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Throughout this note let G be a lattice-ordered group
(“1-group”). G is said to be representable if there exists an
1-isomorphism of G into a cardinal sum of totally ordered
groups (‘‘o-groups’’). The main result of §3 establishes five
conditions in terms of certain convex 1-subgroups each of
which is equivalent to representability. In §4 it is shown
that there is an 1-isomorphism of G onto a subdirect product
of 1-groups where each 1-group is a transitive 1-subgroup of
all o-permutations of a totally ordered set and that this 1-
isomorphism preserves all joins and meets if and only if G
possesses a collection of closed prime subgroups whose inter-
section contains no nonzero 1l-ideal. Both theorems lead to
results concerning complete distributivity.

G is completely distributive if
AV g,;= \' Girr
rfegt

i€I JEJT i€I
where g¢;, € G and provided the indicated joins and meets exist. Weinberg
{12] has given an equivalent condition to complete distributivity involving
arbitrary joins of elements of G (see Proposition 3.5). In [4] Conrad
shows that a representable 1-group G is completely distributive if and only
if the ideal radical L(G) is zero (in this paper it was denoted by R(G)).
Using this result we are able to show (Proposition 3.8) that for
representable l-groups the Weinberg condition may be reduced to a
condition involving only the joins of pairs of elements. This has been
shown by Bernau ([1], Theorem 8) for Archimedean 1-groups. Holland
[7] has shown that each 1-group is 1-isomorphic to a subdirect product
of l-groups {A,|re 4} where each A, is a transitive 1-subgroup of
the 1-group of all o-permutations of a totally ordered set. Theorem
4.6 generalizes the known result for representable 1-groups (see [12]

or [4]).

2. Notation and terminology. For the standard definitions and
results concerning 1l-groups the reader is refered to [2] and [5]. A
convex l-subgroup M of G is called prime if whenever a and b belong
to G+ and not M, then a A b > 0. A convex l-subgroup (1-ideal) that
is maximal with respect to not containing some g in G is called a
regular subgroup (regular l-ideal). Let I'(I';)) be an index set for
the collection G.(I,) of regular subgroups (regular 1-ideals) of G. We
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shall frequently identify these subgroups with their indices. For each
veI'(Lel') there exists a unique convex l-subgroup G¥ (l-ideal I
of G that covers G,(I,). If g belongs to G* but not G, (I* but not
L), then v(\) is said to be a wvalue (ideal value) of g. FEach regular
subgroup is prime. For completeness we state the following theorem,
a proof of which may be found in [3].

THEOREM 2.1. For a convex l-subgroup M of G the following
are equivalent.

(1) M 1is prime.

2) If a and b belong to G+ but mot M, then a A b belongs to
G+ but not M.,

B) If M2 An B, where A and B are convex 1l-subgroups of
G, then M2 A or M2 B.

4 If Ao M and BD M, where A and B are convex 1-subgroups
of G, then AN B> M.

(8) The lattice r(M) of right cosets of M is totally ordered.

(6) The convex l-subgroups of G that contain M form a chain,

() M 1is the intersection of a chain of regular subgroups.

If M is normal, then each of the above is equivalent to

8) G/M 1is an o-group.

It follows from (6) that the intersection of a chain of prime
subgroups of G is prime and hence each prime subgroup exceeds a
minimal prime subgroup. If S is a subset of G, then [S] will denote
the subgroup of G generated by S. Again using (6) we state a trivial
observation.

COROLLARY 2.2, Let M, ---, M, be convex l-subgroups of G such
that M, is prime. Then [Ur, M;] = [M, U M,] for some k, 1 =k = n.

For 0 == ¢ in G let R,(L,) be the subgroup of G that is generated
by the set of all convex 1-subgroups (1-ideals) not containing g. Then
R,(L,) is a convex l-subgroup (1-ideal) of G and we define the radical
and the ideal radical of G respectively to be

R(G) = N R, 0+ge@)
LG)=nL, O0=ge@G).

Clearly L, < R, for all g in G so L(G) S R(G). A regular subgroup
G, (regular 1-ideal I,) is called an essential subgroup (essential 1-ideal)
if there exists 0 % & in G such that R, € G(L, S I,). In [4] it was
shown that L(G) is the intersection of all essential 1-ideals of G and
a similar proof shows that R(G) is the intersection of all essential
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subgroups of G. In particular R(G) is an l-tdeal of G.

A convex 1-subgroup C of G is said to be closed if whenever
{9.lae A} = C such that V g, exists, then VY g, eC. If acG, then
the polar of a is defined to be p(a) = {xcG||x| Ala] =0} p(a) is
a closed subgroup of G. If S & G, then we define the polar of S to
be p(S) = N p(a)aeS). If C is a convex 1-subgroup of G, then »(C)
will denote the set of right cosets of C and this set is partially
ordered by C + a2 < C +y if ¢ - <y for some ¢ in C. Then »(C)
is a distributive lattice and C + 2 Vv C +y = C + 2 VvV y and dually.
The empty set will be denoted by [0, A\B denotes the set of elements
in A but not in B, and A C B denotes that A is a proper subset of B,

3. Representable l-groups. Sik [11] proved that an 1-group is
representable if and only if all polars are normal, Also in [10] Sik
has announced the equivalence of (1) and (4) of Theorem 3.1. The
author wishes to thank A. H. Clifford who read a rough draft of
this paper and made several valuable suggestions. In particular
Clifford noted that in the proof of (1) implies (3), (2) had been proven.

THEOREM 3.1. For an l-group G the following are equivalent.

(1) G 1is representable.

2) If M is a prime subgroup of G, then the maximal l-ideal
of G contained in M is prime.

3) M and g + M — g are comparable for all prime subgroups
M of G and for all g in G.

4) Each minimal prime subgroup is normal.

B) Mand g + M — g are comparable for all regular subgroups
M of G and for all g in G.

(6) FEach regular subgroup M of G contains a prime subgroup
N such that N is normal in G.

Proof. (1) implies (2). Let M be a prime subgroup and let J
be the subgroup generated by the collection of all 1-ideals of G that
are contained in M, Then J is an 1-ideal of G. Since M is prime,
pla) € M for each a e G'\M. Suppose (by way of contradiction) that
J is not prime. Then there exists b, ¢ in G*\J such that b A ¢ = 0.
Therefore b,cec M. Choose 0 < acG\M. be¢dJ implies ¢ A b > 0 and
cepla N b) implies p(a A b)\J = []. Since J is maximal in M, there
exists 0 <zep(a A b)\M and since M is prime, a A ze G'\M. But
then bep(a A ?) & J, a contradiction, Therefore J is a prime sub-
group of G.

(2) implies (3). Let M be a prime subgroup of G and let geG.
By (2) the maximal 1-ideal J of G contained in M is prime. Therefore
J=g+J—-—9=9+ M-—g. By (6) of Theorem 2.1 it follows that
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M and g +~ M — g are comparable,

(3) implies (4) since inner automorphisms of G preserve minimal
primes.

(4) implies (5). Let M be a regular subgroup and let N be a
minimal prime subgroup such that NS M., Then N=g+ N~ g &
g+ M—g9g. Thus g + M — g and M are comparable by (6) of Theorem
2.1,

(5) implies (6). Let M be a regular subgroup of G. By (5)
N=N{g+ M—g|geG} is the intersection of a chain of regular
subgroups, hence by Theorem 2.1 is prime. Clearly N is normal in
G and is contained in M.

(6) implies (1). For each 0 == ac G, let M, be a value of a. By
(6) there exists a prime 1l-ideal N, such that N, & M,. By (8) of
Theorem 2.1, G/N, is an o-group. The mapping * —(---, N, + , +--)
is an 1l-isomorphism of G into the cardinal sum of the o-groups
G/N,(0 # acG). Thus G is representable.

COROLLARY 3.2. If G is a representable 1-group, then N(G,) =
N(GY) for each ve I, where N(X) denotes the normalizer of X in @G.
Hence G, is normal in G for each ver.

Proof. For vyinI" and z in G,z + G" — « covers ¢ + G, — x.
Thus if xe N(G,) it follows that = + G* — x = G*. Conversely if
xe N(G@),G" =& + G* — « covers ¢ + G, — x. By the theorem G, and
2 + G, — & are comparable, Thus « + G, — 2 = G,.

COROLLARY 3.3. Let G be a representable 1-group and let 0 = g e G.
Then the mapping Gy,— I, = N{x + G, —x|xeG} is a one to one
mapping of the set of all values of g onto the set of all ideal values
of 9. Moreover, I, is prime and is the largest 1-ideal of G contained
mn G, I"=U{e+G —xjxeqG), hence I, = G,cG"<S I'. Finally
G, is an essential subgroup if and only if I, is an essential 1-ideal,
and if I, is essential, then G, is essential for all neIl such that
G, 2 L.

Proof. The first part of this corollary follows trivially from
Theorem 2.1 and 3.1. We prove only the last sentence. Suppose G,
is an essential subgroup. Then G,2 R, 2 L, for some 0<% in G.
Since L, is an 1l-ideal of G, L, < I,. Hence I, is an essential 1-ideal.
Conversely suppose I, is an essential 1-ideal. Then L, & I, for some
0< h in G. Let I; be an ideal value of 4.

Case 1. I; = I, Then h has only one value, namely G, and G,
is essential for all Ael” such that G, 2 G, If I; S Gy, < G, then
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pick 0 < xe GM\G,. Since G, is prime, © A he GN\G, and x A h has
G, for its only value. Thus R,,, S G, and so G, is essential,

Case 2. I, I, Then I; S Gy I?* < I,. Therefore R, < I, and
G, is essential for all x e I” such that G, 2 I,.

COROLLARY 3.4, For a representable 1-group G, R(G) = L(G).

Proof. As observed in §2, I(G)< R(G). Let 0-gecG. If g
has at least two values, then by the preceding corollary we have
I, € G,c L, where « is a value of g. Thus R(G) € R, =< L,. Suppose
that ¢g has only one value, say . Then L, = I, and I, is an essential
1-ideal. Thus G, is essential for all el such that G, =2 I, by
Corollary 3.3. Moreover L, = N {G.1G. 2 I} 2 R(G), as R(G) is the
intersection of all essential subgroups of G. Thus R(G) < L, for all
0+ ¢ in G and it follows that R(G) € I(G).

It was pointed out in [4] that in general these radicals are not
the same. Also in [4] Conrad showed that an 1-group is representable
if and only if each regular 1-ideal is prime. It is easy to construct
examples to show that the converse to Corollary 3.2 and the converse
to Corollary 3.4 are not true,.

ProposiTION 3.5. (Weinberg [12]). An l-group G is completely
distributive if and only if for each 0 < g in G there exists 0 < g* in
G such that g = V g.(ae A), g, G implies g* < g, for some ac A.

For g in G let L(g) denote the 1-ideal of G generated by g. We
shall call % in G ¢-subordinate to g if whenever |g| =g,V ¢,, 0 < g, € G,
then he L(g;) for 1 =1 or ¢ = 2. We shall use the notation & < ¢ to
gignify that & is ¢-subordinate to g. Let T(G) = {geG|h < g implies
h = 0}. In |6] Fuchs defines & to be subordinate to ¢ if whenever
lgl=0,V +++ V 8,0 = g,eG implies he L(g;) for some ¢, There he
shows {g € G|h is subordinate to g implies » = 0} = L(G). A proof
of this given by a trivial modification of the proof of the next lemma,
The hypothesis of representability enables us to cut » down to 2.

LEMMA 3.6. Let G be a representable 1-group and let 0 = he G,
Then h ts not t-subordinate to g in G if and only if ge L,.

Proof. Suppose h is not ¢-subordinate to g. Then there exists
0=g¢,9, in Gsuchthat |g| =g, V g, and & ¢ L(g,) U L(g,). Therefore
ge[L(g) U L(g,)] € L,. Conversely suppose g < L,. Let 4 be the set
of ideal values of A. Then L, = [ {l;]|d<c 4}] and so g ¢ L, implies
gelUri{l,|0:€ 4}]. By Corollary 3.3 each I, is prime. Thus by
Corollary 2.2, ge[L, U I%] for some k, 1 <k =mn, say £k = 2. Then
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lgl = 9.V 9. (4], Lemma 4) where 0 =< g;cL,. Since the I’s are
ideal values of & we have h¢ I;, U I, 2 L(g,) U L(g9;). Therefore £ is
not ¢-subordinate to g.

ProposiTION 3.7. If G is a representable 1-group, then T(G) =
L{(G) = R(G).

Proof. Let ge T(G). Then for each 0% in G,h is not i-
subordinate to g. Thus geL, for all 0= hecG and so ge L(G).
Conversely if ge L(G), then ge L, for all 0 # % in G. Therefore &
is not t-subordinate to g for all 0 = he G and so ge T(G).

ProposITION 3.8. Let G be a representable 1-group. Then G is
completely distributive if and only if for each 0 < ¢ in G there exists
0 < g* in G such that whenever ¢ = g,V ¢,, 9, G*, then g* =g, or
g* = ¢..

Proof. Suppose the condition is satisfied, Then for each 0 < g
in G, g* is t-subordinate to g. Therefore 0 = T(G) = L(G). By the
theorem in [4], G is completely distributive. The converse follows
trivially from the Weinberg condition stated in Proposition 3.5.

4. The Holland representation. For each ne 4 let T, be a
totally ordered set and let P(T,) be the o-permutation group on T),.
Let H = 1] P(T,)(n € A4) be the large cardinal product of the P(T,)
and let o, denote the projection map of H onto the 1-group P(T)).
The pair (¢, H) is an H-representation of an l-group G if o is an
l-isomorphism of G into H such that Goo, acts transitively on T
for all » in 4. The main result of [7] is that each 1-group has an
H-representation. A set {C,|»e 4} of prime subgroups of G is an
H-kernel if [ {C\|x€ 4} contains no nonzero l-ideal of G. The H-
representation (o, H) is called complete if ¢ preserves all joins and
meets that exist in G. In the l-groups P(T,) it is convenient to use
multiplicative notation for the group operation since composition of
function is the group operation and fe P(T,) is defined to be positive
if ¢f = ¢ for all ¢ in T,.

To prove a convex 1-subgroup is closed it is not difficult to show
it suffices to consider only positive elements. Clearly the intersection
of closed subgroups is closed.

ProrosiTioN 4.1, If G, is an essential subgroup of an 1-group
G, then G, is closed.

Proof. Suppose (by way of contradiction) that there exists
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{9.€ G |ac A} such that g = VY g.¢G,. Let \ be a value of g such
that G, € G,.

Case 1, There exists 0 < k& in G such that R, & G, and hegG,.
Then G, - h+9— 9., =Gy +9 — g, > G, for all « and \ is a value
of —h+9g—g,. Let ¢ be any other value of —h 4+ g — ¢g,. Then
h e @G, for otherwise G; = R, S G, = G, and so 6 = A. Thus

Gs—h+9—09.=G+9—9.>Gs.

Therefore —h + 9 — g.>0 ([3], p. 114) for all a. This implies
—h+9g=V g9.=9, a contradition,

Case 2, For all » > 0 such that R, £ G,, h¢ G,. Thus v is the
only value of 2. Now 0=h A g,eG, for all « in A, Suppose
0<hA g, for some a and let Gy be a value of & A g,. Then k¢G,
so Gg = G,. Since h A g,€G, we have GgCG,. Thus R,,, S G,.
But this is impossible by our assumption. Thus 0 = & A g, for all «
in A, 0<yg,heG, implies g A h >0 as G, is prime. But then
0=V @&Ag)=hA(VYg)=hAg>0, a contradiction. This com-
pletes the proof of the proposition.

COROLLARY 4.2. For an l-group G, R(G) is closed.
Proof. R(G) is the intersection of all essential subgroups of G.

COROLLARY 4.3. If G s a representable 1-group and if I, is an
essential 1-ideal, then I, is closed.

Proof. By Corollary 3.3, G, is an essential subgroup of G for
all xe " such that G, 2 I, and [, = N {G\ |G, 2 L}.

If L and L' are lattices and 7 is a mapping of L into L’ such
that (¢ VvV b)) = ax VV br and (a A b)w = an A br for all a, be L, then
7 is called a lattice homomorphism. If, in addition, = preserves all
joins and meets that exist in L, then 7 is said to be complete. If
is the natural mapping of G onto the lattice »(C) of right cosets of
C, where C is a convex l-subgroup of G, then 7 is a lattice homo-
morphism. The following lemma was proven in [12] for 1-ideals.

LEMMA 4.4. Let C be a convex l-subgroup of G and let @ be the

natural mapping of G onto v(C). Then w is complete if and only
if C s closed.

Proof. Suppose C is closed and let {g.|aec A} = G such that
g=V g, exists in G, Then C + g = C + g, for all @. Suppose (by
way of contradiction) that there exists ¥ in G such that
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C+g9g>C+y=C+y,
for all «. Then
Ct+g=C+gVvC+y=C+gVvVy>C+y,
so g Vy—yeC, On the other hand C=C + g, — ¥ so
C=C+g.—yVC=CH+(g.—y) VO
for all . Thus (g, — v) vV 0 C for all @. Therefore

GV -yY=NV9IVY—3=NV0a—y)VO=V({g.— 2y V0.

Since C is closed, g Vy — yeC, a contradiction. The converse is
trivial,

The next lemma can be proven by a direct application of Propo-
sition 3.5 and the proof will be omitted.

LemmaA 4.5, Let H = [] Hy(n € 4) be the large cardinal product
of the l-groups H,., Then H 1is completely distributive if and only
wf H, 1s completely distributive for all )€ A.

THEOREM 4.6. For an l-group G, the following are equivalent.
(1) G has a complete H-representation,
(2) G has an H-kernel {C, |\ e A} where each C, is closed.

Proof. (1) implies (2). Suppose (o, H) is a complete H-represen-
tation of G, where H, ¢ and ¢, are as in the beginning of this section,
For each ne 4 pick ¢, e T, and let C, = {ge G|t 900, = t,}. Then C,
is a prime subgroup (see [7], Theorem 3). Suppose 0 < he ) {Cy|Ne 4}.
Then hoo, > 6, for some \, where 0, denotes the identity in P(T,). Then
there exists sin T, with s # ¢, and s < shoo,. Since Goo, acts transi-
tively on T,, there exists ¢ in G such that ¢,go0, = s. Therefore
ty(g + h — g)oo, = t,. Thus N {C.| 1€ 4} contains no nonzero 1-ideal
of G and hence {C,|ne 4} is an H-kernel. Since polars are closed
the projection map of H onto a cardinal summand is complete. Suppose
{g9.lae A} € C, such that VY g, exists. Then

itV gu)ooy = t\(V (9.00))) =ty

by a theorem of J. T. Lloyd ([8], Theorem 1.3). Therefore V g, C,
and hence each C, is closed,

(2) implies (1). Let {C,|xe 4} be as in (2), For each ne A let
P(r(C,)) be the o-permutation group on the totally ordered set »(C,)
of right cosets of C,. For g in G and A in 4 we define a mapping
o, from G into P(r(C,) by (C, + x)go, = C, +« + g. It is easy to
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verify (or see [7]) that ¢, is an 1-homomorphism of G onto a transi-
tive 1-subgroup of P(r(C,)). Let H = T[ P(»(C,))(x € 4) be the large
cardinal product of the 1-groups P(»(C,)). We define a mapping ¢ of
G into H by go = (--+, g0,, --+). Then ¢ is an 1-homomorphism of
G into H and the kernel of o,

Ko)={9eG|x+g—2eC, for all zeG,re 4 S NCi( e 4d).

Since this intersection contains no nonzero 1-ideals, ¢ is an 1l-isomor-
phism. Therefore (¢, H) is an H-representation of G. Let {g.|lac A} S G
such that V g, exists. Since the C,’s are closed we have by Lemma
4.4 that for each N in 4,

Cr+a) VYV g)or=Cr+2+Vg.=C+ VY (& + 9.
=V i+ 2+ g0 =V (Cy + 2)g.0)) .

For & in H the following are equivalent. % = g,0 for all «; (h), = 9.0,
for all a and all x; (k) = V (9.0,) = (V g.)o, for all x; b = (V g.)0.

Therefore ¢ is complete. This concludes the proof of the theorem.

COROLLARY 4.7. If G satisfies (1) and (2) of the theorem, then
G is completely distributive.

Proof. J. T. Lloyd has proven ([8], Theorem 1.1) that for an
ordered set T, P(T) is completely distributive. Thus by Lemma 4.5, H
(as above) is completely distributive. Since the H-representation is
complete, joins and meets in G “agree” (i.e., under 1-isomorphism) with
those in H. Thus G is completely distributive.

COROLLARY 4.8, R(G) =0 implies (2) of the theorem. Thus
R(G) = 0 implies G is completely distributive,

Proof. R(G) =MN{G,|G, is an essential subgroup of G}. By
Proposition 4.1, each essential subgroup of G is closed and an essential
subgroup, being regular, is prime. Thus {G,|G, is an essential sub-
group of G} is an H-kernel as R(G) = 0, all of whose members are
closed.

In [4] Conrad observed that R(G) = 0 implies G is completely
distributive and gives an example to show that the converse is false.
Also it is shown in [4] that for representable 1-groups the converse
to Corollary 4.7 is true. The answer to this question is not known
for arbitrary 1-groups. Finally, Corollary 4.8 shows that the H-
representation used in [9] (Theorem 2.1) is complete, as the possession
of a basis for an l-group G implies R(G) = 0.
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