Vol. 21, No. 1, 1967

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 330: 1
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Vol. 324: 1  2
Vol. 323: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A note on David Harrison’s theory of preprimes

D. W. Dubois

Vol. 21 (1967), No. 1, 15–19
Abstract

A Stone ring is a partially ordered ring K with unil element 1 satisfying (1) 1 is positive; (2) for every x in K there exists a natural number n such that n1 x belongs to K; and (3) if 1 + nx is positive for all natural numbers n then x is positive. Our first theorem: Every Stone ring is order-isomorphic with a subring of the ring of all continuous real functions on some compact Hausdorff space, with the usual partial order. A corollary is a theorem first proved by Harrison: Let K be a partially ordered ring satisfying conditions (1) and (2), and suppose the positive cone of K is maximal in the family of all subsets of K which exclude 1 and are closed under addition and multiplication. Then K is order-isomorphic with a subring of the reals.

Mathematical Subject Classification
Primary: 06.75
Secondary: 16.00
Milestones
Received: 28 April 1966
Published: 1 April 1967
Authors
D. W. Dubois