(Ch C, +--, Ch Cz, Cyy voe, C’g, e Cyy Cyy o+, CY)

where C,; appears m(k,;) times and C; appears m(k;) — m(k;.,) times,
1<i<d. If p=r then from » = e, =k, = k;,, we have p =k, in
(38) for 1 =1 =d. If we can show that C, supports a commutator
chain (37) with Y, = C, and with all X, and all Y, similar to C,,
then by taking direct sums we will also get C supporting a com-
mutator chain (37) with Y, = C and all X, and all Y, similar to C.

Hence to complete the proof of Theorem 14, we may suppose
that the elementary divisors of C are (20) with ¢; =14 for 1 =1 = »,
and p =0 or p = r. In this case the proof above gives C = (4, B)
where the blocks A4,,.., of A, given by (28), have » +1 — a # 0,
2= a=r. We may use Lemma 3 to compute that the elementary
divisors of A are A, A% ---,A". Hence A is similar to C. This com-
pletes the proof.

COROLLARY 2. In Theorem 14, if the additional conditions are
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satisfied, each matriz X;, Y, appearing in the chain (37) of type II
supported by C also supports a commutator chain of type II, and
each matrixz appearing in any of these chains also supports a
commutalor chain of type II, etc. We may construct these chains
so that any matriz appearing in any of these chains is similar to
C in M,(K).

THEOREM 15. Let p # 0. Let Ce M, (K) have elementary divisors
(21). Then C supports a commutator chain (37) of type II and
arbitrary length t within M, (K) in which Y, Y, Y, ++-, Y, are
similar elements of M (K) and X,, X,, ---, X, are similar elements
of M,(K).

Proof, In the proof of Theorem 9, we expressed C in the form
(19) for a certain A4, Be M,(K). The elementary divisors of B may
be calculated from Lemma 2, and they turn out to satisfy the condi-
tions (20) of Theorem 9. Hence if we set X, = A, Y, =B, then
Theorem 14 applied to Y, produces the rest of the chain,

THEOREM 16. Let p =+~ 0. Let g(\) be a polynomial over K of
degree m with m = 0 (mod p). Let C = C(g(\)) + +-- + Clg(\)) where
Clg(\)) appears v times with r = 0(mod p). Then C supports a
commutator chain (37) of type II and arbitrary length t within
M, (K) such that X, and Y, are similar elements of M, (K) and
such that Y, Y;, ---, Y, X,, X, -++, X, are all similar in M, (K).
If g(\) has monzero constant term then we also have X, svmilar to
X..

Proof. By taking direct sums it suffices to consider the case
r=p. Letd,, . =@+1—-—a)Cogl)for2=oa =< pandlet B, ., =
I, for 1= a<p Let A= (Auphzmps, 2nd B = (Bup)iza,ps, Where A,
and B,, are all m-square, where A,; =0 if 8% a — 1, and where
B,,=0 if Bs=a+ 1. Then C= (4, B), (C,A4)=(C,B)=0. The
elementary divisors of B can be found from Lemma 4; they are \?
with multiplicity m. If g(\) has nonzero constant term, the elementary
divisors of A can also be found from Lemma 4; they are also \? with
multiplicity m. Let X, = A, Y, =B. Let C, be p*square with
elementary divisors A\? with multiplicity p. Matrix B is similar to
the direct sum of m/p copies of C,. It will therefore suffice to con-
struct the rest of the chain for C,. The elementary divisors of C,
fall into classification (21) of Theorem 9, with »r =p and ¢ =
e =---=¢,=p. S0, as in the proof of Theorem 9, we express
C, = (4, B) with (C,, 4)) = (C,, B) = 0. The elementary divisors of
B, can be computed from Lemma 2; they turn out to be X, \* A5 -+ A2,



312 R. C. THOMPSON

each with multiplicity two, and A? with multiplicity one. The
elementary divisors of A, can be computed from Lemma 3; they turn
out to be A* with multiplicity ». Since B, satisfies all the conditions
in Theorem 14, the existence of the rest of the commutator chain
now follows from Theorem 14. This finishes the proof.

We remark that by varying this general theme, many other
commutator chains may be constructed involving matrices from a
small number of similarity classes. Let the reader experiment for
himself!

We now present two corollaries which summarize some of our
results and which show interesting parallels between commutator
chains of types I and II.

COROLLARY 3. Let p =0 or p >n. Let Ce M (K). Then ecach
of the following statements (a), (b), (¢), (d), (&) implies all of the
others,

(a) C supporis a commutator chain (36) of type I within M, (K)
of some length t;

(b) C supports a commutator chain (36) of type I within M (K)
of arbitrary length t;

(¢) C supports a commutator chain (36) of type I within M (K)
of arbitrary length t in which C = Y, = . = Y,and X, = -+ = X;

(d) C is nilpotent;

(e) C is a sum of commutators (3) within M, (K).

COROLLARY 4. Let p =0 or p >n. Lot Ce M (K). Then each
of the following statements (a), (b), (c), (d), (e) implies all of the
others.

(8) C supports a commutator chain (37) of type Il within M, (K)
of some length t;

(b) C supports a commutator chain (37) of type I1 within M, (K)
of arbitrary length t;

{¢) C supports a commutator chain (37) of type I within M (K)
of arbitrary length t in which Y, Y,, ---, Y, are all similar to C,
and X, X,, -+-, X, are all similar;

(d) C is nilpotent with elementary divisors in the form (20);

() C is a sum of commutators (9) within M, (K).

8. Construction of block stripe matrices with prescribed
eigenvalue. Let C be presented in partitioned form as C = (C;))<;,;<s,
where C;; is an ¢; X ¢, stripe matrix, 1 < 4,5 < k. Because of Theorem
2, it is of interest to determine when such a matrix can have a single
nonzero eigenvalue, We show that matrices C with these prpoerties
are extremely plentiful, and we construct them all. In the process
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of this, we use a theorem (Theorem 17) due to Williamson, and in
Theorem 18 we develop what amounts to an extension of Williamson’s
result. Let

(39) 6 =6, = -0 =g
be any nondecreasing sequence of positive integers and let

(40) << e < S

be the distinet integers in (39), where f; appears with multiplicity m,
in (39), 117 <s.

Theorems 17 and 18 deal with matrices more general than the
matrix C above in which we are interested.

THEOREM 17. For 1 =1,5 = v, let V;; be an e-square triangular
matrix (zeros below the main diagonal) and let diag(v;;, v, -, vy,
be the main diagonal of V. Let V.= iahsij<r, and let V=
(Viphsiisre Then V and diag(Vy, V,, -++, V) have the same
ergenvalies,

Proof. In |6, Theorem 1], a similarity transformation of V is
exhibited which converts V into a block triangular form with blocks
V., Vs +++, V, on the main block diagonal.

Note that, because of Theorem 17, when evaluating the eigenvalues

of V, one may replace all elements strictly above the main diagonal
of V,; with zeros, 1 <1, 5 = 7,

THEOREM 18. Let matriz M;; be e; X ¢; such that: (i) if e; = e;,
the (a, B) entry of M;; is zero whenever « > f8; (ii) of e; < e;, the
(e, B) entry of M;; is zero whenever a = f; 1 =14,j =k. Let M=
(M;;)izi,;=1. Let Ny = M;; if e; = e;, and let N;; be the e; X e; zero
matriz of e, #e; 1=1,5=k. Let N=(N;)icijzr. Then M and
N have the same eigenvalues.

Proof. The theorem says that in evaluating the eigenvalues of
M, the nonsquare blocks don’t matter. We prove the theorem by
induction on the integer s in (40). If s =1, all blocks in M are
square and so M = N. Now let s > 1. Find integers a, b(a < b) such
that e, < fo, if a=2a; e.=f,_, if a<a=Z=a-+0b; and ¢, =f, if
a+b<a=sk If s=2 then a =0 and there are no ¢, < f,_,. We
now partition certain of the blocks in M. We let

af —
Ofs—fs__lyeﬁ

fora >a-+band 18 =a -+ b
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Mg = (Mg, Mop)

where Mls is e, X f,_. and MU is e, X (f, — fo_), for 1=a=a+b

and £ > a + b;
14 r
af af
[ ]
Fo—=Fspfs—q B

fora >a -+ band 8> a -+ b.

After an interchange of rows in A/ and then the same interchange
of columns in the result (a similarity transformation), we transform
M into M where (let v = a + b):

/Mn v Mz» *M{,uﬂ e M;k M;,’»—‘; 1 0 1’1; b

Mm v Mw My’,u+1 cee ]!-/[u,l; iM»’,,pH cee :IL
? ’ 4 ’
Mrwl.i et Mw-l,u My+1,»+1 oo Mr;—‘rl,k Mry’i&,»:—l e v’u,k

M= : ; : : :
! 7 7 14 ’ 122 144
M e-e M, M, - M, M. --- M
4
0 «ee 0 0 Y M:g—l,vi,—l tee u”l»’l,k
7 1244
Lo .0 0 0 M. e M

Thus the eigenvalues of M are the eigenvalues of

M, -« M,
(41) : Co

My« - M,
together with the eigenvalues of

M»/:‘—,l,»v}-l A Mjrllk

(42) : :
Mlgfiv}l ce Mzﬁk’
However, the induction hypothesis applies to (41), since the blocks in
(41) have dimensions f; X f}, -+, f,_; X fi,_;. Therefore in evaluating
the eigenvalues of (41) we may replace all rectangular blocks in (41)
with zero blocks. Using the induction hypothesis for s — 2, we get

that the eigenvalues of M are the eigenvalues of (43), together with
the eigenvalues of (44) and (42):

Mu ot ]Wu;|
(43) L
Iﬂal 0 MMLJ
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M oianr v Moy Moy oo e Moia i)

4 ’
M, - M, M,, ---M,

(44)
' ’
M:+1,a+1 et Mv+1 v »—’—1 RS Mu+1,k

I4
7 F ---M,:y M,ﬁ,yH e ML S

This is because the blocks in (44) are all the f,_;-square blocks in (41).
By Theorem 17, we can replace all elements above the main diagonal
in each block of (44) with zeros. Because the main diagonal of each
block M);, a <i =y, v <j =k, is already zero, it follows that the
eigenvalues of (44) are the eigenvalues of (45) together with the
eigenvalues of (46).

PMMLI,“H tee Ma+1w
(45) : SRE
~My,a+l MR Mw J
—My,+1,y+1 ¢ Mv’+1,lc—
(46) : :

’ ’
_Mk,w+1 e Mkk

Now, by Theorem 18 for s -— 2, the eigenvalues of N are the
eigenvalues of the direct sum of (43), (45), and (47).

Mv+1,u+1 e Mu+1,k
47)
Mk,»+1 M Mkk

But the same row and column interchanges that converted M into I
converts (47) into a matrix of the form

X Y

oz
where X is (46) and Z is (42). Therefore the eigenvalues of (42)
and (46) together are the eigenvalues of (47). This completes the
proof.

It follows from Theorems 17 and 18 that all C = (C;;),<;,;<: (Where
each C;; is an e¢; X ¢; stripe matrix) for which C has a single
eigenvalue v can be constructed as follows. To construet the main
diagonals of the f;-square blocks in C, select any m;-square nilpotent
matrix E; and let F;, =~I, + H;. Let F; = (fup)capsm;. Let a =
fim, + ooo + fi_m,;_,. Then the blocks in C which are to be fi-square



316 R. C. THOMPSON

are C, a5 for 1 =, 8= m,. Let the diagonal element of C,, ...
be fup, for 1 = a, 8 =m,;. Do this for 1 <17 =<s. Choose arbitrary
values for the remaining stripes in the blocks of C. The C has v
as its only eigenvalue.

Added im proof. Theorem 18 appears to overlap the result con-
tained in the corollary on p. 240 of the paper On the characteristic
values of the matrix f(A, B), by W.E. Roth, Trans. Amer. Math,
Soc., vol. 39 (1936), 234-243.
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