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The functien space considered is that consisting of the
complex-valued, quasicontinuous functions on a real interval
[a, b], anchored at @, and having the LUB norm. It is shown
that each bounded linear functional on this Banach space has
a Hellinger integral representation. A formula for the norm
of the functional is given in terms of the integrating functions
involved in its representation. A new existence criterion for
the Hellinger integral is uncovered on the way fo the repre-
sentation theorem.

2. Definitions. In this section certain definitions and notational
conventions are adopted for use in the succeeding sections. Throughout
the paper, [a, ] will denote a given interval and the word function
will mean map from |a, b] into the complex numbers.

DEFINITION 2.1, If ¢ is any number in (a, ], then B, denotes a
function such that R(t)=0 if ¢ is in [a,¢) and B(t) =1 if et < 0.
If ¢ is in [a, ), then L, denotes a function such that L,(¢) = 0 if
a=st=cand L(t)=11s ¢ is in (¢, b]. The functions L, and R, are
called unit step functions. A linear combination of unit step functions
is called a step function. Notice that each step function vanishes at a.

DerFiNiTION 2,2, We now specify the function space, Qfa, b],
which plays the central role., Its elements are the quasicontinuous
funections anchored at a¢ and they may be defined in two ways. Tirst,
Qfa, b] is the set of all functions which vanish at ¢ and which have
a limit from the right at each ¢ in [a, ) and a limit from the left at
each ¢ in (a, d]. Second, let Bja, b] be the Banach space of bounded
functions, with LUB norm. Then Qa,b] is the closure, in Ba,b], of
the linear space of all step functions, So @Qfa, b] is a Banach space
with norm ||| = LUB|z(t)| for all ¢ in [a, b]. Also, each bounded
linear functional on @QJa, b] is determined by its values on the step
functions, since the latter form a dense linear subspace,

For proof of the equivalence of these two formulations of Qfa, b],
see [1, Lemma 4,16].

DeriNITION 2.3, Suppose ¢ is any subset of [a,8]. If = is a
function, then z, denotes a function such that z,(¢) = «(¢) if ¢ is in ¢
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and ®,(t) = 0 if ¢ is in [a, b] but not in g. If F is a linear functional
defined on @Qa, b] and it is true that x, is in Q/fa,b] for each 2 in
Q.fa, b}, then F, denotes a linear functional such that F (x) = Fl(x,)
for each 2 in Qea, b].

DEFINITION 2.4. “v has bounded slope variation with respect to
#” means that v is a function, # is a real-valued, increasing function,
and there exists a nonnegative number B such that if {t,}:_, is a
subdivision of [a, ] with n > 1, then

& v(tp~!—1> — /U(tp) _ /U(tp) - /v(t]m——l)
p=l u(tpﬂ) - u(tp) u’(tp) - %(tp—l)

The least such number B is denoted by Vi(dv/dw) and is called the
slope variation of » with respect to u over [a, b].

= B.

DEFINITION 2.5. Suppose each of u, v, and w is a function and u
is increasing. “The Hellinger integral bdwdv/du exists” means that
dewdv/du is a number and for each pogitive number ¢ there exists a
subdivision D of [a, b] such that if {¢,}%, is any refinement of D then

S” dwdv & [w(t,( — wit, ) - [v(t,) — v(t,-))]
« du 1 w(t,) — w(t,_,)

< &
Clearly, this integral has a unique value,

DEFINITION 2.6. If u is an increasing function and v is a function
and ¢ is in [a, b) then “D;v(c) exists” means that

v(t) — vlc)
ot u(t) — u(c)

exists and equals D,jv(¢). The notation D wv(¢) is used in a corre-
sponding manner for numbers ¢ in (a, b].

3. Lemmas. This section contains results which are used in the
proofs given for theorems in §4.

LemmA 3.1, If n is an integer greater than 2 and ke ki ---,k,
18 a sequence of complex numbers and e, e, -+, e, 1S a sequence of
positive real numbers then

S ch_l'

p=1 6p+1 ep
= 1(%) R Y N O S ATy S )
T e, \i=1 ! p=1 ol

Sie, Sie,

g=1 q=1

%
Z eq eq
g=1
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Proof by induction. For the case n = 3,

lkg—kg_kgvkl\leg—klﬁ_ls]—ko
63 62 ‘ 32

€y

:|k3—k2_k2—kll+ﬁ ko —k k- k,
€3 € el e + e 6
by — Ly ki — K
¢, + e e

But by the triangle inequality, the sum of the first two terms of the
right-hand member is greater than or equal to

l (ks — ko) — (ks — k) _ (fey — ko) — (B — ko)

(2 €y
(]52 — ko)@l _ ke, — k,
e + @) €,
_ I ky —ky (b — ke, + e + &)
[ 6:3(61 + 62)

Thus it may be seen that the conclusion is true for this case.
For the final step in the induction we begin by noting that

SR Ly M ey Sy B VY S S
p=1 €pi1 €y e Ly L
25 256
g=1 g=1
1 w koo — k k,—k
+ . Z eq n:}yl 0 __ %n 0
€ g=1 :
n+1 eq Z eq
q=1 ¢=1

is true provided the last term of the left-hand member is greater than
or equal to the sum of the last term of the right-hand member and

But this is true provided the sum of the last term of the left-hand
member and

1 n—1

e <qz=1 eq>

is greater than or equal to the last term of the right-hand member,.
This last sum, is, by the triangle inequality, greater than or equal
to

kn — ko __ kﬂ——l - ko
n n—1

> ¢ €

1

g=1 7=
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(kn+i _ ko) ' (kn _ ko) . (k% - ko) _ (kn—l - ko)

€n+1 28

n—1
(kn - ko) ° (Z{eq knml _ kn

+ ~ .
€n* Z € "
q=1
n+1
koo — ks _ (ky — ko) - c}gi 2
= . "
i evﬁ—l * z‘f eq
q=

Thus each of the inequalities is true. Hence Lemma 3.1,

LeMmA 3.2, If m is an integer greater than 2 and ko, k., -+, k,
s @ number sequence and s, S, +-+, 8, 18 an increasing real number
sequence, then

1

8
l

—k
— 8

by — by ky — Iy

Spr1 — 8 Sp — So

=11 8

P kp_kzwilg

P Sp - sp——l t P

P

M

i

p+1 L
This result follows immediately from Lemma 3.1 by the transfor-
mation: s, —s,, =¢, for p=1,32, -

LEMMA 3.3, If v has bounded slope wvariation with respect to
u then Djv(t) exists for each t in (a,b] and Djv(t) exists for each
t in [a, b).

Proof. Suppose ¢ is in [a, b) and limit, ., (v(£) — v(¢))/(u(t) — u(c))
does not exist. Then there exists a positive number ¢ such that if »
is in (e, b) then there exists a number s in (¢, ») for which

l v(r) — v(e) _ _v(s) — v(c)

u(r) — ue)  u(s) — u(c)

It may be seen, then, that if = is an integer greater than 2 there
exists an increasing number sequence s, s, ---,s, with s, = ¢ and
each term in [e, b] such that

n—1

Q)(SpH) _ 'U(C> ( p) W(C) l > (7@ 1)5 .
W(spi) — ule)  uls,) — ule)

But from this inequality and Lemma 3.2 it follows that

(8ps1) — W(s,)  v(S,) — v(8,.1)
’Z/L(Sm 1) ’H/(Sp) %(Sp) - u(sp—l)

i = (n — 1.

p=1
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Since there exists an integer n for which (n — l)e > Vi(dv/du), this
is a contradiction. Hence D;wv(c) exists for each ¢ in [a,b). An
argument similar to that just given shows that D;w(c) exists for
each ¢ in (a, b]. Hence Lemma 3.3.

LEMMA 3.4. Suppose v has bounded slope variation with respect
b
to w. Iftis in (a,bl, theng dR,dv/du exists and is equal to Drv(t).
b a
Iftisin [e,b), tkenS dL.dv/du exists and is equal to Djv(t).

This lemma follows readily from Lemma 3.3 and the observation
that, in each of the two equations implied by Lemma 3.4, each ap-
proximant for the right-hand member is an approximant for the left-
hand member.

LEMMA 3.5. If v has bounded slope variation with respect to u
then the functional F, given by
F(z) = S" dxdv ’
du

a

18 linear om its domain, the dv/du-integrable functions x, and these
form a linear space.

Proof of lemma is not given.

LEmMMA 3.6, If S is a step function and v has bounded slope
variation with respect to u then

ex1sts.

S” dSdv

a du
This lemma follows from Definition 2.5 and Lemmas 3.4 and 3.5.

LemmaA 3.7. If a mormed linear space A may be written as a
direct sum A = B C of two of its subspaces in such a way that

llall = Max {|| Pria) ||, || Pra) |}
for each a in A, then
WE| = [[FoPr|| + || FoPrll,

for each bounded linear functional F on A.

Proof of this lemma is not given.
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LemmA 3.8. Suppose h is subset of [a,b] and f and g are
mutually exclusive subsets of h whose union s h. Suppose, moreover,
that if x is any function in QJla, b, then each of x,, x,, and x, is
wn Qla, bl. If F is a bounded linear functional from QJa, b] then
each of F F, and F, is a bounded linear functional and

WEN + [ F Al = F i = || Fl .
This lemma is a mere application of Lemma 3.7.
4. Theorems. In this section a representation for the bounded
linear functionals on @Qa, b] in terms of the Hellinger integral is

developed and a formula for their norms is given.

THEOREM 4.1. If x is in Qla, b] and v has bounded slope vari-
1
ation with respect to w, then | dxdv/du exists and

Szdxdvl _{Vb_ + 1Dy v(b)l}HxH .

Proof. Let S, S, S;, --- be a sequence of step functions such
that || S, — x|l <1/p if p is a positive integer. Suppose n is an
integer greater than 1, {{,}7., is a subdivision of [a,b] and ¢ is a
positive integer. Then, using summation by parts,

S (tp 1)][ ( p) — /U(tp—lﬂ
Z u(tp) u(tp—l)

— = 'U(tpﬂ) - ?J(pr) _ ’Z)(?fp) _ v(tp~1)
B p>;‘1 S"(t”){ w(t,y,) — wlt,) w(t,) — u(t,_,) }

+ S,(t,) v(b) — v(t,_1)
S ) — ultn)

It is thus evident that the left-hand member of this equation is, in
absolute value, less than or equal to

IS, || {V,f—(—zi + ( v(b) — v(¢,)
w(b) — u(t,_,)
From this and Lemmas 3.3 and 3.6 one may conclude that
> dS,dv l <11S {V” dv }
| Lo | < s, {2 22
(It is to be noted that this inequality holds true with S, replaced by

any other function in @,[a, b] for which the integral exists). If m is
an integer greater than g, then, since ||S, — S, || < 2/q, it follows that
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SbMJ = %{V;%+ §D;v(b)]}.

a du

Consequently, the sequence

e

is a Cauchy sequence and so has a sequential limit., Call this limit
b

I, We now show that the approximants to S dxdv/dv tend, under

refinement, to 1.

There exists a number B such that
V:_d_z_)_ . v(b) — v(t)
du u(b) — u(?)

for each ¢ in [a,b). Since |jz — S, || < 1/p for p=1,2,.--, it follows
that

i {w(s)) — Sy(s) — [®(5:0) — Sps:_)Hv(s:) — v(si)] l < —TB_
=1 w(8;) — U(S;_1) VY

for any subdivision {s;}7, of [a, b] and any positive integer p. For
each positive integer p there exists a subdivision D, of [a, b] such
that if {s;}7, is any refinement of D, then

& [Sp(si) — Sp(si—l)][@(si) — v(s:_1)] _ Sb dspd”l < B

u(s;) — w(s;_y) . du »

@
I
~

Since

SbM—I|§?£ forp=1,2,--
e« du P

it follows that, for each positive integer p,

& Jals) = afs; v(s) — vls: ] _ 1] < 4B
=1 ’I/L(S%) — u(si—l) p

b
provided {s;}%, is a refinement of D,. Hence | dazdv/du exists and its

value is I. That the integral satisfies the ineqaality of the conclusion
may be seen from the parenthetical note above, Hence Theorem 4.1,

THEOREM 4.2, Suppose v has bounded slope variation with re-
spect to u and F is the functional defined by

Fo= [
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Jor each = in QJla,b]. Then I is a bounded linear functional whose
norm ts Vi(dv/du) + | D;v(b)|.

Proof. It is clear from Lemma 3.5 and Theorem 4.1 that F
is linear and bounded and that the norm of F' does not exceed
Vi(dv/dw) + | Dyv(b)|. We now construct a function z in Qa,b] such
that [|z]| = 1 and F(z) equals the sum of |D;v(b)| and the approxi-
mant for V(dv/du) corresponding to a preassigned subdivision of [a,b].

Suppose {t,}7_, is a subdivision of [a, b] with # > 1. Define d,,
for p=1,2, ---,(n — 1), by

— ’U(tpl—l) _ /U(tp) _ ,U(tp) s /U(tp—l)
u(tp+1) - u(tp) u(tp) - ’M/(tp~1)

P

if this expression is not zero and d, =1 if the expression is zero.
For p=1,2 ... (» — 1), let z, be a function such that

o wt) —ult, ) | [dy |
u(t,) — wWt,m) d,

for t in [¢,_, t,]

Zp(t) = _ u(tp+1) - /M/(t) . [dpl for ¢t in [t ; ]
Uty 1) — Ult,) d, py Upt1

0 for ¢ in [a, b] but not in [¢,_, ¢,:4] .

If D;v(b) =0, let z, = R,. If D;v(b)+ 0 let z, = (D;v(b)/| D;v(b)|)R,.
Finally, let z = 37, 2,.
Each of z, 2,2, ---, %, is in Q,a, b] and it may be verified that

.
b

S” dz,dv [ ) — v(t,) vt — v(t, ) ] |d,|
- du Wty — alty)  ulty) — ult, ) d

p

for p=1,2, -+, (n — 1) and Sb(dzndv/du) = | D;v(b)|. Hence,

gb dzdv B n—1
a du p=1

Q)(ter) - ’U(tp) o ’U(tp) — /y(tﬂ__l) ~ E
%(tp+1) - u(tp) u(tp) _ u(tp_-l) [ + lDu, ’U(b)]

If ¢ is in [a, t.], then

u(t) — w(a)  |d|
u(t,) — w(a)  d,

!gl.

0] = | -

If tis in [¢,_., b), then

u®) —w@)  |d,.|
u(®) — u(t,.)  d,,

!gl.

)] = |~

If pisoneof 1,2, ..., (2 — 2) and ¢ is in [¢,, ¢,.,] then
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l2(t)] = | — wt) — wty)  Ndpuil  ultye) —u®) 1d,[] <4
Utpr) — ulty) iy Wtpe) — u(l,) dp | )

And |z(b)| = 1. Hence ||z = 1.
It may be inferred from the foregoing that the norm of F is not
less than Vi(dv/du) + | Dyv(b)|. Hence Theorem 4.2,

THEOREM 4.8, If F' 1s a bounded linear functional from Qa,b]
then there exist two functions u and v, with v having bounded slope
variation with respect to w, such that

* dedv
a du

F(z) = X
for each x in Qla, b].

Proof. Suppose ¢ is in (a,b]. If » and s are numbers such that
a < r<s<e then, by Lemma 3.8, [|Fi.i|l=| Fi,.l =0. Conse-
quently, limit,., || F,,. || exists. Let )\ denote the function such
that A\(¢) = limit,_,_ || Fi,,, || for each number ¢ in (a, b] and Ma) = 0.
Similarly, let o denote the function such that o(c) = limit, ... || Fi.., ||
for each ¢ in [a, b) and p(b) = 0.

Now it may be seen from the definition of » and Lemma 3,8 that
if {t,}2-, is a subdivision of [a, b], then

M) S F

A similar statement is true of p. Thus there exists a countable
subset M of [a, b] such that if ¢ 1s in [e, b] but not in M then
ME) = o(t) = 0.

Let u denote an increasing function such that (1) if ¢ is in (a, b)
and \t) > 0, then w(f) — w(t—) >0, and (2) if ¢ is in [a, b) and
o(t) > 0, then u(t+) — w(t) > 0. For each ¢t in [a, b] let u, denote
the function such that u,(s) = 0 for a < s £t and wu,(s) = u(s) — u(t)
for t =s=b. Let v denote the function such that »(¢) = — F(u,) for
each ¢ in [a, b].

Suppose {t,}r, is a subdivision of [a, b] and % > 1. Then, by the
definition of v and the linearity of F there exists a number sequence
{d}ezl, with |d,|=1for p=1,2, .-+, (n — 1), such that

pip=1y

”Z_l W(typ) — () v(t,) — v(t, )
p=1 u(tm—i) - u(tp) u(tp) - u’(tp—l)

= F(i‘g‘:[ utpﬂ - utp . utp _ utf"‘l Jdp) .
=1 U(tyes) — wl(l,)  uw(l,) — w(l,my)



336 JAMES R. WEBB

It may be verified that the norm of the function which is the argu-

ment of F in the right-hand member of the equation is 1. Conse-

quently the left-hand member is less than or equal to || F'|]|. Thus it

may be inferred that v has bounded slope variation with respect to wu.
Let G denote the bounded linear functional such that

* dadv
o du

G(z) = S

for each « in Q,a, b]. Suppose ¢ is in (a, b]. By Lemma 3.4
G(R,) = D;v(c)

G(R,) = limit 2(¢) — (&)
t—o—  u(c) — u(t)

=it P (S )

For ¢ in (a, ¢), one has
0 if s is in [a, t]

’___.____Ws) —u(8) Rc(s)‘ < {Mem) = ul) ip g igin (4, )
w(e) — u(t) u(e) — u(t)

0ifc<s=<bh

so that

I v(e) — v(t) F(R)
u(e) — u(t) ‘

= [Fuo( s~ R)

u(c—) — u(t) <||F

S 1 Fu - A= ol

Now limit, . [ Fi,,., || = Me). But if Afe) > 0, then u(c) — u(c—) > 0
so that

limit #e—) — w) _ g
o= u(c) — u(t)
So, whether \(c¢) is positive or zero, one has that

limit | 29 =@ pryl=o.
tme— | u(c) — u(t)

Hence F(R,) = G(R,) for each ¢ in (a, b]. A similar argument shows
that F(L,) = G(L,) for each ¢ in [a, b). Therefore F(S) = G(S) for
every step function S. Thus, F'= G. Hence Theorem 4,3, Clearly,
the norm of F' is given by the expression appearing in Theorem 4.2,
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