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Let ψ be a closed continuous mapping from X onto Y.
It is an open problem whether the realcompactness of X im-
plies the realcompactness of Y. Concerning this problem, in
case φ is an open WZ-mapping, we discuss the structure of
the image space Y under ψ and give a necessary and suffici-
ent condition that Y be realcompact. We also show that if
X is locally compact, countably paracompact, normal space then
the image space Y of X under a closed mapping is realcomp-
act when X is realcompact.

The notion of realcompact space was introduced by E. Hewitt
[7] under the name of Q-spaces. The importance of this notion has
been recognized and investigated by many mathematicians (cf. [4, 7]).
In this paper we shall discuss the relations between realcompactness
and closed continuous mappings and treat also the relations between
pseudocompactness and continuous mappings.

As a generalization of closed mappings1, we have a Z-mapping.
Here we shall introduce the notion of JFiί-mappings as a further
generalization of closed mappings. In Theorem 2.1, we shall prove
that pseudocompactness of a space X is equivalent to any one of the
following conditions: 1) any continuous mapping from X onto any
weakly separable space is always a Z-mapping, (2) the projection:
Y x X—* Y is a ^-mapping for any weakly separable space Y. We
denote by φ: X —+ Y a mapping φ from X onto Y; then φ can be ex-
tended to a continuous mapping Φ: βX—> βY, called the Stone extension
of φ, where βX and βY are the Stone Cech compactifications of X
and Y resp. (In the sequel we denote always by Φ the Stone ex-
tension of φ). In §4, we shall deal with an extension of an open
mapping, and show, in Theorem 4.4, that if φ\ X—> Y is a WZ-
mapping, then Φ is open if and only if φ is open. This plays an
important role in § 6. We shall consider in § 5 the inverse images of
realcompact space under ^-mappings. It is known that if φ is a
mapping from a given space X onto a realcompact space Y, then
Φ~\Y) is realcompact [4, p. 148]. In Theorem 5.3, we shall show

1 Throughout this paper we assume that all our spaces are completely regular
Γrspaces and mappings are continuous. We use, in the sequel, the same notations
as in [4]. For instance, C{X) is the set of all continuous functions defined on X.
A subset F of X is said to be a zero set ΊίF= {x; f(x) = 0} (briefly, F = Z(f) = Zχ{f))
for some fGC(X). CIA denotes a closure operation in a space A.
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that if φ is a Z-mapping from a space X onto a realcompact space
Y such that every φ~\y), yεY, is a C*-embedded realcompact
subset of X, then X is realcompact. In particular, if X is normal
and every φ~1(y)1 y e Y, is realcompact, then realcompactness is invariant
under φ-1.

It is an open problem [4, p. 149] whether the realcompactness of
X implies the realcompactness of Y where φ is a closed mapping
from X onto Y, or even whether the realcompactness of Φ~\Y) im-
plies the realcompactness of Y. Concerning this problem, in Theorem
6.2, we shall discuss the structure of a space Y which is the image
of a realcompact space X under an open W^-mapping. From this
theorem, we shall give a necessary and sufficient condition that Y be
realcompact. Moreover, from Theorem 6.2, we shall establish that if
φ is an open T7Z-mapping from a realcompact space X onto Y such
that the boundary Sfφ~\y) (or £tfxφ~\y)) of φ~\y), y e Y, is compact,
then F is also realcompact. This is a generalization of Frolίk's
theorem [2] (Theorem 6.5). As a further consequence of 6.2, the
realcompactness is invariant under an open ΫFJ£-mapping if a space
X is any one of the following types; (1) X is locally compact, (2) X
is weakly separable, (3) X is connected, (4) X is locally con-
nected and (5) X is perfectly normal. In Theorem 7.5, we shall prove,
using Frolίk's theorem [3], that if X is locally compact, countably
paracompact, normal space, then the image of X under a closed mapp-
ing is realcompact when X is realcompact. It seems to me that this
is only one case for which realcompactness is proved to be invariant
under a closed mapping without any additional condition. In the
process of the proof of this theorem, we obtain that the image Y of
a locally compact, realcompact, normal space under a closed mapping
φ is locally compact if and only if £fφr\y) is compact for every
yeY.

1* Definitions and preliminaries* φ\ X—>Y is said to be a
Z-mapping, according to Frolίk [2], if φ maps every zero set of Xto a
closed set of Y. Moreover we shall define a WZ-mapping as a further
generalization of a closed mapping, φ is called a T7Z-mapping if
cl βχ{φ~\y)) = Φ~\y) for every yeY. We shall say that a subset F of
X has the property (*) if we have inf {/(a?); x e F} > 0 for every fe C(X)
which is positive on F. A subset F of X is said to be relatively
pseudocompact if / is bounded on F for every feC(X). A pseudo-
compact subset has the property (*) and a subset with the property (*)
is always relatively pseudocompact, and hence every subset of a pseudo-
compact space is always relatively pseudocompact. We now list some
properties with respect to these concepts.
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1.1. A closed mapping is always a Z-mapping.

1.2. A Z-mapping is always a WZ-mapping.

Proof. Let ze Φ~\y) - (t\βxφ~\y)) then there is feC(βX) such
that f(z) = 0, / = 1 on dβxφ-\y) and 0 ^ / ^ 1.

M= Xn{x;f(x) ^ 1/2, xeβX}

is a zero set of X Since φ is a Z-mapping and Λf n φ~\v) = 9, <p(^0
is closed and does not contain y. On the other hand, f(z) = 0, and
hence zedβx M; this implies that

y = Φ(J?) e 0 ( c l β x M ) c cl β r 0(i l f ) - cl

Since φ(M) is closed in F , cl i S F (p(M) n Γ = 9>(Λf), and hence, 7/ e F
implies y e φ(M). This is a contradiction.

1.3. Lβί <p: X—> Y be a WZ-mapping. If either X is normal or
the boundary ^fφ~1(y)J for every y e Y is compact, then φ is a closed
mapping.

Proof. Let ί1 be a closed subset of X and let y£φ{F). It is
easy to see, under the assumption of 1.3, that there is feC(X) such
that / = 0 on φ~\y), f = 1 on F and 0 S f ^ 1. Since ^ is a WZ-
mapping clβ^" 1 ^) = Φ~\y) and g = 0 on Φ~\y) where g is the extension
of / over βX. Φ being closed, Y — M is an open set containing y and
φ{F) c M where M = Φ({z; z e βX, g(z) ^ 1/2}) (y £ M is obvious). This
means that y g φ{F), that is, (p is closed.

1.4. Let F be a closed relatively pseudocompact subset of X. If
either X is normal or F is a zero set of X, then F has the property
(*) (see 3.3 below).

Proof. Let / be a function of C(X) and / > 0 on F. Now sup-
pose that Z(f) = E Φ φ. If either X is normal or F = Z(#) for some
geC(X), then i? and .F7 are completely separated, i.e., there is a
function h e C(X) such that h = 1 on E, h = 0 on F and 0 ^ Λ, ̂  1.
Then we have Z(\f\ + h) = φ which implies k = 1/(|/| + h)eC(X).
If inf {/(#); O G JF7} = 0, then it is easy to see that k is not bounded
on the closed relatively pseudocompact subset F. This is a contradic-
tion.

1.5. Every zero set of a pseudocompact space has the property
(*) (by 1.4).
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1.6. Suppose that φ is a mapping from X onto Y and every
point of Y is Gs. If a closed subset F of X has the property (*),
then φ{F) is closed.

Proof. Let F be a closed subset of X having the property (*)
and let yίφ(F). Since y is a Gδ-point, there is a function feC(Y)
with /-1(0) = {y} and O g / ^ 1 . h = fφ is positive on F, and hence
h > a > 0 on F because F has the property (*). If zeφ(F), then
there is a point xe F with φ(x) = z. Thus /(#) = f(φ(x)) — h(x) > a.
This means that φ(F)df-1[a/2f 1], and hence y$Ίp(F), that is, ^(F)
is closed.

1.7. //, m 1.6, X is pseudocompact, then φ is always a Z-map-
ping (by 1.5 and 1.6).

The following theorems are known and useful in the sequel.

1.8. X is realcompact if and only if for every point x in
βX — X there is a function f of C(βX) such that f > 0 on X and
f(x) = 0 [4, p. 119].

1.9. X is pseudocompact if and only if any family {Un} of

open sets of X, with Un Π Um = Φ{n Φ m), is not locally finite.

1.10. // {Un} is a locally finite family of open sets of a space
X with Un n Um = φ (n Φ m) and {an} is a set of given positive real
numbers and {xn, xn e Un} is given, then there is a function f of C(X)
such that f = 0 on X — U Un, f(xn) = αn, and 0 S f ^ an on Un.

2* ^-mappings and pseudocompactness* A weakly separable
space is a space with the first axiom of countability. The next
conditions which are mutually equivalent, are known; (i) X is compact
(resp. countably compact), (ii) any mapping from X onto Y is closed
for any space Y (resp. any weakly separable space F), and (iii) a
projection φ\ Y x X—> Y is closed for any space Y (resp. any weakly
separable space Y) [5, 8,12]. In this section, we shall establish an-
alogous theorems about pseudocompactness by means of ^-mappings.

Suppose that X is not pseudocompact and let {Wn} be a discrete
family of open sets with X— \jWn — SΦφ. There are functions / and
g of C(X) by 1.10 such that (i) f(xn) = εn, {εn} J 0 and / = 0 on S where
xn is a given point of Wn and (ii) g(xn) = n, g = 0 on S and g(x) > 0
implies f(x) > 0. Then F = {x; g(x) ^ 1/2} is a zero set and

inί{f(x);xeF} = 0 .
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This shows that F has not the property (*) and / is not a Z-mapping
from X onto f(X). Combining 1.5, 1.6 and the arguments above, we
have the equivalences between (1), (2) and (3) in the following theorem.

THEOREM 2.1. The following conditions are equivalent for a
space X.

( 1 ) X is pseudocompact.
( 2 ) Every zero set of X has the property (*).
( 3 ) Any mapping from X onto any space Y such that every

point of Y is G8, is always a Z-mapping.
( 4 ) The projection φ:YxX-+Y is a Z-mapping for any

weakly separable space Y.
(5) The projection φ:Y x X—+Y is a Z-mapping for some

nondiscrete weakly separable space Y.

Proof. (4) —> (5) is obvious. We shall show (1) —* (4). Suppose

t h a t there is a function heC (X x Y) such t h a t y e φ(E) — φ{E)

where E = ΛΓ^O). Let {Wn} be a base of y with

Since φ~ι{y) = {y} x X is pseudocompact and h is positive on φ~1(y)1

there is a real number a > 0 such that h ^ a on φ~\y). For each
n, we choose a point yn in Wn Π φ(E) (and hence {yn} —> y) and a point
(yn,

 χn) i n E. If A = {xn; n = 1, 2, •} has an accumulation point x0,
then (T/, X0) e E, that is, y = <̂ (τ/, ̂ 0) e 9>(2£). This is a contradiction.
Thus A must be a closed discrete subset of X. Let

M = {z; h(z) < a/2}

and F = {z; h(z) ^ a/2). We choose an open set Un, in X, containing
α;n and an open set Vn c Wn in containing ?/% F such that

C/ în X) n C7m(in X) = φ (n Φ m), Vn x UndM .

X being pseudocompact, there is an a;0 in U Ϊ/Λi — U U%i for some
{%}. We have (?/, a?0) e ί7, i.e., ?/ = <p(?/, a?0) e ^ ( ί 7 ) . On the other hand,
we have φ~\y) ΓΊ F = φ since F = {2;; λ(«) ^ α/2} and / i ^ α o n φ~\y).
This is a contradiction.

(5)—>(1) follows from the following theorem.

THEOREM 2.2. Suppose that Y is a space in which there is a
discrete subset M = {yn; y = 1, 2, •} which has an accumulation
point y0. If the projection φ: Y x X—* Y is a Z-mapping, then X
must be pseudocompact.
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Proof. We shall firstly show that there is a function feC(Y)
with f(yn) > 0 for every yne M and f(y0) = 0. Since Y is completely
regular, there is a function feC(Y) with f{y^) = 1, fx — 0 on some
neighborhood (briefly, nbd) Vx of τ/0 and 0 ^ /x ^ 1. Let ?/ί2 be the point
such that yi2eMπ Z(f) and ί2 > m implies fι{ym) > 0. Then there
is a function / 2e C(Y) such that /20/;2) = l,/2 = 0 on some nbd F2 of
2/o, Va c V1 and 0 ^ /2 ^ 1 and Z(f2) c Zί/O. Let # ί8 be the point such
that yi3 e M Π ̂ (/2) and %> m implies f2(ym) > 0 and so on. Define
fipή = ΊLn=ι(Xβn)f{x). Then f(x) is continuous and f(y0) = 0 and / > 0
on M.

If X is not pseudocompact, there is a locally finite family {Un}
of open sets with Un Π £7m = Φ and there is a function h e C(X) such
that h ^ 0 on X and λ(a;n) = l/f(yn) f° r some point x^e Z7% by 1.10.
Define H(y, x) = f{y)h(x). H(y, x) is continuous on Y x X and

») = 0

for every x e X and iί(τ/%, a?n) = 1 for n — 1, 2, . Therefore we
have {(yn, O ; n = 1, 2, ...} c H~\l) and hence M e ^ (ff-^l)). On the
other hand, yo£φ{H~ι(l)). This shows that φ is not a ^-mapping.

Even if X is pseudocompact, a closed subset F of X with the
property (*) is not necessarily pseudocompact. For instance, the space
D constructed in [4, 51, p. 79], which is a zero set of the pseudocompact
space W, is not pseudocompact.

Relating this example, we shall consider a countably compact
space. If X is not countably compact, then there are a discrete closed
subset A = {xn; n — 1, 2, •} and a function fe C(X) such that

f(xn) = en, {en} { 0 and / ^ 0 on X.

It is obvious that A has not the property (*). Thus we see that X
is countably compact if and only if every closed subset of X has the
property (*).

3* Mappings and the property (*). In this section we shall
consider the relations between mappings given in § 1 and the property
(*), and moreover give several examples. We shall say that φ has the
property (*) if φ~\y) has the property (*) for every y e Y.

3.1. (1) Let φ: X—> Y be a mapping and every cp~\y),ye Y, be
relatively pseudocompact. If φ is a Z-mapping, then φ has the pro-
perty (*).

(2) If φ: X-^Yis a WZ-mapping and φ has the property (*),
then φ is a Z-mapping.
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Proof. (1). Suppose that there is a point y in Y such that
F = <p~:0/) has not the property (*), that is, there exists a function
h e C(X) which is positive on F, h ^ 0 on X and h(xn) = en, {εj j 0
for some sequence {α J in F. We can find a family {ΉFJ of open sets
such that Wnf] Wm = φ(nΦ m), εn - ρn ^ A(x) ̂  sn + ρn on TFW where
min {εn - εn+u εn^ - en} = 2pn, and xn e Wn. E= h~ι(ϋ) is not empty

because E — φ implies I/A e C{X) and I/A is not bounded on a relatively
pseudocompact subset F. We shall show that φ is not a Z-mapping.
To do this, it is sufficient to show that y e ^>(£r) because E is a zero set

and y ί φ(E). lΐy $ φ(E), then there is a function g eC(Y) such that # = 1
on φ(E), g(y) = 0 and 0 ^ g ^ 1. This implies that #<p e C(X), ^ = 1
on E and #<p = 0 on F. The function k = h + gφ is positive, con-
tinuous on X, and hence l/keC(X). On the other hand, 1/& is not
bounded on F. This contradicts the fact that F is relatively pseudo-
compact.

( 2 ). Let F - Z(f),fe C*(X) and 2/ £ ̂ ( F ) . Since φ has the pro-
perty (*), we have inf {/(#); a; e ςp"1^)} = a > 0. Let (/ be an extension
of / over βX; then g ^ a on Φ~\y) = aλβXφ~~\y).

E = {x; x e βX, g(x) £ a/2}

is compact and y£Φ(E). Φ(E) being compact, V = βY — Φ(E) is an
open subset (in βY) containing y. Thus VπY is an open subset
(in Y) containing y and ψ{F) Π (V f] Y)aΦ(E) Π F n Y= φ. This
implies that y£φ(F), that is, φ(F) is closed which shows that φ is
a ^-mapping.

From 3.1 we have

3.2. ( 1 ) If φ is a Z-mappίng from a pseudocompact space X
onto Y, then φ has the property (*).

( 2 ) If φ is a WZ-mapping from a countably compact space X
onto Y, then φ is a Z-mapping.

We can not replace "Z-mapping" in (1) of 3.2 by " TFZ-mapping"
and "Z-mapping" in (2) of 3.2 by "closed mapping" respectively, as
will be seen from examples 3.4 and 3.5 below respectively.

3.3. If F is a C*-embedded subset of X with the property (*),
then F is pseudocompact. In particular, in a normal space, a closed
subset ivith the property (*) is always countably compact (see 1.4).

Proof. If F is not pseudocompact, then there is a function
feC(F) with 1 ^ / > 0 and inf {/(x); xeF} = 0. Let g be an ex-
tension of / over X; then g > 0 on F and inf {g(x); x e F) = 0 which
is a contradiction.
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EXAMPLE 3.4. Let X = W(ω, + 1) x W(ω0 + 1) - {(ωu ω0)},

Y = W{fύi + i)

and let 9?: X—• F be defined by £>(?/, x) — 7/. Every φ~\y), y e F, is
relatively pseudocompact. Since βX = TΓ^! + 1) x TΓ(ω0 + 1), we
have Φ~\y) = c l ^ φ - 1 ^ ) , i.e., 9? is an open T7£-mapping. But φ is
not a ^-mapping by (1) of 3.2 because φ"\ω^) has not the property
(*) and X is pseudocompact.

EXAMPLE 3.5. Let

X = W(ω, + 1) x T F ^ + 1) - {(a),, ωO}, F = ^ ( ω , + 1)

and let φ: X—» Y be defined by 99(2/, $) = 7/. Every g?-1^/) is compact
except y = ω, and qr\ωύ is countably compact. Thus φ is an open
^-mapping by (2) of 3.2. But φ is not closed because

F = {(1/, x); x = ωl9ye Wiω,)}

is closed but φ(F) = W{ωx) is not closed in Y. (We notice that X is
countably compact.)

EXAMPLE 3.6. Let X = W(ω1 + 1) x W(ω, + 1) - {(y, x); y = ωl9

ω0 < x ^ (ϋi}, Γ = TΓία)! + 1)

and let φ: X—* F be defined by 99(7/, 35) = y. Since

x TF(ωx + 1)

is pseudocompact and βZ = Y x F, X is pseudocompact [9] and it is
easy to see that every φ~1(y)1ye F, is compact. Thus φ is an open
compact mapping but not a I^-mapping. (φ: X—> F is said to be com-
pact if φ~\y) is compact for every y e F.)

4* Extensions of open mappings* For an extension of an open
mapping φ: X—• F where both spaces X and F are normal, the follow-
ing theorem is known: if either φ is compact or φ is closed, then Φ
is open ([1], in which φ is assumed to be a many-valued mapping).
In this section, we shall show that if φ is a (single-valued) TFZ-mapp-
ing, then we can drop the assumption of normality of both spaces;
that is, φ is open if and only if Φ is open. Let φ\X—* Fbe a mapp-
ing. A function / is said to be φ-bounded if / is bounded on φ~\y)
for every y e Y.

If feC(X) is ^-bounded, we put

f(y) = inf {/(a?); x e φ-\y)}, fs(y) = sup {f(x); x e φr\y)}
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these are real-valued functions defined on Y. The following lemma is
useful.

LEMMA 4.1. ([2]). Let φ\ X—* Y be a mapping and let feC(X)
be φ-bounded.

( i ) If φ is open, then fs(resp. fι) is lower (resp. upper) semi-
continuous.

(ii) If φ is closed, then fs (resp. fι) is upper (resp. lower) semi-
continuous.

(iii) If φ is a WZ-mapping, then fs (resp. fι) is upper (resp.
lower) semi-continuous.

Proof, (i) and (ii) are essentially proved in [2]. (iii) is obtained
in the following way: let g be the extension of / over Φ~ί(Y); by (ii)
gs (resp. gι) is upper (resp. lower) semi-continuous on Y because Φ
is a closed mapping. Since φ is a WZ-mapping, we have

gs = fs and gi = f .

This completes the proof.
// φ is an open WZ-mapping, then fs and fι are continuous on

Y for every φ-bounded function fe C(X) by 4.1.

As applications of 4.1 we have the following 4.2 and 4.3.

4.2. // φ is an open WZ-mapping from X onto a pseudocompact
space Y such that φ~1(y) is relatively pseudocompact for every y e Y,
then X is pseudocompact.

This is a generalization of a theorem of Hanai and Okuyama [6]
and our proof is simpler than theirs; that is, 4.2 follows from the
facts that for any fe C(X), f is ^-bounded, and hence fs (resp. /*)
is bounded by (iii) and continuous on Y by the note above which con-
cludes that / is bounded on X.

4.3. If φ is a WZ-mapping from X onto a countably compact
space Y such that φ~~1(y) is relatively pseudocompact for every y e Y,
then X is pseudocompact.

Proof. Let / be any function of C(X); then | / | is ^-bounded and
I/| s is upper semi-continuous by (iii). Since a space is countably com-
pact if and only if every upper semi-continuous function is bounded
above [10], we see that | / | s must be bounded above, that is, / i s
bounded. This means that X is pseudocompact.
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THEOREM 4.4. (i) A mapping φ: X —> Y is a WZ-mapping if
and only if φ(U f] X) = Φ(U) Π Y for every open set U of βX.

(ii) If φ\ X —> Y is a WZ-mapping, then φ is open if and only
if Φ is open.

Proof, (i). Necessity. It is sufficient to prove that y e Φ(U) Π Y
implies yeφ(UnX). This follows from the fact that

φ-'iy) Γ\ {U ^ X) Φφ

if and only if Φ~\y) Π U Φ φ for every open set U of βX since φ is
a ίFZ-mapping.

Sufficiency. If xeΦ~\y) — dβxψ^iy), then there is an open set
U (in βX) containing x which is disjoint from clβxφ-^y). This means
that y ίφ(U Π X), which contradicts yeΦ(U).

(ii). It is sufficient, by (i), to show that the openness of φ im-
plies the openness of Φ. Let x* be any point in βX and let U be an
open set of βX containing #*. There exists a function fe C(βX) such
that 0 ̂  / ^ 1, f(x*) - 1, / = 0 on βX - U and c l β x F c U where

V={x;f(x)>0} .

We have, by 4.1, (f\X)seC(Y). Let us denote by g the extension
of (/| X)s over βY. Then flf((P(ίc*)) = 1 and W = {y; g(y) > 1/2} is
open in βY. We shall prove that W(zΦ(c\βxV). Suppose that there
is a point z in W such that Φ~\z) Π φ-'Φ{o\βxV) = ̂ . Then / = 0 on
Φ~\S) where S is an open subset, contained in W, containing z with
S Π Φ(c\βxV) = φ. This implies that g\ Y = 0 on S which is impossible.

This theorem will be used in § 6.

5* Inverse images of realcompact spaces* Let a be a collection
of coverings of X. A centred family ^// of subsets of X (i.e., with
the finite intersection property) is said to be a-Cauchy if for every
tyίea, there exist Ae% and i l ί e ^ f with Ma A. We shall say that
a is complete if

n ^ F Φ Φ

for every α-Cauchy ^/S, according to Frolίk [3]. In the sequel, we
consider only countable coverings consisting of cozero-sets where a set
is said to be a cozero-set if it is the complement of a zero set. We
denote by ac the collection of all such coverings and moreover by
αpc(resp. ale and asΰ) the subcollection of ac with the point-finite pro-
perty (resp. with the locally finite property and with the star-finite
property). If a is a collection of countable coverings of X, then
define W = U {c\βxA; A e SI} for every 2ί e a. 3ίβ is σ-compact and hence
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Z= n{2tβ;2ίeα} is realcompact and I c - I c 2 c / 5 I where υX
denotes the Hewitt's realcompactiίication of X.

LEMMA 5.1. Let ^// be a centred maximal family of zero sets.
Then ^fί is a-Cauchy if and only if ^/f has the countable intersec-
tion property where a is any one of aCJ apcy alc and asc.

Proof. Necessity. Suppose that there is {Zn} in ^f with

where Zn = Z(fH), 0 ^ / ^ l a n d / u e C(X). Then / = Σ(Λ/2n) is a
positive continuous function on X.

An = {x; l/(n + 2 ) < f(x) < 1/n}

is a cozero-set because An = X ~ Z(gn) where gn = ( — \f — a\ + a) \J 0
and a = (l/(n + 2) + l/n)/2. It is easy to see that 21 = {An} e asc. If
there is Ze^// with Za An for some n, then

and we have l/(n + 2) < / < 1/w on B. On the other hand,

/ < V(n + 2)

on JS by the method of construction of /. Thus ^/S is not as0-
Cauchy.

Sufficiency. It is sufficient to show that if 9JΪ is not α:c-Cauchy,
then ^// has not the countable intersection property. Since Λ? is
not α:c-Cauchy, there exists

21 = {An; An = Z:, Zn = Z(fn), fn e C(X)} e aΰ

such that M(£ An for every n and every Me ^£. Hence M Π Zn Φ φ
for every J l ί e ^ / . ^ being maximal, Zne ^/S. Since {Zw

c} is a
covering of X, we have f]Zn — φ, and hence ^// has not the countable
intersection property.

LEMMA 5.2. T%β following statements are equivalent.
(1) X is realcompact.
(2) A centred maximal family of zero sets with the countable

intersection property has the total nonempty intersection.
(3) a is complete where a is any one of ae, avc, alc and asΰ.

Proof. (l)«-»(2) is already proved in [4].
(3)->(l). If peυX-X, then ^ T = {Z; p e clβxZ, Z is a zero

set of X} is a maximal centred family with the countable intersection
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property, and hence by 5.1, ^ is #C-Cauchy. Since ac is complete,
Π ^ Φ φ and it is obvious that n{cl^^: Ze\^} = {p}. This is a
contradiction, that is, υX = X

(1) —> (3). It is sufficient to prove that the realcompactness implies
the completeness of asc. Let aN be the family of all countable normal
open coverings; then aN is complete since X is realcompact. On the
other hand, α:sc-Cauchy family is α^-Cauchy family. Therefore we see
asc is complete.

THEOREM 5.3. Let φ\ X—+ Y be a Z-mapping and let every
φ~1(y)9V^Yy be a C*-embedded realcompact subset of X. If Y is
realcompact, then so is also X.

Proof. Let ^ be a maximal centred αc-Cauchy family consisting
of zero sets of X; then ^f has the countable intersection property
by 5.1. Thus by 5.2 it is sufficient to ohow that ^ has the total
nonempty intersection. Since φ{^) is <xc-Cauchy (in Y) and Y is re-
alcompact, we have ye flφ(^f) for some point y by 5.2. φ being a

Z-mapping, φ(M) = φ(M) for every Me j f , Since M, Ne ^f implies
M f] Ne ^/έ, ^€ Π φ~\y) has the finite intersection property on φ~1{y).
Let §1 = {φr\y) — Z(gn); w = 1, 2, •} be a covering of φ~\y) where
gn e C{φ-\y)) and gn is bounded. Without loss of generality we can
assume that 0 ^ gn ^ 1 for each n. Let fn be an extension of gn over
X and define / = Σ (fJ2n). f is continuous and Z(/) Π ̂ ( ί/) = ^. Γ
being completely regular and φ being a Z-mapping, there is heC(Y)
with O ^ Λ I l , h(φZ(f)) = 1 and Λ(j/) - 0.

{X - Z ( M , * - ^(Λ); ^ - 1,2, •}

is a covering of X. We shall show that M qL X — Z(hφ) for every
MG ^ C . Suppose that there is a set ikf e ^ C such that

MczX- Z(hφ) .

Since qr\y) a Z(hφ), we have Jlίn φ~\y) = Φf but this contradicts the
fact that Mf] φ~\y) Φ ψ for every Me ^€. Thus there are Me ^
and n with MdX— Z(fn), that is, ^ / n φ"!(i/) is α:c-Cauchy (on
φ~\y)). Since φ"\y) is realcompact, we have Π {^ Π φ~\y)) Φ φ.
This means Π ^ Φ φ. Therefore X is realcompact.

THEOREM 5.4. If φ is a closed mapping from a normal space X
to a realcompact space Y such that every φ~ι(y), y e Y, is realcompact,
then X is also realcompact.

6* Open WZ-mappings and realcompactness* A point p is said



MAPPINGS AND SPACES 467

to be a P-point of X if every continuous function defined on X is const-
ant on some nbd of p. A space X is called a P-space if every point
of X is a P-point of X.

In the following, let φ: X—> Y be an open TFZ-mapping, and we
divide both spaces X and Y into classes in the following way: Xd =
{x; φ(x) is isolated and φ~1φ(x) is not compact}, Xcd — {x; φ(x) is iso-
lated and φ~1φ(x) is compact}, Xe = {x; x $ Xd (J XCd &nd φ~xφ(x) is not
compact},

•̂ce — X — Xd — XC(Z — Xe, Yd = φ(Xd),

Ycd = φ(Xed), Ye = φ(Xe) and Yce = φ(Xce) .

LEMMA 6.1. If φ: X—> Y is an open WZ-mapping, y* e Ye and
if there is a function fe C(βX) such that 0 ^ / ^ l , / > 0 on X and
f(x*) = 0 for some x* e Φ~\y*) - φ-ty*), then ZβΣ(fΦ) is a neigh-
borhood {in βX) of Φ~\y*), equivalently, Zβτ(fι) is a neighborhood
(in βY) of y*. (We notice that Φ is open by 4.4)

Proof. Suppose that Zβγ(fι) is not a nbd of ?/*, i.e., Zγ(fi) is
not a nbd of y*m Let us put h = f*\Y, a2n = l/2n — l/(2n + 1) and

an = l/2n - (4/7). a2ny

bn = l/2n + (4/7) α 2 w - 1

cn = l/(2n + 1) - (4/7). α 2 n + 1 ,

dn = l/(2n + 1) + (4/7) atn

Fn = ^Λ-K, 6J,
En = φ-"h-\cn, dn] .

It is easy to see that either clβ^Ui^J or c\βx({jEn) contains x*, say
cW( U Fn) 9 x*. Let us put qn = (fn - bn) V 0 and

K=\hφ-βn\\/ {K - βn} - {bn - βn}

where βn = (an + 6n)/2; then qn e C(/3X), kn e C(X), An = {x; xe βX,
f(x) ^ bn} = Zβx(qn), Fn = ZΣ(kn) and {Gn; n = 1, 2, . . •} is locally finite
family of zero sets of X where Gn = ZΣ(qn + kn) = Fn n An. We can
assume that every Gn is not empty.

Next we shall prove that ΌGn is a zero set. If we put

tn = l/2n - (5/7) a2n, sn = l/2n + (5/7). a2n^

and Bn — {x; xeβX,f(x) < sn}, then Un = φ~ιh~λ(tn, sn) is an open set
containing JF% and TΓW = Un Π 5% is also an open set such that Gn c TΓW

and 1?, c ^ - ^ [ ί , , s j . Since WnΓ)Wm = ψ and a e u f . - U f ,
implies /(a;) = 0, {Wn} is a discrete collection of open sets of X be-
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cause / > 0 on X. If x £ Bny then f(x) ^ sn, kn(x) ^ 0, and hence

K(%) + ?•(&) ^ 0»(«) > s» - &• α - ί = P > 0 .

If a; g tfn> then | %>(&) - /3J > & - tn, qn(x) ^ 0, and hence

kn(x) + ?»(α?) ^ fcn(aj) > /3n - tn - bn + £ n = an - tn = pn > 0 .

Let us put gn(x) = {(kn(x) + qn(x)) A pn} x (l/pn). Then

^ = 1 on X - TΓW and x e Gw

if and only if flrΛ(a5) = 0. Define

f or x e X - U Wn

(̂ ) for xeWn- Gn

f or a; 6 U GΛ .

Since {TΓJ is a discrete collection, r̂(x) is continuous and Z(g) — [jGn,
that is, [jGn is a zero set.

Since 2Γ(#) Π Z(hφ) = φ, we have clβxZ(βf) n c\βΣZ(hφ) = ^, and
hence #* ί Φ(Z(g)) because c\βxZ(hφ) i) (?-1(?/*)(notice; ?̂ is a WZ-mapp-
ing).

Replacing αΛ, δΛ, ίw and sΛ by < = l/2w - (5/7) a2n, Vn = l/2n +
(5/7) α ί n - 1 ,« ; = l/2ra - (6/7) a2n and s ; - l/2n + (6/7). α 2 n - 1 respec-
tively, we can define and construct F'ni q'nβ'n, K, A'n, Gf

n, p'n, g'n and gr

using methods similar to definitions and constructions of Fn, qn, βn,kn,
An, Gny pny gn and g respectively in the arguments above. Then

Gn c e l , Z(g) c Z(flf'), ^(ff;) Π Zihφ) = φ

and y* ί Φ(Z(g')). Thus there exists a nbd W(in Γ) of y* with

On the other hand, %*ec\βx(UFn) and y* e Y implies y* e \jφ(Fn),
and hence there is a point y in φ(Fm) Π W for some m, that is

m̂ ^ h(y) ^ 6m .

This shows that there exists a point x of φ" 1 ^) with x e A'm and xeFf

m.
Since G^ = ^L Π F i , 2/ e φ(G'J. This contradicts TΓ Π Φ(Z(g')) = φ.

The following theorem indicates the structure of the image of a
realcompact space under an open T^Z-mapping.

THEOREM 6.2. Let φ be an open WZ-mapping from a realcom-
pact space X onto Y.

(i) Every point y e Ye is a nonisolated P-point of Y, and hence
Ye U Yd is an open P-subspace of Y and Yce U Ycd is closed in Y.
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(We shall prove in 6.5 that Ye = ψ implies the realcompactness
of Y).

(ii) // Y is not realcompact, then every point y* of uY — Y is
a P-point of βY and Yce U Yed is closed in υ Y.

Proof, (i). Let y e Ye and heC(βY) with h(y) = 0 and let

x* e Φ~\y) - ψ~\y) .

X being realcompact, there is a function feC(βX) such that

0 ^ / ^ l,/(α*) = 0

and / > 0 on X. k = f + hΦ is continuous and k > 0 on X and

k(x*) = 0 .

By 6.1, Z(¥) is a nbd (in βY) of y. On the other hand ¥ ^ h im-
plies Z(¥)(zZ(h). This shows that h vanishes on some nbd of y, i.e.,
y is a P-point of Y. Thus Ye U Yd becomes to be a P-space. Since
¥(y) > 0 for every yeYce{J Ycd, Ye U Yd is open in Y and hence
Yee U Yed IS CloSβd 111 Y.

(ii). Let τ/*G6>F— Y,x*eΦ~\y*) and let / be a function of
C(βX) with 0 ^ / ^ 1, /(»*) - 0, / > 0 on X. Let us put Xo = Φ~\ Y).
If ^ β x (/ ) ί)Xo = Φ, then Z β r(/0 n Γ = φ since every φ-\y),ye Γ, is
compact and / > 0 on XQ, and hence /* > 0 on Y and /*(#*) = 0.
Thus we have 1//* e C( F) and 1//* can not be continuously extended
over y*. But this is impossible since y*eυY— Y. Thus we have
Zβz(f) Π Xo Φ Φ which implies Zγ(fi) Φ φ. For every y e Yce U Γ"cd,
/ > α(τ/) on φ~\y) because φ~\y) is compact where a(y) is some real
number. Zβτ{fi)Γ\ Y is an open-closed subset of Γ ( c Ye U Yd) by
(i) and c l ^ ^ / O n Y)(cclβFZ(/*) = Z(/*)) is also open-closed in /SY.
This shows that y* e v{Z(f) n Y) because

yΓ = y(Z(/<) Π Y) U υ(Y - Z(f))

and ^(^(/ j) n Y) Π υ( Y - Z{f)) = φ (we notice Z{f) = ZβAP)).
Since Z{fι) Π Y is a P-space, so is also υiZif*) Π Y) and every point
of ϋ(Z(/0 Π Y) is a P-point of u(Z(/0 Π Y) and hence of /3Y
14, P. 211].

From the argument above, every point y*eυY— Y has a nbd
which is disjoint from Yce U YccZ, and by (i) every point of Ye U Yd

has also a nbd which is disjoint from Yce U YCd. Thus Yce U YCd is
closed in υY.

If βY — Y contains a P-point p oΐ βY, then it is known that
every function feC(Y) can be continuously extended over p, and
hence, Y is not realcompact. The converse is not necessarily true.
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Such an example is given by the space in Example 3.4, that is,
Y = W(ω1 + 1) x W(ω0 + 1) - {(ωu ωQ)} is not realcompact but βY - Y
consists of only one point (ωu ω0) which is not a P-point of βY.

But if Y is the image of a realcompact space X under an open
TFiΓ-mapping, then Theorem 6.2 concludes the following: the fact that
Y is not realcompact implies that βY — Y contains a P-point of βY.
Thus the equivalence of (1) and (2) in the following Theorem 6.3 is
obtained.

Let y*eβY— Y. We denote by 0(y*) the set of all functions
of C(X) such that c\βxZx(f) is a nbd of Φ~\y*), and

0(2/*) is a Z-ideal of C(X).

THEOREM 6.3. Let φ be an open WZ-mapping from a realcom-
pact space X onto Y; then the following statements are equivalent.

(1) Y is realcompact.
( 2 ) There is no P-point of βY in βY - Y.
(3) Z(Q(y*)) is not closed under countable intersection for every

y*eβY - Y.
( 4 ) There is a function g e C(βX) such that Φ~\y*) c Zβx(g) but

is not a nbd of Φ~\y*) for every y*eβY — Y.

Proof. (2) —> (3). Suppose that there is a point y* such that Z(0(y*))
is closed under countable intersection. Let g be any function of C(β Y)
with 0 S g S 1 and g(y*) = 0; then it is sufficient to show that Zβγ(g)
is a nbd of y*, i.e., y* is a P-point of βY. Put g = (gn\/ 1/n) — 1/n
and fn = gn\ Y. It is obvious that e\βγZγ(fn) is a nbd of y*,fnφ e C(X)
and φ-'ZAfn) = Zx{fnφ). If dβxZx(fn) is not a nbd of Φ~\y*), then
Zx(fnφ) does not contain X Π U for any nbd U of Φ~\y*). Since φ is
open and φ(Zz(fnφ)) = φφ~ιZγ{fn) - Zy(fn),φ(XΓί U) is open and φ ( I n U)
is not contained in Zγ(fn). This contradicts the fact that o\βγZγ{fn)
is a nbd of y*. Therefore c\βxZx(fnφ) is a nbd of Φ~\y*). Since
Zx{fnφ) e Z(0(y*)) and iΓ(0(?/*)) is closed under countable intersection,
there is a function keθ(y*) with ΓϊZx(fnφ) — Zx(k). Since ^GO(T/*),

c\βxZ(k) is a nbd of Φ~\y*) and ^(clβx^x(/b)) is a nbd of j / * because
<P is open by 4.4. On the other hand, x e Zx(k) implies (fnφ)(x) = 0
for every n, and hence we have φ(x) e Zγ(g \ Y), i.e., φ(Zx(k)) cZγ(g \ Y).
We have

Φ(c\βxZx(k)) c c\βγΦ(Zx(k)) = dβγ(φZx(k)) c clβFZF((71 Y) c ZβF((/) .

This shows that Zβγ(g) is a nbd of y*.
(3)—*(4). Since Z(0(τ/*)) is not closed under countable intersec-
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tion, there is a function fne0(y*)(n = 1,2, •••) and c\βx(f]Zx(fn)) is

not a nbd of Φ~\y*). Let / - Σ (l/2*)(|/» |/(1 + I Λ I). H

there is a compact nbd ί7 of z* such that F n c l β x Z z ( / ) = φ. Since
X is dense in βX, we have that F f] X Φ φ and / > α o n F π l for
some a > 0. This means that /Λ > an on F Γι X for some α:TC > 0, i.e.,
c\βxZx(fn) does not contain z*. This is a contradiction. Thus

Let g be an extension of / over βX, then it is obvious that

φ-\y*)c:Z(g).

On the other hand, Z(g) is not a nbd of #* because c\βxZx(f) is not
a nbd of y*m Therefore the function g is a desired function in (4).

(4)—>(2). Let y* be any point in βY — Y and let g be a func-
tion described in the assumption (4). Without loss of generality we
can assume that g ^ 0. Since Φ is open and closed by 4.4 and

gs is continuous on /9F by 4.1 and #s(τ/*) = 0. Since Zβx(g) is not a
nbd of φ~\y*)i Φ(βX — Zβx(g)) is open and does not contain #* but
c\βrΦ(βX — Zβx(g)) contains y*. By the method of the construction
of gs, we see that gs > 0 on Φ(βX — Zβx(g)) and hence

Zβγ(g ) (zβY- Φ(βX - Zβx(g)) .

Thus Zβγ(gs) is not a nbd of y*, that is, y* is not a P-point of βY.

COROLLARY 6.4. If φ is an open WZ-mapping from a real-
compact space X onto a pseudocompact space Y, then Y must be
compact.

Proof. If Y is not compact, then βY = uY Φ Y and Yce U Yed

is compact by 6.2. Z — βY — Yce — Ycd is an open locally compact
subspace of β Y. Since every point z of Z — Y is a P-point of β Y
by 6.2, z has the compact nbd which is a P-space. On the other hand,
a countably compact P-space is a finite set, and hence, z must be
isolated. This is a contradiction, since zeβY— Y.

Frolίk [2] has proved the following

THEOREM (ί\). T%e realcompactness is invariant under an open
perfect mapping where φ: X—> F is said £o δe perfect if φ is closed
and compact.
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The following theorem is a generalization of Theorem

THEOREM 6.5. If φ is an open closed mapping from a real-
compact space X onto a space Y such that ^fφ~1{y) is compact for
every y e Y (equivalently Ye = φ), then Y is also realcompact.

Proof. Since every Sfφ~ι(y) is compact, we have

Γ = YceU YcdU Yd and Yce U Ycd

is closed in uY by 6.2. If y*eυY- Y, then y* is a P-point of βY
by 6.2, and hence there exists an open-closed nbd W(in βY) of y* with
V = W Π Γ c Γd. Let xα be any point in φ-\y^), ya e V, and A = {xa}.
A is a discrete closed subset of X. Since A is a closed subset of a
realcompact space, A is realcompact. V is homeomorphic with A, and
hence V is realcompact. V being open-closed, we have

y* e υVa W .

This contradicts V— oV. Thus Y must be realcompact.

REMARK. It seems to me that Theorem 6.5 is not obtained directly
from Theorem (ί\) in the usual method below.

Let φ be a mapping in 6.5. For ye Yce (notice Ye = φ),

φ-\y) = £fqr\y)

and it is compact. For ye Ycd{J Yd, φ~\y) is open-closed. We con-
sider a subset Xo = Xce U Xcrf U {z\ z is the point of φ~1(y)J ye Yd}.
Then Xo is a closed subset of X, and hence, it is realcompact. Let
φ0 be a mapping from Xo onto Y defined by φo(x) — φ{x). It is obvious
that φ0 is a perfect mapping, but, from such a construction φ0 is not
in general necessarily open (if in this case, φ0 is open, then 6.5
is an immediate consequence of Theorem (F^). For instance, let
N = {tn} be the set of all natural numbers, An = N, Bn = βAn and
let Cn = Bn — An(n = 1, 2, •). We denote by M the topological sum
of An. Then Bn c βM and β n is open in BM. Let us put

Zλ = Z2 = βM

and we define a mapping ^ from ^ onto Y = /3iV by the Stone ex-
tension of the mapping λ< from JkΓ onto JV with λi(An) = tn(i = 1,2).
Since λ< is open-closed, ^ 4 is also open-closed by 4.4. Let X be the
topological sum of Zx — U Cn and Z^ and define a mapping φ from Z
onto Γ by φ \ {Z1 - U Cn) = ψ1\(Z1- U Cn) and φ\Z2 = ψ2. We shall
prove the openness of φ. Since φ' = φ\(Z1 — UCn) is a T^^-mapping
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from Zι — [jCn onto Y and ψ1 is an extension mapping of φf from
β{Zί — U Cn) = ^Ί onto Y, we have by 4.4 that φ' is open. Thus it
is easy to see that φ is open. Next we shall prove the closedness of
φ. To do this, it is sufficient to show that φ\(Z1— (J Cn) is closed.
Let F be a closed subset of ZL — l)Cn. Since Bn is open in Zu

c\zF ΠBn^φ
z

implies F f] An Φ ψ. Thus we have ψ^cl^F) = φ(F), i.e., ψ is closed.
Let an be the point of Ana Zx (n = 1, 2, •) and let A = {an}

and Xo = (Z1 - U Bn) U cl^A Ό(Z2- U 5n) and φ0 = ^ | Xo. Since Xo

is closed in X, φ0 is a mapping considered in the begining of this
remark. U = Xo — cl^A is open in Xo but 9>0(f) is contained in
Y — N, and hence, £>0(EO is not open. This shows that φQ is not an
open mapping.

By 6.5, it is proved that if φ\ X—•* Y is an open IT^-mapping
and if some condition imposed on X implies Yβ = φ, then Y is real-
compact when X is realcompact. There exist many examples of such
conditions. For instance, we have the following theorem.

THEOREM 6.6. Let φ he an open WZ-mapping from a real-
compact space X onto Y. If X is any one of the following spaces,
then Y is realcompact.

( 1 ) X is weakly separable.
( 2 ) X is locally compact.
( 3 ) X is connected.
( 4 ) X is locally connected.
( 5 ) X is perfectly normal.

7. Closed mappings and realcompactness* Frolίk has proved
the following:

THEOREM (FZ) [3]2. If φ is a perfect mapping from a realcom-
pact, normal space X onto Y, then Y is realcompact.

In this section, we shall deal with closed mappings and show, in
Theorem 7.5, that the realcompactness is invariant under a closed
mapping, in Theorem (F2), if we replace "compactness of φ" by "local
compactness of X". It seems to me that Theorem 7.5 is only one
case for which the realcompactness is proved to be invariant under a
closed mapping without any additional condition.

LEMMA 7.1. If φ is a closed mapping from a normal space

2 It seems to me that the countable paracompactness is necessary.
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X onto Y, then c\βx^fxφ'~1(y) — SfβxΦ~\y) for every y e Y. Further-
more, if £fxφ~x(y) is compact, then Φ~\y) — ψ~\y) is open-closed in
βX- X.

Proof. Since φ is closed, we have Q\$xφ~\y) — Φ~ι(y) by 1.1 and
1.2. It is obvious that £fxφ~\y) a SfβxΦ~\y). Suppose that there
is a point x in SfβxΦ"\y) — &βx£fxφ~ι{y). We can find a nbd £7(in
βX) of x with c\βxUΓ) dβχJSfχφ-\y) = Φ. Since

dβχφ-\y) = Φ~\y), F = cl β x tf n <p-\y) Φ Φ .

Next we shall show that E = cl β x ί7 f] (X — φ~\v)) Φ Φ- Since

x e 5 ή . χ φ - \ y ) - z \ \ )

U contains a point z of βX - Φ~\y), and hence, there is a nbd V
(in /SX) of z such that 7 c C7" and T̂ Π Φ~\y) ~ Φ. X being dense
in βX, V contains a point of X — φ~\y). Thus E Φ φ. Since

Ef)F = c\βxu n φ~\y) n (X - ^ d / ) ) = 9

and X is normal, we have c\βxE Π c l β x F = φ. On the other hand,
since xeΦ~\y) = c l ^ ^ " 1 ^ ) and Z7 is a nbd of x, we have c l β x F 3 £
and c\βxE3x, i.e., c l β x F Π cl^ί/ Φ φ which is a contradiction. The
latter part is obvious.

In the following, Ye = {y; y e Y, φ~\y) is compact}, Yo = {y ye Y,
Sfφ~\y) is compact but φ~\y) is not compact} and Γi = {y y e F,
Sfφ~\y) is not compact}.

THEOREM 7.2.3 Leέ φ be a closed mapping from a locally com-
pact, realcompact, normal space X onto Y; then we have

( a ) Yo U Yi is closed.
( b ) Y — Y1 is locally compact.
(c ) The closure of any neighborhood of y is not compact for

every ye Yu

( d ) Yo U Yι is a discrete closed subset of Y.

Proof, (a). Let y e Yc be an accumulation point of Yo U Yi.
Since φ~\y) is compact, there is a nbd F of φ~\y) whose closure is
compact. M — Y — φ(X — V) is an open set containing y. Therefore
there is a point y' e Y0Ό Yi with yf e M. This shows that

VczV

and φ~\y') is compact. This is a contradiction.
3 This theorem is analogous to Theorem 4 in [11] in which X is locally compact,

paracompact, normal space. The proofs of (a) and (b) are the very same as those
given in [11].
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(b). Let y be any point of 7 - Ylm Since Sfφ~\y) is compact,
there is a nbd V of Stfφ~\y) whose closure is compact.

M = Y - φ(X - U)

is an open set containing y where U = φ~ι{y) U V. Then

Ma φ(U) = φ(U) = φ(V) U {y}

is compact, and hence, M is compact. This shows that Y — Yx is
locally compact.

(c). Suppose that there is a point yeY1 which has a nbd W
with the compact closure. Since J*fxφ~\y) is not compact, there is a
point x£j*fxΦ~\y) — £fβΣφ~ι{y) by 7.1, and hence there is a function
feC(βX) with 0 ^ / ^ l , / ( a O = 0 , / > 0 on X by 1.8 since X is
realcompact. We shall show that there is a sequence {zn} in

such that φ(zn) Φ φ(zm)(n Φ m) and {f(zn)} [ 0. For

An = {z f(z) £ 1/n, z e φ-\W) - ^ ( T / ) } (W = 1, 2,

we have x e c\βxAn. If φ(An) is finite, then φ(An) does not contain
y since >̂ is closed. On the other hand, since y e c\βxAn and
yeY, we have yeΦ(dβXAn)<^c\βγΦ(An) = c\βTφ(An), and hence,
y e Y f) c\γφ(An) = φ(An). Thus every Aπ contains infinitely many
points whose images, under φ, are distinct from each another. There-
fore we have a desired sequence {zn; Xn e An} (if necessary, take a
suitable subsequence). Since / > 0 on X, Z = {zj is a discrete closed
subset. On the other hand, φ(Z) a W and W is compact, and hence,
φ(Z) has an accumulation point in φ(Z). Let say y0 — φ(Zj) be such
an accumulation point because φ is closed. X being normal, there is
an open set U with φ~\yQ) c U and U Π {^ w = 2, 3, •} = φ.

M= Y- φ(X- U)

is an open set containing y0 which is disjoint from a closed set

φ(Z) - {y0} = φ(Z - {Zl})

because Z — fa} is closed. This is a contradiction.
(d). We shall prove that every point of Yx is isolated in YQ U YΊ.

If φ~\y) has an open nbd U such that φ(U) D (Y"o U YΊ) = M , then
JkΓ = Y - φ(X - U) is an open set with (Yo n Γi) ΓΊ Λf = M This
shows that every point of Y1 is isolated in Yo U ΓΊ. Therefore, we
can assume that there are a point y e Y1 and a point x in ^ ( i / ) such
that any open nbd U of x has a compact closure and φ(U) Π (YQ U ΓΊ)
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contains infinitely many points yn(n = 1,2, •••) of YQ U Yi. Let αΛ

be any point contained in φ~\yn) (Ί Ϊ7. Then {αj has an accumula-
tion point α0 in i7 because U is compact. Since φ(an) = yne Y0[J Yλ

and Yo U Y1 is closed by (a), we have y0 = φ(a0) e YQ U Yi. Thus we
can assume that there is a point y0 e Yo U Yi which is an accumula-
tion point of {yn; yneY0Ό Yi}. Let x'ne φ - 1 ^ J - qr\y»)\ then βX - X
being compact, 4 n l = ^ where A = clβx{<}. If A n Φ~\y*) = #,
then y0 g Φ(A) which is impossible because yn e Φ{A) (n = 1, 2, •) and
0 is closed. Let < e A n {Φ~\y*) - φ~\v*)) a n d / be a function of
C(/3X) such that 0 ^ / ^ 1, f{x[) = 0 and / > 0 on X by 1.8 because
X is realcompact. Since o\βΣφ-\y) = Φ"1^/), without loss of generality,
we can find a point xw in ί/π n φ~\yn) for every w such that {f(xn)} I 0
where Un is an open nbd (in βX) of < . If B Π φ~\yd = Φ where

5 = cl x K ; % = 1, 2, •}, then φ{B) - φ(B) = < (̂B) = {τ/J does not
contain j / 0 . This is impossible. Thus B π φ~\yd contains a point x0.
It is obvious that f(x0) = 0, but, this is a contradiction because / > 0
on X. Thus every point of Yx is isolated in Yo U Yi.

Next we shall prove that every point y of Yo is isolated in Yo U Yi,
which shows that Yo U Yi is a discrete closed subset of Y.

Φ, = Φ\ (βX - X)

is a closed mapping from a compact space /3X— X onto /SY— Ye.
For every y e Yo, (P"1^/) — ^""^l/) is always open-closed by 7.1 in βX — X.
Thus every point of Yo is isolated in βY — Yc, and hence, they are
isolated in Yo U Y1{aβY~ Yc).
From (b) and (c) in 7.2, we have:

THEOREM 7.3. Let φ be a closed mapping from a locally com-
pact, realcompact, normal space X onto Y; then Y is locally com-
pact if and only if £fφ~\y) is compact for every y e Y.

This theorem is not necessarily true in general when X is locally
compact normal, as shown by the following example by Prof. Morita.
Let X = [0,1] x W(ωύ, Y = [0,1] and let φ be the projection: X-+Y.
It is known that X and Y are both locally compact normal. Since
Y is weakly separable and X is countably compact, φ is closed, but
φ~\a) is not compact for every ae Y. Theorem 7.3 is also true, as
shown in [11] replacing "realcompactness" by "paracompactness".

Under the assumption of 7.2, we shall consider the new space Z
in the following way: we set up an equivalence relation " ~ " on X
by the simple rule that "x~x"' if and only if both points x and xr

belongs to the same φ~\y) for some point y e Yo U Yle Using this
relation we define a space Z, that is, Z is a space obtained from X
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by the topological identification (we notice that V of Z is open if and
only if ir~\V) is open where ψ is the identification mapping). It is
easy to see that Zc = ψ(Xe) is locally compact and homeomorphic with
Xe, and Zo (J Zλ is a discrete closed subset where

Xc = <p-\Ye), Xi = ^(ΓiXΐ - 0, 1), Zo - ψ(XQ)

and ^i = ψ(Xί). ψ is obviously closed, and hence, Z is normal.
Now suppose that X is realcompact. Zo U ^Ί is realcompact as in the

proof of realcompactness of Fin 6.5 since Zo U Zι is closed and discrete.
If every function of C(Z) is continuously extended over a point z in
βZ - Z, then there is a nbd [/(in βZ) with clβz [7 n (Zo U ̂ ) = <5
because ZQ U ̂  is closed and realcompact. Thus clβz U Π ZcΦφ, but
this is impossible since Zc is homeomorphic with Xc. Therefore ^
becomes a realcompact space.

Next we can construct a mapping λ from Z onto F by the usual
topological identification and it is easily seen that λ is perfect. Thus
we have.

COROLLARY 7.4. Let φ be a closed mapping from a realcom-
pact, locally compact, normal space X onto Y; then φ admits a
factorization φ — Xψ such that

(i) ψ is a closed mapping from X onto a realcompact normal
space Z and {^^(z); z e Z'} is a closed discrete collection where Z'
is the set of point z such that ψ~\z) contains at least two points.

(ii) λ: Z—•> Y is a perfect mapping.
Since countable paracompactness is invariant under a closed mapp-

ing, we have the following theorem by 7.2 and Theorem (F2).

THEOREM 7.5, If φ is a closed mapping from a locally com-
pact, countably paracompact, normal space X onto Y, then Y is
realcompact when X is realcompact.

8* Examples* Let M be a P-space and let if be a separable
metric space. We denote by φ the projection: M x K—>M and by
Φ the Stone extension of φ from β(M x K) onto βM. Next ψ denotes
the identity mapping on M x K and ψ denotes the extension of <f
from β(M x K) onto βM x βK and let Ψo = Ψ \ Z where

Z - U {Φ~\y)) yeMjcz β(M x K).

LEMMA 8.1. (1) The projection φ\ M x K—>Mis closed.
( 2 ) Z is realcompact if M is realcompact.
( 3 ) ΨQ is a one-to-one mapping from Z onto M x βK.
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( 4 ) Ψ-\M x βK) = Z.

Proof. (1) . Let F be a closed subset of M x K and let y $ φ(F).
Now suppose that y is not isolated. Since F is closed, for a point
(#, 2) G ψ~\y), there is a nbd W(y, z) = 1%) x J7(s) of (?/, 2) such that
W(y, z) f] F = φ, where V(y) and U(z) are neighborhoods of y and 2
in Λf and K respectively. Since K is separable and {W(y, z); ze K}
covers φ~\y), there is a subcover {W(y, Zt); i = 1, 2, •}. Let us put
V = (Ί F<; then F is a nbd of y because y is a P-point, απd hence,
V x K is open and ( F x if) Π F = 0. This implies ygφ(F) since
<p-1(2/) c 7 x Jί. Thus 9>(F) is a closed subset which shows the
closedness of φ.

( 2 ) . Since Φ is closed and Φ~\y) is compact, ϋΓ is realcompact
by 5.3.

( 3 ) Since φ is closed, Φ~\y) = cl^^^φ-^y), and

ψφ~\y) c ^oί^-1^/)) .

On the other hand, ψφ~\y) = {y} x K is dense in {y} x /3i£. This
implies that ΨQ{φ-\y)) = {2/} x /3ίΓ, equivalents ^^({2/} x /5î ) = Φ"\y)
because Φ~\y) is compact. Thus Ψ0(Z) = Λί x /9iΓ, that is, ?F0 is onto.

Next we shall show that ¥Q is one-to-one. Suppose that there
are a point y* e ({y} x βK) - ({y} x if) and xl9 x2 e Ψ^iy*), x1 Φ x«.
There are open sets F^in Z) and Vo(in Z) of x1 and x2 respectively
with Vx Π F 2 = 5̂. Let us put 2^ = Vi Π φ~\y); then FiΦ φ since
^-1(2/) = clβc^x^cp"1^). Since c l ^ x ^ ( 1 ^ ) c {?/} x /3if, F< is a closed
subset of a normal space {y} x if and £({#} x K) = {?/} x /3ίΓ, we
have cljrxβx'f (2̂ \) Π clMxβlΓ-f (F2) = ^. On the other hand,

implies that y* e Ψ^λβ^xKmzFiCicλ^βgΨ^Fi) = c\Mχβκf{Fi) (i = 1, 2).
This is a contradiction.

( 4 ). Suppose that there is a point w e β{M x K) ~ Z such that
Ψ(w) — {y,a)eM x βK. There are open subsets VΊ and y2 in /5(Mx K)
such that we V2, Φ~\y) c FΊ and VΊ Π V"2 = ^. 2̂ Π Z is not empty
and Φ(V2f]Z) is a subset of M containing y. Since

Ψϊ\{y) X βK) = Φ~\y)

by (3), we have Ψ0(V2 f] Z) n (M x /S-K") = ^. Let /i be the projec-
tion: M x βK—>M; then, we have Φ(A) = μΦ0{A) for every subset
A of Z because Ψ^({y} x βK) = ^ O / ) . Thus

which is a contradiction, and hence, we have Z = ξΓ^ikf x
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Let M be a realcompact nondiscrete P-space; then M x K is real-
compact and there is a function / of C(β(M x K)) such that / > 0
on M x K and Z(/) Π Φ~\y) Φ φ for a given nonisolated point
y of M. We notice (p-1^/) cl/5(JfxJsr,^-1(i/) = dgφr\y) ( = {?/} x /SiΓ). In
the following, we put Ay — Φ~\y) and B^ = Ay — φ~\y).

Next we shall show that we cannot replace a ^-mapping by an
open PFi/-mapping in Theorem 5.3.

EXAMPLE 8.2. X = Z - (Z(f) n By) is not realcompact and a
mapping λ = Φ \ X is an open TF^-mapping from X onto Λf and λ is
not a ^-mapping.

Proof. It is obvious that Φ is open and closed, X is open in Z,
Φ~\yr) = X~ι{y') for every ?/' (9̂ =2/) and

^(1/) c X~\y) = Ay- Z(f) Π By)) ,

and hence λ is an open JFif-mapping. Thus to prove 8.2, it is suf-
ficient to show that X is not realcompact by 5.3. Suppose that X is
realcompact, then there are a function heC(X) and a point x* e By

such that h can not be continuously extended over x*. Since every
subset X"\yr) = Φ~~\y') is compact for y' Φ y, h is bounded on λ"1^/').
If h is bounded on a W Π X where W is a nbd (in β(Λf x JBΓ)) of x*,
then Λ is continuously extended over x*. Thus for every nbd W of
x*, h is not bounded on W C\ X. Without loss of generality, we can
assume that h is nonnegative on X Therefore, for every n, there
is a nbd WJin β(M x K)) of x* with h ^ ^ on Wn Π X. cp"1^/) Π WΛ

contains a point (?/, &J, and hence there are neighborhoods On and Q%

of y and fcw respectively such that h ^ n on Ow x QΛ. Since y is a
P-point, V = Π OΛ is a nbd of y and fe is not bounded on

A = {(y0, h); n = 1,2, - . }

where 2/0 i s some point of V and y Φ yQ. On the other hand, h is
bounded on A and i c f 1 ^ ) , This is a contradiction. Thus X is
not realcompact.
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