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Let ¢ be a closed continuous mapping from X onto Y.
It is an open problem whether the realcompactness of X im-
plies the realcompactness of Y. Concerning this problem, in
case ¢ is an open WZ-mapping, we discuss the structure of
the image space Y under ¢ and give a necessary and suffici-
ent condition that Y be realcompact. We also show that if
X is locally compact, countably paracompact, normal space then
the image space Y of X under a closed mapping is realcomp-
act when X is realcompact.

The notion of realcompact space was introduced by E. Hewitt
[7] under the name of @-spaces. The importance of this notion has
been recognized and investigated by many mathematicians (cf. [4, 7]).
In this paper we shall discuss the relations between realcompactness
and closed continuous mappings and treat also the relations between
pseudocompactness and continuous mappings.

As a generalization of closed mappings!, we have a Z-mapping.
Here we shall introduce the notion of WZ-mappings as a further
generalization of closed mappings. In Theorem 2.1, we shall prove
that pseudocompactness of a space X is equivalent to any one of the
following conditions: 1) any continuous mapping from X onto any
weakly separable space is always a Z-mapping, (2) the projection:
Y x X— Y is a Z-mapping for any weakly separable space Y. We
denote by ¢: X — Y a mapping ¢ from X onto Y; then ¢ can be ex-
tended to a continuous mapping @: X — BY, called the Stone extension
of ¢, where BX and BY are the Stone Cech compactifications of X
and Y resp. (In the sequel we denote always by @ the Stone ex-
tension of ¢). In §4, we shall deal with an extension of an open
mapping, and show, in Theorem 4.4, that if o: X— Y is a WZ-
mapping, then @ is open if and only if ¢ is open. This plays an
important role in § 6. We shall consider in § 5 the inverse images of
realcompact space under Z-mappings. It is known that if ¢ is a
mapping from a given space X onto a realcompact space Y, then
¢-Y) is realcompact [4, p. 148]. In Theorem 5.3, we shall show

t Throughout this paper we assume that all our spaces are completely regular
Ti-spaces and mappings are continuous. We use, in the sequel. the same notations
as in [4]. For instance, C(X) is the set of all continuous functions defined on X.
A subset F of X is said to be a zero set if F = {x; fx) = 0} (briefly, FF = Z(f) = Zx(f))
for some fEC(X). Clsa denotes a closure operation in a space A.
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that if ¢ is a Z-mapping from a space X onto a realcompact space
Y such that every o'(y), yeY, is a C*-embedded realcompact
subset of X, then X is realcompact. In particular, if X is normal
and every o ~'(y), ¥y € Y, is realcompact, then realcompactness is invariant
under .

It is an open problem [4, p. 149] whether the realcompactness of
X implies the realcompactness of ¥ where ¢ is a closed mapping
from X onto Y, or even whether the realcompactness of @-(Y) im-
plies the realcompactness of Y. Concerning this problem, in Theorem
6.2, we shall discuss the structure of a space Y which is the image
of a realcompact space X under an open WZ-mapping. From this
theorem, we shall give a necessary and sufficient condition that Y be
realcompact. Moreover, from Theorem 6.2, we shall establish that if
@ is an open WZ-mapping from a realcompact space X onto Y such
that the boundary #o~'(y) (or Zxp™'(y)) of 7(y), ¥ € Y, is compact,
then Y is also realcompact. This is a generalization of Frolik’s
theorem [2] (Theorem 6.5). As a further consequence of 6.2, the
realcompactness is invariant under an open WZ-mapping if a space
X is any one of the following types; (1) X is locally compact, (2) X
is weakly separable, (3) X is connected, (4) X is locally con-
nected and (5) X is perfectly normal, In Theorem 7.5, we shall prove,
using Frolik’s theorem [3], that if X is locally compact, countably
paracompact, normal space, then the image of X under a closed mapp-
ing is realcompact when X is realcompact. It seems to me that this
is only one case for which realcompactness is proved to be invariant
under a closed mapping without any additional condition. In the
process of the proof of this theorem, we obtain that the image Y of
a locally compact, realcompact, normal space under a closed mapping
@ is locally compact if and only if <o '(y) is compact for every
yeY.

1. Definitions and preliminaries. ¢: X— Y is said to be a
Z-mapping, according to Frolik [2], if o maps every zero set of X to a
closed set of Y. Moreover we shall define a WZ-mapping as a further
generalization of a closed mapping. ¢ is called a WZ-mapping if
cl px(p7(y)) = @'(y) for every ye Y. We shall say that a subset F of
X has the property (*) if we have inf {f(z); x € F'} > 0 for every fe C(X)
which is positive on F., A subset F' of X is said to be relatively
pseudocompact if f is bounded on F' for every fe C(X). A pseudo-
compact subset has the property (*) and a subset with the property (*)
is always relatively pseudocompact, and hence every subset of a pseudo-
compact space is always relatively pseudocompact. We now list some
properties with respect to these concepts.
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1.1. A closed mapping is always a Z-mapping.
1.2. A Z-mapping is always a WZ-mapping.

Proof. Let ze @ '(y) — clgzxp'(y); then there is fe C(6X) such
that f(z) =0, f =1 on clgzp~'(y) and 0 = f < 1.

M=Xn{z; flx) =1/2 xc BX}

Is a zero set of X. Since ¢ is a Z-mapping and M N ¢~ (y) = ¢, (M)
is closed and does not contain y. On the other hand, f(z) =0, and
hence zeclgy M; this implies that

Y = O(z) e D(clgz M) C clgy@(M) = clgrp(M) .

Since (M) is closed in Y, clyyp(M)NY = @(M), and hence, ye Y
implies y € (M). This is a contradiction,

1.3. Let p: X— Y be o WZ-mapping. If either X is normal or
the boundary & p='(y), for every ye 'Y 1is compact, then ¢ is a closed
mapping.

Proof. Let F be a closed subset of X and let y¢ o(F'). It is
easy to see, under the assumption of 1.3, that there is fe C(X) such
that f =0 on ¢o7(y), f=1on Fand 0 < f=<1. Since ¢ is a WZ-
mapping clgzp(y) = @'(¥) and g = 0 on @~'(y) where g is the extension
of f over BX. @ being closed, Y — M is an open set containing y and
o(F) C M where M = @({z; z ¢ BX, g(z) = 1/2}) (y ¢ M is obvious). This
means that y ¢ o(F), that is, ¢ is closed.

1.4, Let F be a closed relatively pseudocompact subset of X. If
either X is normal or F is a zero set of X, then F has the property
(*) (see 3.3 below).

Proof. Let f be a function of C(X)and f> 0 on F. Now sup-
pose that Z(f) = E = ¢. If either X is normal or F = Z(g) for some
ge C(X), then F and F are completely separated, i.e., there is a
function e C(X) such that A =1 on E, h =0 on Fand 0 < h < 1.
Then we have Z(|f] + h) = ¢ which implies k& = 1/(] f| + k) e C(X).
If inf {f(x); x € F'} = 0, then it is easy to see that %k is not bounded
on the closed relatively pseudocompact subset F. This is a contradic-
tion,

1.5. Ewvery zero set of a pseudocompact space has the property
(*) (by 1.4).
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1.6, Suppose that @ is a mapping from X onto Y and every
point of Y is Gs. If a closed subset F' of X has the property (*),
then o(F) 1s closed.

Proof. Let F be a closed subset of X having the property (*)
and let y¢ o(F). Since y is a Gy-point, there is a function fe C(Y)
with f7(0) = {y} and 0 < f < 1. h = fp is positive on F, and hence
h>a >0 on F because F' has the property (*). If ze p(F), then
there is a point x e F' with o(x) = 2. Thus f(z) = f(p(®)) = h(x) > «.
This means that ¢(F) c f~[e/2, 1], and hence y ¢ (F'), that is, @(F)
is closed.

1.7, If, in 1.6, X is pseudocompact, then ¢ is always a Z-map-
ping (by 1.5 and 1.6).

The following theorems are known and useful in the sequel.

1.8. X 1is realcompact if and only if for every point x in
BX — X there is a function f of C(BX) such that f> 0 on X and
fl@) =0 [4, p. 119].

1.9. X s pseudocompact if and only if any family {U,} of
open sets of X, with U, N U, = ¢(n = m), is not locally finite.

1.10. If {U,} s a locally finite family of open sets of a space
X with U,N U, =¢ (n=m) and {a,} is a set of given positive real
numbers and {x,, x,€ U,} is given, then there is a function f of C(X)
such that f=0on X - UU,, f(x,) =a,, and 0= f=a, on U,.

2. Z-mappings and pseudocompactness. A weakly separable
space is a space with the first axiom of countability. The next
conditions which are mutually equivalent, are known; (i) X is compact
(resp. countably compact), (ii) any mapping from X onto Y is closed
for any space Y (resp. any weakly separable space Y), and (iii) a
projection ¢: ¥ x X — Y is closed for any space Y (resp. any weakly
separable space Y) [5,8,12]. In this section, we shall establish an-
alogous theorems about pseudocompactness by means of Z-mappings.

Suppose that X is not pseudocompact and let {W,} be a discrete
family of open sets with X — U W, = S+ 4. There are functions f and
g of C(X) by 1.10 such that (i) f(x,) = ¢,, {e,} | 0 and f =0 on S where
x, is a given point of W, and (ii) g(x,) =n%,9 =0 on S and g(z) > 0
implies f(x) > 0. Then F = {z; g(x) = 1/2} is a zero set and

inf {f(x);xec F} =0
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This shows that F has not the property (*) and f is not a Z-mapping
from X onto f(X). Combining 1.5, 1.6 and the arguments above, we
have the equivalences between (1), (2) and (3) in the following theorem,

THEOREM 2.1, The following conditions are equivalent for a
space X.

(1) X 1is pseudocompact.

(2) Ewvery zero set of X has the property (¥).

(8) Any mapping from X onto any space Y such that every
point of Y is Gy, is always a Z-mapping.

(4) The projection @:Y x X—Y s a Z-mapping for any
weakly separable space Y.

(5) The projection @:Y x X—Y is a Z-mapping for some
nondiscrete weakly separable space Y.

Proof. (4) — (5) is obvious., We shall show (1) — (4). Suppose
that there is a function e C (X x Y) such that ye p(E) — p(E)
where E = h~'(0). Let {W,} be a base of y with

WnFIC Wn(n: 1)2!'.') .

Since p~'(y) = {y} x X is pseudocompact and % is positive on o '(y),
there is a real number a > 0 such that ~ =« on ¢ '(y). For each
n, we choose a point ¥, in W, N (&) (and hence {y,} — ¥) and a point
Y, ®,) in E. If A={z,;n=1,2,--.} has an accumulation point wx,,
then (y, z,) € E, that is, ¥y = ¢(y, ;) € (£). This is a contradiction.
Thus A must be a closed discrete subset of X. Let

M= {z; h(z) < a/2}

and F = {z; h(z) = a/2). We choose an open set U,, in X, containing
%, and an open set V,c W, in containing y, Y such that

UinX)nU,(inX)=¢mn=m),V,x U, cM.

X being pseudocompact, there is an x, in U ﬁni— U U'M for some
{n;}. We have (y, ) e F), i.e., ¥y = @y, %) € (F). On the other hand,
we have o7 (y) N F' = ¢ since F = {z; h(2) < «/2} and h = a on ¢~ (y).
This is a contradiction.

(5)— (1) follows from the following theorem.

THEOREM 2.2. Suppose that Y is a space in which there is a
discrete subset M = {y,;y =1,2,+--} which has an accumulation
point ¥y,. If the projection ;Y x X— Y is a Z-mapping, then X
must be pseudocompact.,
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Proof. We shall firstly show that there is a function fe C(Y)
with f(y,) > 0 for every y,e M and f(y,) = 0. Since Y is completely
regular, there is a function f,e C(Y) with fi(y) =1, fi = 0 on some
neighborhood (briefly, nbd) V; of y,and 0 = f; = 1. Let y;, be the point
such that y;,,e M N Z(f,) and 4, > m implies fi(y,) > 0. Then there
is a function f,e C(Y) such that fy(y;) =1, f. = 0 on some nbd V; of
Yo, Vo< Vi and 0 < f;, = 1and Z(f,) C Z(f)). Let y;, be the point such
that y,, e MN Z(f,) and 4, > m implies fi(y,) > 0 and so on. Define
fz) = T2 (1/2"f(x). Then f() is continuous and f(y,) = 0 and £ > 0
on M.

If X is not pseudocompact, there is a locally finite family {U,}
of open sets with U, N U,, = ¢ and there is a function ke C(X) such
that # =0 on X and A(x,) = 1/f(y,) for some point z,c U, by 1.10.
Define H(y, x) = f(y)h(x). H(y, x) is continuous on Y x X and

H(y,, 2) =0

for every xe X and H(y,, z,) =1 for n =1,2, ..., Therefore we
have {(¢,, z,);n =1,2, --.} < H*(1) and hence M C ¢ (H'(1)). On the
other hand, y,¢ @(H'(1)). This shows that ¢ is not a Z-mapping.

Even if X is pseudocompact, a closed subset F' of X with the
property (*) is not necessarily pseudocompact. For instance, the space
D constructed in [4, 5I, p. 79], which is a zero set of the pseudocompact
space ¥, is not pseudocompact.

Relating this example, we shall consider a countably compact
space, If X is not countably compact, then there are a discrete closed
subset A= {x,;n =1,2 -..} and a function fe C(X) such that

S@,) = e, {e.} | 0 and f=0 on X.

It is obvious that A has not the property (*). Thus we see that X

is countably compact if and only if every closed subset of X has the
property (*). :

3. Mappings and the property (*). In this section we shall
consider the relations between mappings given in § 1 and the property
(*), and moreover give several examples. We shall say that ¢ has the
property (*) if o~'(y) has the property (*) for every ye Y.

3.1, (1) Let p: X— Y be a mapping and every ¢ '(y),yc Y, be
relatively pseudocompact. If ¢ is a Z-mapping, then ¢ has the pro-
perty (*).

(2) If p: X— Y is a WZ-mapping and ¢ has the property (*),
then @ is a Z-mapping.
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Proof. (1). Suppose that there is a point y in Y such that
F = »7'(y) has not the property (*), that is, there exists a function
he C(X) which is positive on F,2 =0 on X and h(z,) =e¢,,{e,} | 0
for some sequence {z,} in F., We can find a family {W,} of open sets
such that W, N W,, = ¢ (n = m), ¢, — 0, < h(zx) = &, + p, on W, where
min {e, — €,11, €41 — &,} = 20, and x, € W,. E = h7'(0) is not empty
because E = ¢ implies 1/h € C(X) and 1/k is not bounded on a relatively
pseudocompact subset F. We shall show that ¢ is not a Z-mapping.
To do this, it is sufficient to show that y € p(E) because E is a zero set
and y ¢ p(E). If y ¢ p(F), then there is a function g € C(Y) such that g=1
on p(k),9(y) =0 and 0 = g = 1. This implies that gp e C(X), gp = 1
on K and gp = 0 on F. The function k =h + gp is positive, con-
tinuous on X, and hence 1/k e C(X). On the other hand, 1/k is not
bounded on F'. This contradicts the fact that F' is relatively pseudo-
compact,

(2). Let F=Z(f), feC*(X)and y ¢ p(F). Since ¢ has the pro-
perty (*), we have inf {f(x); x€ »'(y)} = @ > 0. Let g be an extension
of f over BX; then g = a on @7'(y) = clyzp'(¥).

E={x;xepBX, glx) = a/2}

is compact and y ¢ @(E). @(E) being compact, V = 8Y — @(E) is an
open subset (in BY) containing y. Thus VN Y is an open subset
(in Y) containing y and (F)N(VNY)c@E)YNVNY =¢. This
implies that € @(F), that is, p(F) is closed which shows that o is
a Z-mapping,

From 3.1 we have

3.2. (1) If ¢ is a Z-mapping from a pseudocompact space X
onto Y, then ¢ has the property (*).

(2) If @ is @ WZ-mapping from a countably compact space X
onto Y, then ¢ is a Z-mapping.

We can not replace “Z-mapping” in (1) of 3.2 by “W_Z-mapping”
and “Z-mapping” in (2) of 3.2 by ‘“closed mapping” respectively, as
will be seen from examples 3.4 and 3.5 below respectively.

3.3. If F is a C*-embedded subset of X with the property (*),
then F' is pseudccompact. In particular, in a normal space, a closed
subset with the property (*) is always countably compact (see 1.4).

Proof. If F is not pseudocompact, then there is a function
feC(F) with 1 = >0 and inf {f(z);xc F} =0. Let g be an ex-
tension of f over X; then g > 0 on F and inf {g(z); xc F'} = 0 which
is a contradiction.
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ExAmMPLE 3.4. Let X = W(w, + 1) X W(w, + 1) — {(w,, ,)},
Y= Ww, +1)

and let p: X— Y be defined by o(y, ®) = y. Every o '(y),yc?, is
relatively pseudocompact. Since BX = W(w, + 1) x W(w, + 1), we
have @7'(y) = clgxp~'(y), ie., @ is an open WZ-mapping. But ¢ is
not a Z-mapping by (1) of 3.2 because o' (w,) has not the property
(*) and X is pseudocompact.

ExamMPLE 3.5. Let
X=Ww +1) x Ww, + 1) - {(0, w)}, Y = W(w, + 1)

and let p: X— Y be defined by o(y, ®) = y. Every o~'(y) is compact
except ¥ = w, and o~ (w,) is countably compact. Thus ¢ is an open
Z-mapping by (2) of 3.2. But ¢ is not closed because

F = {(y, x); T =w,YEc W<w1)}

is closed but @(F') = W(w,) is not closed in Y. (We notice that X is
countably compact.)

ExXAMPLE 3.6, Let X = W(w, + 1) x W(w, + 1) — {(y, ®); ¥y = w,,
0 <r=2whY=Ww +1)
and let @: X— Y be defined by o(y, ®) = y. Since
Z = W(w,) x Ww, + 1)

is pseudocompact and BZ = Y x Y, X is pseudocompact [9] and it is
easy to see that every o~'(y),y € Y, is compact. Thus ¢ is an open
compact mapping but not a WZ-mapping. (p: X — Y is said to be com-
pact if o~'(y) is compact for every ye Y.)

4. Extensions of open mappings. For an extension of an open
mapping ¢: X — Y where both spaces X and Y are normal, the follow-
ing theorem is known: if either ¢ is compact or ¢ is closed, then @
is open ([1], in which @ is assumed to be a many-valued mapping).
In this section, we shall show that if ¢ is a (single-valued) WZ-mapp-
ing, then we can drop the assumption of normality of both spaces;
that is, ¢ is open if and only if @ is open. Let ¢: X — Y be a mapp-
ing. A function f is said to be @-bounded if f is bounded on ¢@~'(y)
for every ye Y,

If feC(X) is p-bounded, we put

fiy) = inf {f(x); v € o~ (W)}, [*(¥) = sup {f(@); ve @~ (¥)} ;
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these are real-valued functions defined on Y. The following lemma is
useful,

LEMMA 4.1. ([2]). Let ¢: X— Y be a mapping and let fe C(X)
be p-bounded.

(i) If ¢ is open, then f*(resp. f7) is lower (resp. upper) semi-
CONLTNUOUS.

(ii) If @ is closed, then f°(resp. f%) is upper (resp. lower) semi-
continuous.

(i) If @ is o WZ-mapping, then f°(resp. f?) is upper (resp.
lower) semi-continuous.

Proof. (i) and (ii) are essentially proved in [2]. (iii) is obtained
in the following way: let ¢ be the extension of f over @'(Y); by (ii)
g° (resp. ¢’) is upper (resp. lower) semi-continuous on Y because @
is a closed mapping. Since @ is a WZ-mapping, we have

g° = f* and ¢' = f*.

This completes the proof.

If @ is an open WZ-mapping, then f° and f° are continuous on
Y for every g-bounded function fe C(X) by 4.1.

As applications of 4.1 we have the following 4.2 and 4.3,

4.2. If ¢ is an open WZ-mapping from X onto a pseudocompact
space Y such that o~ (y) is relatively pseudocompact for every ye Y,
then X is pseudocompact.

This is a generalization of a theorem of Hanai and Okuyama [6]
and our proof is simpler than theirs; that is, 4.2 follows from the
facts that for any fe C(X), f is ¢-bounded, and hence f° (resp. f?)
is bounded by (iii) and continuous on Y by the note above which con-
cludes that f is bounded on X.

4.3. If ¢ s a WZ-mapping from X onto a countably compact

space Y such that o=(y) is relatively pseudocompact for every ye Y,
then X 1s pseudocompact.

Proof. Let f be any function of C(X); then |f| is @-bounded and
[f]° is upper semi-continuous by (iii). Since a space is countably com-
pact if and only if every upper semi-continuous function is bounded
above [10], we see that |f|° must be bounded above, that is, f is
bounded. This means that X is pseudocompact.
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THEOREM 4.4. (i) A mapping ¢: X — Y s a WZ-mapping if
and only if p(UNX)=@U)NY for every open set U of BX.

(i) If p: X— Y is a WZ-mapping, then ¢ is open if and only
if @ is open.

Proof. (i). Necessity. It is sufficient to prove that yc@(U)NY
implies y € (U N X). This follows from the fact that

P NUNX)=¢

if and only if @7 (y) N U + ¢ for every open set U of SX since ¢ is
a WZ-mapping.

Sufficiency. If we @ '(y) — clgzp~'(y), then there is an open set
U (in BX) containing & which is disjoint from clzzp~*(y). This means
that y ¢ (U N X), which contradicts y € @(U).

(if). It is sufficient, by (i), to show that the openness of ¢ im-
plies the openness of @. Let x* be any point in AX and let U be an
open set of BX containing z*, There exists a function fe C(BX) such
that 0= f =1, Ax*)=1,f=0on BX — U and cl;, V< U where

V = {x; flw) > 0} .

We have, by 4.1, (f| X)*e C(Y). Let us denote by ¢ the extension

of (f] X)* over BY. Then g(@(x*)) =1 and W = {y; g(y) > 1/2} is

open in BY. We shall prove that W @(cl;, V). Suppose that there

is a point z in W such that @'(z) N @~'P(clgy V) = 4. Then f =0 on

@-(S) where S is an open subset, contained in W, containing z with

SN @clgx V) = ¢. This implies that g| ¥ = 0 on S which is impossible,.
This theorem will be used in §6.

5. Inverse images of realcompact spaces. Let « be a collection
of coverings of X. A centred family 2 of subsets of X (i.e., with
the finite intersection property) is said to be a-Cauchy if for every
A e, there exist AeA and Me 2 with Mc A. We shall say that

a is complete if
N.A #¢

for every a-Cauchy _#, according to Frolik [3]. In the sequel, we
consider only countable coverings consisting of cozero-sets where a set
is said to be a cozero-set if it is the complement of a zero set. We
denote by «, the collection of all such coverings and moreover by
a,.(resp. a, and «,,) the subcollection of «, with the point-finite pro-
perty (resp. with the locally finite property and with the star-finite
property). If « is a collection of countable coverings of X, then
define AF = U{clozA; Ac A} for every Ae a. AP is o-compact and hence
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Z = N{UA% Aca} is realcompact and X< ~XcZcBX where vX
denotes the Hewitt’s realcompactification of X,

LEmMMA 5.1, Let _# be a centred maximal family of zero sets.
Then # s a-Cauchy if and only if _# has the countable intersec-
tion property where o is any one of ®,, A, &, ARA A,

Proof. Necessity. Suppose that there is {Z,} in .# with
NZ,=¢

where Z, = Z(f,),0 = f, =1 and f,eC(X). Then f= S(f./2") is a
positive continuous function on X,

A, ={z;1/(n + 2) < flw) < 1/n}

is a cozero-set because 4, = X — Z(g,) where g, = (—|f —a| + a) vV 0
and a = (1/(n + 2) + 1/r)/2. It is easy to see that A = {4,}ca,,. If
there is Ze .7 with Zc A, for some n, then

B=ZnZ N NZ.+9¢
and we have 1/(n + 2) < f < 1/n on B, On the other hand,
f<1l/(n+ 2)

on B by the method of construction of f. Thus .~ is not a,-
Cauchy.

Sufficiency. It is sufficient to show that if I is not a,-Cauchy,
then .. has not the countable intersection property. Since _# is
not «,-Cauchy, there exists

U=A{A; A, =2, 7, = Z(f,), f.e C(X)} e,

such that M ¢ A, for every » and every Mec _~. Hence MNZ, + ¢
for every Me .. _# being maximal, Z,e_ . Since {Z;} is a
covering of X, we have NZ, = ¢, and hence .7 has not the countable
intersection property.

LemMma 5.2, The following statements are equivalent,

(1) X s realcompact,

(2) A centred mazimal family of zero sets with the countable
intersection property has the total nonempty intersection.

(8) «a is complete where o is any one of ,, &, &, and o&,.

Proof. (1)« (2) is already proved in [4].
B)—@Q). If pevX — X, then #Z ={Z;peclyxZ,Z is a zero
set of X} is a maximal centred family with the countable intersection



466 TAKESI ISIWATA

property, and hence by 5.1, _# is a,-Cauchy. Since a, is complete,
N.#Z + ¢ and it is obvious that N{cl,,Z:Ze #} = {p}. This is a
contradiction, that is, v X = X.

(1) — (3). It is sufficient to prove that the realcompactness implies
the completeness of a,,. ILet a, be the family of all countable normal
open coverings; then a, is complete since X is realcompact. On the
other hand, «,.-Cauchy family is a,-Cauchy family. Therefore we see
a,, 1s complete,

THEOREM 5.3. Let ¢: X— Y be a Z-mapping and let every
o7'(y),ye Y, be a C*-embedded realcompact subset of X. If Y is
realcompact, then so is also X,

Proof. Let _# be a maximal centred «,-Cauchy family consisting
of zero sets of X; then _# has the countable intersection property
by 5.1. Thus by 5.2 it is sufficient to show that _ has the total
nonempty intersection. Since ¢(_#") is a,-Cauchy (in Y) and Y is re-
alcompact, we have y € Ngp(_#") for some point y by 5.2. @ being a
Z-mapping, (M) = (M) for every Mc _# . Since M, Ne _ implies
MnNNe 7, # N @ (y) has the finite intersection property on o~(y).
Let A ={p(y) — Z(g,);n=1,2, -.-} be a covering of p*(y) where
9. € C(p~'(y)) and g, is bounded. Without loss of generality we can
assume that 0 < g, <1 for each n. Let f, be an extension of g, over
X and define f = 3 (f,/2%). f is continuous and Z(f) N7 '(y) = ¢. Y
being completely regular and ¢ being a Z-mapping, there is 2 e C(Y)
with 0 £ b = 1, i(pZ(f)) = 1 and A(y) = 0.

{X — Z(hp), X — Z(f,);n =1,2, -}
is a covering of X. We shall show that M ¢ X — Z(hp) for every
Me _#. Suppose that there is a set Me _# such that
Mc X — Zhp) .

Since o~'(y) < Z(hp), we have M N ¢~ (y) = ¢, but this contradicts the
fact that M N o (y) # ¢ for every Me _. Thus there are Mc _#
and n with Mc X— Z(f,), that is, . Z No'(y) is «a,-Cauchy (on
@ (y)). Since o7'(y) is realcompact, we have N(.Z N op7'(y)) # ¢.
This means N.# # ¢. Therefore X is realcompact.

THEOREM 5.4. If @ ts a closed mapping from a normal space X
to a realcompact space Y such that every ¢~'(y), y € Y, s realcompact,
then X s also realcompact.

6. Open WZ-mappings and realcompactness. A point p is said
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to be a P-point of X if every continuous function defined on X is const-
ant on some nbd of p. A space X is called a P-space if every point
of X is a P-point of X,

In the following, let ¢: X — Y be an open WZ-mapping, and we
divide both spaces X and Y into classes in the following way: X, =
{x; p(x) is isolated and op~'p(x) is not compact}, X,; = {z; p(x) is iso-
lated and @~'p(%) is compact}, X, = {z; v ¢ X, U X,, and ¢~'¢(x) is not
compact},

Xce = X - Xd - Xcd - Xey Yd = @(Xd)a
ch = @(Xcd)y Ye = @(Xe) and Yce = @(Xce) .

LEMMA 6.1. If ¢o: X— Y s an open WZ-mapping, y*c Y, and
if there is a function fe C(BX) such that 0 = f=1,f>0 on X and
f@*) =0 for some x* € @ (y*) — ¢ (y*), then Zyx(f'®) is a neigh-
borhood (im BX) of @ '(y*), equivalently, Zsy(f*) is a meighborhood
(in BY) of y*. (We notice that @ is open by 4.4)

Proof. Suppose that Z (/%) is not a nbd of y*, i.e., Zy(f%) is
not a nbd of y*. Let us put h = f*| Y, e, = 1/20n — 1/(2n -+ 1) and

a, = 1/2n — (4/7) - a,,,

b, = 1/2n + (4/7) - &y,

¢, = 1/(2n + 1) — (4/7) + Aspssy

d, = 1/@2n + 1) + 4/7) - a,

F, = ¢7'h7a,, b,],

E, =9 h e, d,] .
It is easy to see that either clg (U F,) or clgx(U E,) contains a*, say
clox(UF,)sa*, Let us put ¢, = (f, — b,) V 0 and

where B, = (a, + b,)/2; then ¢,eC(BX), k,cC(X), A, = {x; xeBX,
(@) = b} = Zpx(q,), F, = Zx(k,) and {G,; n = 1,2, ---} is locally finite
family of zero sets of X where G, = Z4(q, + k,) = F,N A,. We can
assume that every G, is not empty.

Next we shall prove that UG, is a zero set. If we put

tn = 1/2/}7’ - (5/7) ° aZny Sy = 1/271/ + (5/7) : a2n—l

and B, = {z; x€ BX, f(x) < s,}, then U, = ¢o~*h7'(t,, s,) is an open set
containing F, and W, = U, N B, is also an open set such that G, < W,
and W,C o 'hYt,,s,]. Since W,NW,=¢ and zc UW,— UW,
implies f(x) = 0, {W,} is a discrete collection of open sets of X be-
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cause f >0 on X, If xz¢ B,, then f(x) = s,, k.(x) = 0, and hence
k(@) + q.(2) = ¢.(2) > 5, — b, 00 — L =D, > 0.
If x¢ U,, then |hp(x) — B,| > B, — t., ¢.(¢) = 0, and hence
k(@) + qu(@) Z bo(0) > B, — 8 — b+ Br =@, — L, =p, > 0.
Let us put g,(¢) = {(k.(*) + ¢.()) A p.} X (1/p,). Then
g, =1on X— W, and 2¢G,

if and only if g,(x) = 0. Define

1 for xe X — UW,
g(x) = gn(x) for z e W'Ib - Gn
0 for xe UG, .

Since {W,} is a discrete collection, g(x) is continuous and Z(g) = UG
that is, UG, is a zero set.

Since Z(g) N Z(hp) = ¢, we have clszZ(9) N clgzZ(hp) = ¢, and
hence y* ¢ @(Z(g)) because clgzZ(hp) D @~ '(y*)(notice; ¢ is a WZ-mapp-
ing).

Replacing a,, b,, t, and s, by a, =1/2n — (5/7)-a,,, b, = 1/2n +
(B/T) * Aups, tn = 1/20 — (6/T) - ¥, and s, = 1/2n + (6/7)- a,,_, respec-
tively, we can define and construct F), q.,,5;, k., A, Gh, p,, g, and ¢’
using methods similar to definitions and constructions of F,q,, 8,.k.,,
A, G,, ., 9, and g respectively in the arguments above. Then

G.C G, Z(9) © Z(9"), Z(9') N Z(hp) = ¢

ny

and y* ¢ @(Z(¢')). Thus there exists a nbd W(in Y) of y* with
WnoZyg) =¢.

On the other hand, z*ecl,x(UF,) and y*e Y implies y* e Up(F,),
and hence there is a point v in o(F,) N W for some m, that is

a4, = h(y) =0, .

This shows that there exists a point © of p'(y) with x € A/, and z ¢ F),,
Sinece G, = A, N F,, y<p(G,). This contradicts W N @(Z(g')) = 4.

The following theorem indicates the structure of the image of a
realcompact space under an open W_Z-mapping,

THEOREM 6.2. Let ¢ be an open WZ-mapping from a realcom-
pact space X onto Y.

(i) Ewvery point ye Y, ts a nonisolated P-point of Y, and hence
Y.U Y, is an open P-subspace of Y and Y, U Y, is closed tn Y.
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(We shall prove in 6,5 that Y, = ¢ implies the realcompactness
of Y).

(ii) If Y is not realcompact, then every point y* of vY = Y is
a P-point of BY and Y,, U Y, is closed in vY.

Proof. (i). Let ye Y, and he C(8Y) with h(y) = 0 and let
e d(y) — (W) .
X being realcompact, there is a function fe C(8X) such that
0=7=1,/@*) =0
and f >0 on X. k= jf+ h® is continuous and k& >0 on X and
k(x*) =0,

By 6.1, Z(k') is a nbd (in 8Y) of y. On the other hand k' = 1 im-
plies Z(k') c Z(h). This shows that A vanishes on some nbd of y, i.e.,
y is a P-point of Y. Thus Y, U Y, becomes to be a P-space. Since
E(y) > 0 for every ye¢ Y, UY,, Y,UY, is open in Y and hence
Y,,UY, is closed in Y,

(ii). Let y*evY — Y, x*ec @ y*) and let f be a function of
CBX)with0 = =<1, f(xz*)=0,f>00n X, LetusputX,=0(Y).
It Zox(f) N X, = ¢, then Zy(f) N Y = ¢ since every @~ '(y),ye Y, is
compact and £ >0 on X, and hence f* >0 on Y and fi(y*)=0.
Thus we have 1/fiec C(Y) and 1/f* can not be continuously extended
over y*., But this is impossible since y*ecvY — Y. Thus we have
Zsx(f) N X, # ¢ which implies Z,(f%) +# ¢. For every ye Y, U Y.,
> a(y) on o '(y) because ¢~'(y) is compact where a(y) is some real
number. Z(f) N Y is an open-closed subset of Y(c Y,U Y, by
(i) and clpx(Z(f%) N Y)(Celgp Z(fY) = Z(f7)) is also open-closed in BY.
This shows that y* e u(Z(f) N Y) because

VY =u(Z(f) N Y)U (Y — Z(f%)

and o(Z(fHYNY)NUY — Z(f) = ¢ (we notice Z(f%) = Zsgr(f)).
Since Z(f) N Y is a P-space, so is also o(Z(f*) N Y) and every point
of vV Z(fYNY) is a P-point of v(Z(f)NY) and hence of AY
[4, p. 211].

From the argument above, every point y*evY — Y has a nbd
which is disjoint from Y, U Y,,, and by (i) every point of Y, U Y,
has also a nbd which is disjoint from Y, U Y,;,. Thus Y, U Y,, is
closed in vY.

If BY — Y contains a P-point p of Y, then it is known that
every function fe C(Y) can be continuously extended over p, and
hence, Y is not realcompact. The converse is not necessarily true.
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Such an example is given by the space in Example 3.4, that is,
Y= Ww, + 1) X W(w, + 1) — {(®,, ®,)} is not realcompact but 8Y — Y
consists of only one point (w,, @,) which is not a P-point of /Y.

But if Y is the image of a realcompact space X under an open
WZ-mapping, then Theorem 6.2 concludes the following: the fact that
Y is not realcompact implies that 8Y — Y contains a P-point of BY.
Thus the equivalence of (1) and (2) in the following Theorem 6.3 is
obtained.

Let y*e BY — Y. We denote by 0(y*) the set of all functions
of C(X) such that clgzZ:(f) is a nbd of @~'(y*), and

Z(0(y*)) = {Zx(f); fe 0y™)}.
O(y*) is a Z-ideal of C(X).

THEOREM 6.3. Let ¢ be an open WZ-mapping from a realcom-
pact space X onto Y; then the following statements are equivalent.

(1) Y is realcompact.

(2) There is no P-point of BY in BY — Y,

(3) Z(0(y*)) s mot closed under countable intersection for every
y*eBY — Y.

(4) There is a function ge C(BX) such that @~ (y*) C Zg,(g) but
Zgx(9) 1s mot a nbd of @'(y*) for every y*eBY — Y.

Proof. (2)—(3). Suppose that there is a point y* such that Z(0(y*))
is closed under countable intersection. Let g be any function of C(8Y)
with 0 < g <1 and g(y*) = 0; then it is sufficient to show that Z,,(g)
is a nbd of y*,i.e., y* is a P-point of SY. Put g = (9, V 1/n) — 1/n
and f, = ¢,| Y. Itis obvious that clgyZy(f,) is a nbd of y*, f,p € C(X)
and @~'Zy(f,) = Zx(fop). If claxZx(f,) is not a nbd of @-'(y*), then
Z4(f.p) does not contain X N U for any nbd U of &~'(y*). Since ¢ is
open and p(Zx(£,0)) = 9@~ Ze( 1) = Z,( f.), (X 1 U) is open and p(X 1 U)
is not contained in Z,(f,). This contradicts the fact that clg;Zy(f,)
is a nbd of y*. Therefore clgzZ(f,») is a nbd of @'(y*). Since
Z(f.p) € Z(0(y*)) and Z(0(y*)) is closed under countable intersection,
there is a function ke 0(y*) with NZx(f.p) = Zx(k). Since ke 0(y*),
clgxZ(k) is a nbd of @~'(y*) and @(clﬁ,xe(lc))'is a nbd of y* because
@ is open by 4.4. On the other hand, x e Z,(k) implies (f,p)(x) = 0
for every n, and hence we have p(x) € Z,(g | Y), i.e., p(Zx(k)) CZy(g| Y).
We have

P(clpxZx(k)) C cler@(Zx(k)) = clor(pZx(k)) C clorZy(g | Y) C Zgr(g) .

This shows that Z,;(g) is a nbd of y*.
(3) — (4). Since Z(0(y*)) is not closed under countable intersec-
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tion, there is a function f,e0(y*)(n = 1,2, --+) and clgx(N Zx(f,)) is
not a nbd of @~ (y*). Let f= S /2" f. [/ + | fu]). If

2¥e @ Wy*) — clpxZ5(f) ,

there is a compact nbd F' of z* such that FNeclaxZy(f) = ¢. Since
X is dense in B8X, we have that FN X+ ¢ and f > a on FFn X for
some « > 0, This means that f, > «, on FFn X for some «, > 0, i.e.,
cloxZ¢(f,) does not contain z*, This is a contradiction. Thus

Q7 (y*) CelprZy(f) .
Let g be an extension of f over SX, then it is obvious that
O-(y*) C Z(g) .

On the other hand, Z(g) is not a nbd of y* because clyxZx(f) is not
a nbd of y*. Therefore the function g is a desired function in (4).

(4) — (2). Let y* be any point in 8Y — Y and let g be a func-
tion described in the assumption (4). Without loss of generality we
can assume that ¢ = 0. Since @ is open and closed by 4.4 and

O(y*) © Zpx(9)

¢* is continuous on BY by 4.1 and ¢g*(y*) = 0. Since Zpx(g) is not a
nbd of @' (y*), @(BX — Zgx(g)) is open and does not contain y* but
clogy@(BX — Zgx(g9)) contains y*. By the method of the construction
of ¢g°, we see that ¢° > 0 on @(BX — Z.(g9)) and hence

Zgr(g®) CBY — O(BX — Zgx(9)) .
Thus Zgr(¢°) is not a nbd of y*, that is, y* is not a P-point of BY.

COROLLARY 6.4, If @ ts an open WZ-mapping from o real-
compact space X onto a pseudocompact space Y, then Y must be
compact.

Proof. If Y is not compact, then Y =0Y %= Y and Y, U Y,
is compact by 6.2. Z=8Y - Y, — Y,, is an open locally compact
subspace of BY. Since every point z of Z — Y is a P-point of Y
by 6.2, z has the compact nbd which is a P-space. On the other hand,
a countably compact P-space is a finite set, and hence, z must be
isolated. This is a contradiction, since ze¢ SY — Y.

Frolik [2] has proved the following

THEOREM (F). The realcompaciness is invariant under an open
perfect mapping where @: X — Y 1s said to be perfect 1f ¢ is closed
and compact.
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The following theorem is a generalization of Theorem (F)).

THEOREM 6.5. If ¢ is an open closed mapping from a real-
compact space X onto a space Y such that F o' (y) is compact for
every ye Y (equivalently Y, = ¢), then Y s also realcompact.

Proof. Since every Fo(y) is compact, we have
Y=Y, UY,UY,and Y, UY,,

is closed in vY by 6.2. If y*evY — Y, then y* is a P-point of 8Y
by 6.2, and hence there exists an open-closed nbd W(in 8Y) of y* with
V=WnYcY, Letuz,beanypointin p~(y.), ¥y.€ V, and A = {x.}.
A is a discrete closed subset of X. Since A is a closed subset of a
realcompact space, A is realcompact. V is homeomorphic with A, and
hence V is realcompact. V being open-closed, we have

y*evVcacwWw,

This contradicts V = vV. Thus Y must be realcompact,

REMARK. It seems to me that Theorem 6.5 is not obtained directly
from Theorem (F)) in the usual method below.
Let @ be a mapping in 6.5. For ye Y,, (notice Y, = 4),

P (Y) = Lo (Y)

and it is compact. For ye Y, U Y,, o '(y) is open-closed. We con-
sider a subset X, = X, U X,;U{z;2 is the point of o~ (y), ye Y .
Then X, is a closed subset of X, and hence, it is realcompact. Let
@, be a mapping from X, onto Y defined by o, (x) = p(x). It is obvious
that ¢, is a perfect mapping, but, from such a construction ¢, is not
in general necessarily open (if in this case, ¢, is open, then 6.5
is an immediate consequence of Theorem (F))). For instance, let
N = {t,} be the set of all natural numbers, A, = N, B, = B4, and
letC,=B,— A, (n=1,2 ...)., We denote by M the topological sum
of A,. Then B, BM and B, is open in BM, Let us put

Z, =Z,=BM

and we define a mapping +; from Z; onto Y = BN by the Stone ex-
tension of the mapping »; from M onto N with N(4,) = ¢, (7 = 1, 2).
Since A; is open-closed, +r; is also open-closed by 4.4. Let X be the
topological sum of Z, — UC, and Z, and define a mapping ¢ from X
onto Y by @|(Z, — UC,) =4[ (Z, — UC,) and ¢ | Z, = +,. We shall
prove the openness of . Since ¢’ = ¢ |(Z, — UC,) is a WZ-mapping
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from Z, — UC, onto Y and +, is an extension mapping of ¢’ from
B(Z, — UC,) = Z, onto Y, we have by 4.4 that ¢’ is open. Thus it
is easy to see that ¢ is open. Next we shall prove the closedness of
@. To do this, it is sufficient to show that ¢|(Z, — U C,) is closed.
Let F be a closed subset of Z, — UC,. Since B, is open in Z,,

cl, FNB,#¢

implies F'N A, # ¢. Thus we have y(cl, F') = o(F), i.e., o is closed.

Let a, be the point of 4,cZ,(n=1,2,..+) and let A = {a,}
and X, = (Z,— UB,)Ucl, AU(Z, — UB,) and ¢, = ¢|X,. Since X,
is closed in X, ¢, is a mapping considered in the begining of this
remark, U = X, —cl; A is open in X, but ¢(U) is contained in
Y — N, and hence, ¢(U) is not open. This shows that ¢, is not an
open mapping.

By 6.5, it is proved that if o: X-— Y is an open WZ-mapping
and if some condition imposed on X implies Y, = ¢, then Y is real-
compact when X is realcompact. There exist many examples of such
conditions. For instance, we have the following theorem,

THEOREM 6.6. Let o be an open WZ-mapping from a real-
compact space X onto Y. If X is any one of the following spaces,
then Y s realcompact,

(1) X is weakly separable.

(2) X s locally compact.

(3) X 1is conmected.

(4) X 1is locally connected.

(5) X 1is perfectly normal.

7. Closed mappings and realcompactness. Frolik has proved
the following:

THEOREM (Fy) [3]°. If @ is a perfect mapping from a realcom-
pact, normal space X onto Y, then Y is realcompact.

In this section, we shall deal with closed mappings and show, in
Theorem 7.5, that the realcompactness is invariant under a closed
mapping, in Theorem (F,), if we replace “compactness of ¢” by “local
compactness of X, It seems to me that Theorem 7.5 is only one
case for which the realcompactness is proved to be invariant under a
closed mapping without any additional condition.

LEmMMA 7.1. If ¢ is a closed mapping from a mnormal space

2 It seems to me that the countable paracompactness is necessary.
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X onto Y, then clax Fp(y) = L@ (y) for every ye Y. Further-
more, tf Fxp~(y) 18 compact, then @~ (y) — p~'(y) 18 open-closed in
BX — X.

Proof. Since ¢ is closed, we have clgzp '(y) = @ '(y) by 1.1 and
1.2, It is obvious that e '(y) C L@ '(y). Suppose that there
is a point & in 5,07 '(y) — clyxF%p '(y). We can find a nbd U(in
BX) of ® with clazU N clgx.S%p () = ¢. Since

clexp(y) = 07'(y), F = clexUNo™'(y) # ¢ .
Next we shall show that E = cl,;U N (X — ¢7(y)) # ¢. Since
re LxD(y) — clex Fp™'(y) ,

U contains a point z of BX — @ *(y), and hence, there is a nbd V
(in 8X) of z such that Vc U and VN o (y) = @. X being dense
in BX, V contains a point of X — »7'(y). Thus E # ¢. Since

ENF=clyUno NN (X— o (y) =¢

and X is normal, we have clgxE NclgxF = ¢. On the other hand,
since v € @ (y) = clgxp~(y) and U is a nbd of =, we have clszFaz
and clgzE >, ie., clgzF NeclgxE +# ¢ which is a contradiction, The
latter part is obvious.

In the following, Y, = {y; ye Y, o~'(y) is compact}, Y, = {y; ye€ 7,
Fp~(y) is compact but o~(y) is not compact} and Y, = {y;ye Y,
ZLp~(y) is not compact}.

THEOREM 7.2.° Let ¢ be a closed mapping from a locally com-
pact, realcompact, normal space X onto Y; then we have

(a) Y,U Y, ts closed.

(b)Y Y —Y, s locally compact.

(¢) The closure of any neighborhood of y is mot compact for
every ye Y,.

(d) Y,UY, is a discrete closed subset of Y.

Proof. (a). Let ye Y, be an accumulation point of Y,U Y..
Since p~'(y) is compact, there is a nbd V of »~'(y) whose closure is
compact. M =Y — (X — V) is an open set containing y. Therefore
there is a point ¥’ e Y, U Y, with ¢y’ e M. This shows that

W) C o (M)c VCV
and o~'(y’) is compact. This is a contradiction.

3 This theorem is analogous to Theorem 4 in [11] in which X is locally compact,
paracompact, normal space. The proofs of (a) and (b) are the very same as those
given in [11].
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(b). Let y be any point of Y — Y,. Since Fp'(y) is compact,
there is a nbd V of ¢ ~'(y) whose closure is compact.

M=Y—oX—U)

is an open set containing y where U = @~ (y) U V. Then

Mcop(0) = p(U) = (V) U {y}

is compact, and hence, M is compact. This shows that ¥ — Y, is
locally compact.

(¢). Suppose that there is a point ye Y, which has a nbd W
with the compact closure. Since .%o '(y) is not compact, there is a
point ¥ € 0 (y) — Fxp '(y) by 7.1, and hence there is a function
feCBX) with 0=7=1,f(x)=0,f>0 on X by 1.8 since X is
realcompact. We shall show that there is a sequence {z,} in

P (W) — o7 (y)
such that ¢(z,) # o(z,)(n = m) and {f(z,)} | 0. For
An = {z :f(z) é 1/“? Ze@_%W) - @Ml(y)} (7?/ = 1; 27 °* ') y

we have weclgyA,. If o(A4,) is finite, then o(A4,) does not contain
y since ¢ is closed. On the other hand, since yeclgz4, and
yeY, we have yec@(clzA,) Cclpy@(A4,) = clyyp(A4,), and hence,
ye YNelrp(A,) = @(4,). Thus every A, contains infinitely many
points whose images, under ¢, are distinet from each another. There-
fore we have a desired sequence {z,; X,€ A,} (if necessary, take a
suitable subsequence). Since f> 0 on X, Z = {#,} is a discrete closed
subset. On the other hand, (Z) < W and W is compact, and hence,
@(Z) has an accumulation point in ¢(Z). Let say y, = (2, be such
an accumulation point because ¢ is closed. X being normal, there is
an open set U with o~ (y,)Cc U and UN{z,;7n =2,8,---} = ¢.

M=Y—oX—-U)
is an open set containing ¥, which is disjoint from a closed set

P(Z) — {y} = p(Z — {&})

because Z — {z,} is closed. This is a contradiction.

(d). We shall prove that every point of Y, is isolated in Y, U Y.
If »~'(y) has an open nbd U such that o(U)N (Y, U Y,) = {y}, then
M=Y—@oX—U) is an open set with (Y,n Y))N M = {y}. This
shows that every point of Y, is isolated in Y, U Y,. Therefore, we
can assume that there are a point y ¢ Y, and a point « in ¢~'(y) such
that any open nbd U of & has a compact closure and (U) N (Y, U Y))
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contains infinitely many points y.(n =1,2,---) of Y, U Y,. Let a,
be any point contained in ¢~*y,) N U. Then {a,} has an accumula-
tion point a, in U because U is compact. Since o(a,) = y,€ Y, U Y;
and Y,U Y, is closed by (a), we have y, = p(a,) e YU Y,. Thus we
can assume that there is a point y,¢ Y, U Y, which is an accumula-
tion point of {y,; y.€ Y, U Y}. Leta,e@'(y,) — »7'(¥,); then X — X
being compact, AN X = ¢ where A = clgg{x;}. If AN 07 (y,) = ¢,
then y,¢ @(A) which is impossible because y, € @#(4) (n = 1,2, --+) and
@ is closed. Let z.€¢ AN (@ (y)) — ¢ (%)) and f be a function of
C(BX) such that 0 < f <1, f(x}) =0 and f> 0 on X by 1.8 because
X is realcompact. Since clgzp'(y) = @7'(y), without loss of generality,
we can find a point x, in U, N ¢~'(y,) for every n such that {f(x,)} | 0
where U, is an open nbd (in 8X) of z,. If BN '(y,) = ¢ where
B=cly {&,;n=12 -}, then p(B) = ¢(B) = (B) = {y,} does not
contain y,. This is impossible. Thus BN ¢~ '(y,) contains a point x,.
It is obvious that f(z,) = 0, but, this is a contradiction because f > 0
on X. Thus every point of Y, is isolated in Y, U Y..

Next we shall prove that every point y of Y, is isolated in Y, U Y7,
which shows that Y,U Y, is a discrete closed subset of Y.

2, =9 |(BX — X)

is a closed mapping from a compact space SX — X onto /Y — Y..
For every y ¢ Y, @~(y) — ¢ '(y) is always open-closed by 7.1 in B8X — X,
Thus every point of Y, is isolated in Y — Y,, and hence, they are
isolated in Y, U Y, (CcB8Y - Y,).

From (b) and (c) in 7.2, we have:

THEOREM 7.3. Let @ be a closed mapping from a locally com-
pact, realcompact, normal space X onto Y; then Y s locally com-
pact if and only 1f F o '(y) is compact for every ye Y.

This theorem is not necessarily true in general when X is locally
compact normal, as shown by the following example by Prof. Morita.
Let X =[O, 1] x W(w,), Y = [0, 1] and let ¢ be the projection: X — Y,
It is known that X and Y are both locally compact normal. Since
Y is weakly separable and X is countably compact, ¢ is closed, but
@ (@) is not compact for every ae Y. Theorem 7.3 is also true, as
shown in [11] replacing “realcompactness” by “paracompactness”.

Under the assumption of 7.2, we shall consider the new space Z
in the following way: we set up an equivalence relation “~” on X
by the simple rule that “x~x" if and only if both points = and z’
belongs to the same @~'(y) for some point ye Y, U Y,. Using this
relation we define a space Z, that is, Z is a space obtained from X
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by the topological identification (we notice that V of Z is open if and
only if 4% V) is open where + is the identification mapping). It is
easy to see that Z, = y(X,) is locally compact and homeomorphic with
X,, and Z, U Z, is a discrete closed subset where

X, = p7(Y)), Xi = p7(Y)(1 = 0, 1), Z; = y(X0)

and Z, = y(X,). + is obviously closed, and hence, Z is normal.

Now suppose that X is realcompact. Z,U Z, is realcompact as in the
proof of realcompactness of V in 6.5 since Z, U Z, is closed and discrete,
If every function of C(Z) is continuously extended over a point 2z in
BZ — Z, then there is a nbd U(in BZ) with clgp, UN(Z,U Z) = ¢
because Z, U Z, is closed and realcompact. Thus cls, U N Z,+ ¢, but
this is impossible since Z, is homeomorphic with X,. Therefore Z
becomes a realcompact space.

Next we can construct a mapping )\ from Z onto Y by the usual
topological identification and it is easily seen that ) is perfect. Thus
we have,

COROLLARY 7.4. Let @ be a closed mapping from a realcom-
pact, locally compact, normal space X onto Y; them ¢ admits a
factorization ¢ = M such that

(i) 4 s a closed mapping from X onto a realcompact normal
space Z and {y'(2); z€ Z'} is a closed discrete collection where Z'
18 the set of point z such that y~'(z) contains at least two points.

(i) N Z— Y is a perfect mapping.

Since countable paracompactness is invariant under a closed mapp-
ing, we have the following theorem by 7.2 and Theorem (F},).

THEOREM 7.5. If ¢ is a closed mapping from a locally com-
pact, countably paracompact, normal space X onto Y, then Y s
realcompact when X is realcompact.

8. Examples. Let M be a P-space and let K be a separable
metric space. We denote by ¢ the projection: M x K-— M and by
@ the Stone extension of o from B(M x K) onto SM. Next + denotes
the identity mapping on M x K and ¥ denotes the extension of
from B(M x K) onto BM x BK and let ¥, = ¥ | Z where

Z = U{07(y); ye M} B(M x K).

Lemma 8.1. (1) The projection ¢: M x K— M 1is closed,
(2) Z is realcompact if M 1is realcompact.
(3) ¥, 1is a one-to-one mapping from Z onto M x BK.
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(4) ¥ (M x BK) = Z.

Proof. (1). Let F be a closed subset of M x K and let y ¢ p(F').
Now suppose that y is not isolated. Since F is closed, for a point
(y, 2) € o (y), there is a nbd W(y, 2) = V(y) x U(®) of (y, z) such that
W(y,2) N F = ¢, where V(y) and U(z) are neighborhoods of y and 2z
in M and K respectively. Since K is separable and {W(y, 2); z¢ K}
covers ¢'(y), there is a subcover {W(y, z,);7=1,2, .--}. Let us put
V=nNnV,; then V is a nbd of y because y is a P-point, and hence,
VX K is open and (V x K) N F = ¢. This implies y¢& p(F') since
o y)yc Vx K. Thus @(F) is a closed subset which shows the
closedness of .

(2). Since @ is closed and @'(y) is compact, Z is realcompact
by 5.8.

(38) Since @ is closed, @'(y) = clgyuxmp (¥), and

YY) C¥(P7(Y)) .

On the other hand, o (y) = {y} X K is dense in {y} x BK. This
implies that ¥(0'(y)) = {y} x BK, equivalently ¥;'({y} x BK) = 0 (y)
because @~'(y) is compact. Thus ¥(Z) = M x SK, that is, ¥, is onto.

Next we shall show that ¥, is one-to-one. Suppose that there
are a point y*e({y} x BK) — ({y} x K) and =z, 2, T7i(y*), ©, # 2.
There are open sets V,(in Z) and Vy(in Z) of 2, and x, respectively
with V,n V,=¢. Let us put F; = V.N o (y); then F, = ¢ since
O (y) = laurnm@ (). Since clyueir(F) C{y} x BK, F; is a closed
subset of a normal space {y} x K and B({y} x K) = {y} x BK, we
have cly, pxy(F)) N elywex(F:) = ¢. On the other hand,

@; € lgarxming i € O7(y)

implies that y* € ¥y(ClpuxrinzFi C Cluxpe¥o(Fs) = clyxpey(F:) (1 =1, 2),
This is a contradiction.

(4). Suppose that there is a point we S(M x K) — Z such that
¥(w) = (y, ®) e M x SK. There are open subsets V, and V, in (M x K)
such that we V,, o(y) <V, and V,N V,=¢. V.NZ is not empty
and @(V,N Z) is a subset of M containing y. Since

¥5'({y} x BK) = 07(y)

by (3), we have ¥(V,nZ)n ({y} x BK) = ¢. Let p be the projec-
tion: M x BK-— M; then, we have @(A) = n@(A) for every subset
A of Z because ¥ ({y} x BK) = @ (y). Thus

$(Vzﬂz) = /JWO(V2QZ)';§?/

which is a contradiction, and hence, we have Z = ¥~(M x BK).



MAPPINGS AND SPACES 479

Let M be a realcompact nondiscrete P-space; then M x K is real-
compact and there is a function f of C(8(M x K)) such that f >0
on Mx K and Z(f)N @' y)+#¢ for a given nonisolated point
y of M. We notice @7(y) clpuxxmp ™ (¥) = clyp™(y) (={y} X BK). In
the following, we put A, = @(y) and B, = A, — o7 '(¥).

Next we shall show that we cannot replace a Z-mapping by an
open WZ-mapping in Theorem 5.3.

ExamMPLE 8.2. X =Z — (Z(f)N B,) is not realcompact and a
napping » = @| X is an open WZ-mapping from X onto M and ) is
not a Z-mapping.

Proof. It is obvious that @ is open and closed, X is open in Z,
@-Y(y") = N(y') for every ¥’ (sy) and

P (W SNT(W) = A, — Z(F) N By)

and hence )\ is an open WZ-mapping. Thus to prove 8.2, it is suf-
ficient to show that X is not realcompact by 5.3. Suppose that X is
realcompact, then there are a function he C(X) and a point x* € B,
such that A~ can not be continuously extended over x*. Since every
subset M (y') = @' (y') is compact for ¥’ == y, h is bounded on A '(y").
If % is bounded on a W N X where W is a nbd (in B8(M x K)) of x*,
then % is continuously extended over xz*. Thus for every nbd W of
a*, h is not bounded on W X, Without loss of generality, we can
assume that % is nonnegative on X. Therefore, for every %, there
is a nbd Wy(in B(M x K)) of o* withh =Znon W, NX. o '(y)N W,
contains a point (y, k,), and hence there are neighborhoods O, and Q,
of y and k, respectively such that » =% on O, x Q,. Since y is a
P-point, V= N0, is a nbd of y and & is not bounded on

A= {(yo, ]‘*n); n = 13 2) °° '}

where 7, is some point of V and vy # y,. On the other hand, % is
bounded on A and Ac @-y,). This is a contradiction. Thus X is
not realcompact,
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