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In recent years interest has been focused on the following
two questions.

ΐf G is an upper semi-continuous decomposition of Ez

whose decomposition space G' is homeomorphic to Ez, under
what conditions can we conclude that

(1) each element of G is point-like?
(2) there is a pseudo-isotopy F: E*x[0, Ϊ\->EZ such that

F\E*xO is the identity and F\E*xl is equivalent
to the projection map Π: Ez -> G ?

An example of Bing of a decomposition of Ez into points, circles,
and figure-eights shows that some additional hypotheses must
be inserted. The theorem presented here gives such hypotheses,
namely that the nondegenerate elements form the intersection
of a decreasing sequence of finite disjoint unions of cells-with-
handles, and project into a Cantor set.

For definitions and notation see [1]. In the example of Bing
previously mentioned, the image of the union of the nondegenerate
elements H* under the projection map II is an arc. Thus, the first
condition one might impose in an attempt to answer the above questions
is that 77(iϊ*) be a Cantor set. I suspect that this is sufficient, however,
that is still unknown. We use an additional hypothesis here.

THEOREM. Let G be an upper semi-continuous decomposition of
E* whose decomposition space G' is E3 and let the image Π(H*) of
the union of all the nondegenerate elements be a Cantor set. Suppose
also that G is definable by cells-with-handles, that is

where each Ci5 is a cell-with-handles, Ci3 Π Cik = 0 for j Φ k, and
U S Cίj is contained in the point-set interior of \Jfir1 Ci_uj for i —
2, 3, . Then each element of G is point-like and there is a pseudo-
isotopy F: Ez x [0,1] -* E* such that G = {F-\x, 1 ) } ^ .

Proof of the theorem. By Bing's approximation theorem, we can
assume that each Ci3 is polyhedral. We will rely on the following
theorem of Hempel [3].

THEOREM (Hempel). Suppose C and C" are polyhedral Z-manifolds
with boundary in S3 such that C is a cell-with-handles and such
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that there is a map f of C onto C which takes Bd(C) homeomor-
phically onto Bd (C). Then C and C" are homeomorphic; in particular,

can be extended to a homeomorphism of C onto C.

We will first show that if g e G, then g is point-like. Let U be
some neighborhood of g. Then some Ci3- of the theorem is such that
g c Int Ciά c Ci3- c C/. We will find a cell C such that # c Int C c Q .
/7(#) is a point and Π(g) e Int Π(Ci3) so there is a cell C" such that
Π(g) e Int C" c Π(Ci3). For this fixed C" there must be an i' and a
j ' such that Π(g) e Π{CiΊf) c Int C". For each & = 1, 2, , /', , #<,
we will modify /7 on C*,,*. so that the new map Πf is a homeomorphism
except on Cif,jf. We can do this because of HempeΓs theorem. It is
then easy to show that Πf~\Cf) is the cell C we are seeking, since
/7'-1 is a homeomorphism on Bd C".

In order to prove that G' may be realized by pseudo-isotopy we
need only show the following lemma is true. The theorem will then
follow [2].

LEMMA. // G is as in the theorem, ε > 0 is given, and U is
any neighborhood of H*y then there is an isotopy F: E3x[0, ϊ\-+E*
such that F\Ezx0 = 1, F(x, t) = x for all xe E3 — U, te [0, 1], and
for each g e G, F(g, 1) has diameter less that ε.

Proof. There is an i such that Ciά c U for j = 1, , N^ We
will take F(x, t) = x for all xeE* — (JfiC^. For each j there is a
homeomorphism fe^: Π(Ciό) -—• Cί:/ which agrees with /Z"1 on the boundary
and we will define a map Πf: E3-^ E3 as follows. For all
x e E3 - Ufii Cϋ let /Zr(a;) = x. For α: e Ci5 let /7r(x) = Λy/7(a;). There
is an integer k such that Π'(Ckl) has diameter less than ε for each
I = 1, 2, , JVfc. We may also assume that 77' is piecewise linear on
E3 — (JfJilntC^. Using HempeΓs result again we modify Πr on
each Ckl so that the new map Π" is a piecewise linear homeomorphism
agreeing with Πr everywhere except in \J?d\IntCkι. Note that for
each geG, diam Π"(g) < ε. The proof is completed by the following
lemma.

LEMMA. Let C be a polyhedral cell-with-handles in E3 and let
h be a piecewise linear homeomorphism of E3 onto itself such that
h \Bύo is the identity. Then h \0 is isotopic to the identity.

Proof of lemma. This lemma appears to be well known, however,
an outline of the proof is included for completeness. Since C is a
polyhedral cell will-handles, there is a collection of mutually disjoint
polyhedral disks A , Dn with Dt Π Bd C - Bd Di9 Int D{ c Int C and
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such that C is the union of two cells C1 and C2 whose intersection is
ULi A . Since &(A) is polyhedral and h(Di) Π Bd C = A Π Bd C there
is an isotopy H: Cx [0,1] — C with iΓ(x, 0) = /&(α) iϊ(α;, £) = x for all
α;eBdCand£e[0,l] and#(α, 1) = afor αe U?=i A . Then if: Cx 1->C
is a homeomorphism of C onto itself which is the identity on Bd CΊ (J Bd C2

and we may find the appropriate isotopy returning H: C x 1 -+ C to
the identity.

Question. In the theorem is the requirement that each Ci3 is
a cell-with-handles necessary? Certainly since the image of the union
of the nondegenerate elements is a Cantor set in Ez, it has this cell-
with-handles intersection property. It is true that a 3-manifold-with-
boundary need not be a cell-with-handles in order to map onto a
cell-with-handles with a map which is a homeomorphism on the
boundary; however, I believe that these maps would have to have a
continuum of nondegenerate elements. The maps we are considering
have only a Cantor set of nondegenerate elements.
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