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This is a continuation of an earlier paper ‘‘Fractional
Powers of Operators’ published in this Journal concerning
fractional powers A% ac C, of closed linear operators A in
Banach spaces X such that the resolvent (1 + A)™! exists for
all 2 > 0 and 22 + A)™! is uniformly bounded. Various integral
representations of fractional powers and relationship between
fractional powers and interpolation spaces, due to Lions and
others, of X and domain D(4%) are investigated.

In §1 we define the space Df(A),0 <o < 0,1 <p= o or p=
oo —, as the set of all xe X such that

N(AO 4+ Ay e LX),

where m is an integer greater than ¢ and L*(X) is the L* space
of X-valued functions with respect to the measure dr\/A over
(0, o).

In §2 we give a new definiticn of fractional power A® for Re
a > 0 and prove the coincidence with the definition given in [2].
Convexity of || A*x|| is shown to be an immediate consequence of the
definition, The main result of the section is Theorem 2.6 which says
that if 0 <Rea <o,xeDJ is equivalent to A“we D7 ™, In par-
ticular, we have Df*cC D(A*)c D&, For the application of fractional
powers it is important to know whether the domain D(A4*) coincides
with D} for some p. We see, as a consequence of Theorem 2.6,
that if we have D(A*) = D} for an «, it holds for all Re a > 0.
An example and a counterexample are given, At the end of the sec-
tion we prove an integral representation of fractional powers.

Section 3 is devoted to the proof of the coincidence of D7 with
the interpolation space S(p, o/m, X; p, 6/m — 1, D(A™)) due to Lions-
Peetre [4]. We also give a direct proof of the fact that Dg(4*) =
Dzo(4).

In §4 we discuss the case in which —A is the infinitesimal
generator of a bounded strongly continuous semi-group 7,. A new
space Cj, is introduced in terms of T, and its coincidence with DS
is shown. Since CZ,, 0 # integer, coincides with C° of [2], this
solves a question of [2] whether C° = D° or not affirmatively. The
coincidence of C7,, with S(p, o/m, X; p, o/m — 1, D(A™)) has been shown
by Lions-Peetre [4]. Further, another integral representation of frac-
tional powers is obtained.
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90 HIKOSABURO KOMATSU

Finally, § 5 deals with the case in which — A4 is the infinitesimal
generator of a bounded analytic semi-group T,. Analogous results to
§4 are obtained in terms of A®T,x.

1. Spaces DZ. Throughout this paper we assume that 4 is a
closed linear operator with a dense domain D(A4) in a Banach space X
and satisfies

1.1) IMA A =M, 0<\< oo,

We defined fractional powers in [2] for operators A which may not
have dense domains, It was shown, however, that if Re a > 0, A* is
an operator in D(A) and it is determined by a restriction A, which
has a dense domain in D(A). Thus our requirement on domain D(A)
is not restrictive as far as we consider exponent a with positive real
part, As a consequence we have

(1.2) M+ 4w —x,  A—oeo,m=1,2 -

for all xe X. As in [2] L stands for a bound of AN + A)™ =1 —
MA A+ Ay

(1.3) HAMW + A =L, 0<n< oo,

We will frequently make use of spaces of X-valued functions f(\)
defined on (0, ). By L?(X) we denote the space of all X-valued
measurable functions f(\) such that

11l = (7100 ran)) " < o it 15 p <

A :Oil}\l&llf(k)ll < oo if p= 0.

(1.4)

We admit as an index p = « —, L~ (X) represents the subspace of
all funetions f(\)e L=(X) which converge to zero as »— 0 and as
A — oo, Since dA/)n is a Haar measure of the multiplicative group
(0, =), an integral kernel K(\/z) with S | K(\) [dA/y < oo defines a
0

bounded integral operator in L?(X),1 < p < oo,

DeFINITION 1.1. Let 0 < 6 < m, where ¢ is a real number and
m an integer, and p be as above. We denote by D7, = D7 ,.(4) the
space of all xe X such that A(A(\ + A)™")"x e L*(X) with the norm

(1.5) 12 1lpe =l + VAN + A7) 120

Dz, and DZ_, coincide with D° and Dg of [2], respectively.
1t is easy to see that D7, is a Banach space. Since (A + A)™H)™
is uniformly bounded, only the behavior near infinity of (A(x + A)™)"x



FRACTIONAL POWERS OF OPERATORS, II INTERPOLATION SPACES 91
decides whether x belongs to Dy, or not.

ProrosiTioN 1.2. If integers m and » are greater than o, the
spaces D7, and D7, are identical and have equivalent norms,

p,m

Proof. It is enough to show that Dg, = Dg,., when m > o.
Because of (1.3) every x < Dg, belongs to DJ,... Since

_d%.m(m + A = mam A + A
we have
A
(L) A(AN + A7) = maen| (Al + A7) tadppe

This shows

VAN + A7) |2 S — 2 [ N(AN + A D)™ |2,
m — O

DEeFINITION 1.3, We define D7, 0 > 0,1 < p = -, as the space
D7, with the least integer m greater than o. We use ¢3(x) to denote
the second term of (1.5), so that D7 is a Banach space with the norm

ol + g5().

ProposiTioN 1.4, If x>0, p(p + A)~" maps D continuously into
Dg**, Futhermore, if p < «—, we have for every x e DS
1.7 plp + Ay'e— e (DF) as p— oo,
Proof. Let xe Dg. Since
VAN + A+ A) 7|
= plIMn + A7 A + A7 HTIAARN + A7) ||
= ML || N(AN + A" ||,
¢y + A)~*z belongs to D,
Let p < o —. If xe€D(A), then
(A + A7)l + Ay
= (A(\ + A"z — (A(w + Ay )"(p + A~ Aw
converges to (A(n + A)™)™x uniformly in A. On the other hand,
(AN + Ay (e + A)™ is uniformly bounded. Thus it follows that
(AN 4+ A7) u(pe + A)~'x converges to (AN + A)~")™x uniformly in \ for

every v e X. Since || N(AN+A)y ™) pu{p+ Ay || =M || V(AN+A) )™ |,
this implies (1.7).
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THEOREM 1.5, DicCDfif o>7 or if o=7 and p=q. The
ingection s continuous. If q < co—, D7 is dense in D/,

Proof. First we prove that D7, »p < o, is continuously contained
in DZ_.
Let ®e D7, Applying Holder’s inequality to (1.6), we obtain

o —1\m m o —ym4lg !l g
INCAQ A+ A7) | S oo | (A + A s

where p’ = p/(p — 1). Hence xze D2, Considering the integral over
the interval (g, \), we have similarly

(A + A || = Lo || po( A + Ay |

A
m—a A
({m —WZ')]O')”P’ (1 a ij‘m——u )(SMH (Al + Ayt dez—/z-)llp> .

The second term tends to zero as g — oo uniformly in N > ¢ and so
does the first term as A — oo. Therefore, xc DJ_.

Since M(AMW + Ay Y x e LA{X) N L=>~(X), it is in any LY(X) with
P =g < oo,

If < o,DZ is contained in D for any ¢q. Hence every D7 is
contained in Dy,

Let ¢ < «o—. Repeated application of Proposition 1.4 shows that
Di+™ is dense in Df for positive integer m. Since Dg contains some
Di+m it is dense in Dy,

2. PFractional powers. If xe D7, the integral

o —_ F(m) “ a—1 —I\M
@.1) A5 = ) So’“ (AOv + Ay wdr

converges absolutely for 0 < Rea = ¢ and represents a continuous
operator from D7 into X. Moreover, AZz is analytic in « for
0 < Rea <oa.

A%z does not depend on m. In fact, substitution of (1.6} into
(2.1) gives

X F(m)/m' Sm m—1 ~1\m+1 Sw a—m—1
Ayx = ! A A Mlad hy AN
o= L 7 i+ g
_ I'(m + 1) Sw a=1( Alge L A)y-Dmtigd
F(a)F(m+1—a) 0;'6 ( V' i ) J "b#'

This shows that A% depends only on & and not on DZ to which »
belongs,
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Obviously we have
(2.2) As(p(pe + A7) = (e + A" AZw, v e D

Since the left-hand side and (z(zt + A)~")** are continuous in X, and
(pe(pe + A=Y=+t is one-to-one, it follows that A is closable in X, In
view of Theorem 1.5 the smallest closed extension does not depend on
o.

DEFINITION 2.1. The fractional power A® for Re a > 0 is the
smallest closed extension of A% for a o = Rea.

ProposiTION 2.2. If a is an integer m > 0, A* coincides with
the power A™.
To prove the proposition we prepare a lemma.

LEmMMA 2.3. If m is an integer m > 0,

(2.3) A"z = s-lim mSNN"—l(A(x + A mrad

N-—oo

Proof. By (1.6) we have
mngm—i(A(x Ayt = Nm(AN + A)Yra .

If xe D(A™), N"(A(N + A)y™™x = (N(N + A)™)"A™x tends to A™x as
N — by (1.2). Conversely if N"(A(N + A"z = A™(N(N + A"z
converges to an element y, xe D(A™) and y = A™x. For A™ is closed
(see Taylor [5]) and (N(N + A)™)™x converges to .

Proof of Proposition 2.2. If xe D7, o > m, integral (2.3) con-
verges absolutely. Therefore it follows from Lemma 2.3 that « € D(4A™)
and Az = A™x, Thus A™ is an extension of A%, Conversely if
wve D(A™), then p{p + A)~'x € D(A™*)c DZ** and we have

A + A) e = (p(pe + A)yHA™
— A™x as pf— oo,

Since (¢ + Ay'w — x, it follows that x e D(4*) and A®x = A™x.

The fractional power A°¢ defined above coincides with A% defined
in[2]. In fact, if m = 1, integeral (2.1) is the same as integral (4.2)
of [2] for » = 0. Thus

(2.4) A = A%
holds for 0 < Re < 1 if xe D(A). If xe D(A™), m = 1, both sides of
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(2.4) are analytic for 0 < Rea < m, so that (2.4) holds there. Since
D"c D(A™)c D». by Lemma 2.3 and (1.2), both A* and A% are the
smallest closed extension of their restrictions to D(A™), m > Rea.
Thus we have A* = A% for all Rea > 0.

Consequently we may employ all results of [2]. In particular,
fractional powers satisfy additivity

(2.5) A+ = AAP Rea >0,Res >0
in the sense of product of operators and multiplicativity
(2.6) (A=)F = A%F | 0<a<mw,Re >0,

where ® is the minimum number such that the resolvent set of —A
contains the sector

largyv| <7 — .
Such an operator is said to be of type (w, M(9)) if
sup [[Mn + A)7H| = M(6) .
largAl=6
Any operator with a dense domain which satisfies (1.1) is of type
(w, M(6)) with 0 = w < 7.

Some properties of fractional powers, however, are derived more
easily through definition (2.1).

ProposiTiON 2.4. If 0 < Rea < o, there is a constant C(a, o, p)
such that

(2.7) A%z || = Cla, 0, p)gz (@)™ ||z |[*=™/", x e D7 .

Proof. Holder’s inequality gives

e = | ==L {T¥ et (A0 + Ay e

Ir'a)['(m — a) ILJo
+ [T e + a7y avn |
I'(m) LmNRee N Rea—o i
= ' r'a)y(m — a) l[ Rea Tl + ((6 — Re a)p’)?’ q,,(x)] .

Taking the minimum of the right-hand side when N varies 0 < N < oo,
we obtain (2.7).

ProrosITION 2.5, If 2> 0, then
(2.8) D;(A) = D7 (¢ + A)
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with equivalent norms,

Proof. Let xe DZ,.(A) with m > ¢. Since

| AR\ + p2 4 A" || < C || A"\ + ¢+ A~ [ -
IO+ g Ay fmbim =12, e, m =1,
(¢ + A+ ¢+ A
=N 4 mpnTA e AN+ e+ A

belongs to L?(X). The converse is proved in the same way.

THEOREM 2.6. Let 0 < Rea < 0. Then xcD? if and only if
xe D(A”) and A%x e DR,

Proof. Let xeDZ and m > 0. Clearly xe D(4%). To estimate
the integral
KO—REH(A(N + A)—i)mAaw

- ['(m)xhﬁea ® a1 —1\m —1\m
- I(@I(m—a) So” (AN + A)7)™(Ape + A)™)"adpe

we split it into two parts. First,

|

ne | e A+ A7 (A + A7yadp|

= v (pmendpLn | (A + Ayya |
= L™Rea) ™\ || (A(n + A)y™H™x || e L~ .

|

neme | A+ A+ ) adp
= Lo pmeee || po(AGe + Ay || dpyp

also belongs to L? because Rea — o < 0.
Conversely, let A*x e Dy, If n is an integer greater than Re«,
we have

FA™<(n + A)" || S C | A%y + AY7™ [ 0=im | (0 4 )= [l
é Clk——Rea

Thus it follows from (2.5) that

MAN + A e || S VA0 + A7 [ AN + A))mA ||
< O || (A(h + A)Y)mAcx || e L7

This completes the proof.



96 HIKOSABURO KOMATSU

As a corollary we see that if ¢ is not an integer, DZ and DZ_
coincide with D¢ and Dg of [2], respectively.

THEOREM 2.7. If the domain D(A%) contains (is contained in)
DX for an Rea > 0, then D(A*) contains (is contained in) DF* for
all Rea > 0.

Proof. By virtue of Theorem 6.4 of [2] and Proposition 2.5 we
have D(A*) = D((¢ + A)*) and DF*(A) = DF*(pe + A), t > 0, Rea > 0,
so that we may assume that A has a bounded inverse without loss
of generality. The theorem is obvious if we show that APF, —co <
Re 8 < Rea, is a one-to-one mapping from D(A*) and DF* onto
D(A*=F) and DR respectively.

Since D(4*) = R(A™), Rea >0 ([2], Theorem 6.4), and since
Af-* = APA~* ([2], Theorem 7.3), the statemant concerning D(4%) is
immediate,

Let ReBs < 0. Then we DFf%*f if and only if xe D(AP) and
APze DE=  Since A® is a bounded inverse of A~*, we have x ¢ D}*—FF
if and only if « is in the image of DF* by Af. If ReB = 0, choose
a number v so that Ref < v < Rea. If ze D¥*Ff  belongs to
D(A™®). Thus there is an element y such that z = APy. By the
former part we have Avx = APvyec DXee—®F+y, Thus y belongs to
D, On the other hand, if ye D}*, then ye D(AP) and we have
A~'x = APvy e DFeeRf+y where © = APy, Then it follows from the
former part that x belongs to DfeaRef,

Theorem 6.5 of [2] is obtained as a corollary.

ProposiTION 2.8, For every Rea > 0

(2.9) Df*c D(A*)c DE=,

Proof. It is enough to prove it only in the case « = 1. The
former inclusion is clear from Lemma 2.3. The latter follows from
(L.2), for

MAN + A7 = Mh 4+ AL — M+ A) Az — 0

for xe D(A) as A — oo,

ProrosiTION 2.9. If there is a complex number Rea > 0 such
that D(A4*) = D;**, then D(A®P) = D;}** for all Re 8 > 0. In particular,
D{A*) coinsides with D(AP) if Rea = Re . Furthermore, if A has
a bounded inverse, A is bounded for all real ¢, where A% is defined
in [2].
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Proof. We need to prove only the last statement, Because of
[2], Corollary 7.4 we have

At = it

Since D(A'*#) = D(A) = R(A™), A* is defined everywhere and closed,
so that it is bounded.

We proved in [2] that the operator A of § 14, Example 6 has
unbounded purely imaginary powers A, The above proposition shows
that D(A*) cannot be the same as D} for any p.

However, there are also operators A for which D(A*) coincides
with Dge=,

Let X be L?*(S, B, m), where B is a Borel field over a set S and
m a measure on B, and let A(s) be a measurable function on S such
that

larg A(s)| = o, a.e.s
for an 0 < w < . Define
Ax(s) = A(s)x(s)

for all x(s) e X such that A(s)x(s)e X. Then it is easy to see that A
is an operator of type (w, M(6)) if p < co—, where L>~ denotes the
closure of D(A) in L=. For this operator A we have D(A) = D}, so
that D(A*) = DF for all Rea > 0.

In fact, we have

(A + Ay Ha(s) = A/ + AB)* .
Therefore,
[IMAG + A)ya(s) [lrdnn

=l gyl e

= L | 2(s) {f’dm(s)r APt
~ [ Az |7

A(s) I*?
N+ A(s) I

Any normal operator A of type (w, M(6)) can be represented as
an operator of the above type. Therefore, it satisfies D(A*) = Dfe=
for Rea > 0. T. Kato [1] proved that this holds also for any maximal
accretive operator A (see J.-L. Lions [3]).

Now let us complete the definition of fractional powers.

THEOREM 2.10., Let 0 < Reax <m. If there is a sequence N;— o
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such that
— 3 F(m) SN]. a—1 —1\m
=w-lim— Y77 | Y AN+ A axn
Y= T m — @) ) (A + A)7)me

exists, then x € D(A%) and y = Az,
Conversely, if xe D(A®), then

a — o1 F(m) o a—1 —1\m
(210)  Avw = olim ST a)go AHAQ + Ay mwdn

possibly except for the case im which Im a =0 and Re a is an
integer.

Proof. The former statement is obtained by modifying the proof
of [2], Proposition 4.6, Since (¢{¢ + A)™")"x € DF*, we have

A(plp+ A7) = o| AN + Al + A7)
= (¢t + 4)y* w-lim cS:Vjv“(A(x + Ayyrzd

= (e + A"y .

By virtue of (1, 2), it follows that ze D(4*) and y = A*x.

The proof of the latter statement may be reduced to the case in
which 0 < Rea < 1and m = 1. Suppose that 2 ¢ D(A*) and an integer
m > Rea. Substituting (1.6), we have

SNv—l(A(x + Ay yrzd
N A
= mg N"’”‘ldxg 1 A(p + AyH e dp
0 0

—a

— m N _ #m o s
om— aSo (1 Nm—a)" (A + Ay Hradpe .

Since z e D(A*) C D&, it follows that

;L5 A + Ayrade| —0 as N— oo

Thus the limit (2.10), if it exists, does not depend on m > Re a.
Next, let Rea > 1 and m = 2. Since x € D(A*) belongs to D(A4),
integration by parts yields

S:TN”—I(A(N + A) )™ xdn

Na~1
m— 1

—a-1 SN A=A + Ayt Awdy —

(AN + A)y™H™'Ax .
m— 1
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The second term tends to zero as N — co because Axe D(A*)c DB,
Therefore, we obtain (2.10) if we can prove it when both a and m
are reduced by one,

To prove (2.10) in the case 0 < Rea < 1 and m = 1 we assume
for a moment that A has a bounded inverse. Then D(A*) is identical
with the range of A%, which may be represented by the absolulely
convergent integral:

Aoy = SIMTL r A + Ay wd
T 0

{[2], Proposition 5.1). Employing the resolvent equation and (1.6), we
get

') XNV"IAOL + A)y*A~*xdh

o)l — a)
_ (sin T )281"%,1_%\5‘” pa M A+ A);1 — u{pe + A wdpt
T 0 0 il 24
— (Sin—”“yrm*dxrﬁra(x — ;e)*ldySAA(u + Ay xdy .
T 0 0 “

It is enough to show that this converges strongly to the identity,
or more weakly that it simply converges, because if it converges, the
limit must be A*A—*x = x.
First of all, we have
N A A
I = g x"*ldxg 2O — )u)—ld,as A + Ay~ zdy
0 0 n
N N v
- S AW + A)—ga:dvg M—ld,\g s — g

0 v 0
Changing variables by » = v, # = vm and integrating by parts with
respect to v, we obtain

I = rl““ldlgim““(l — mydma
— S:TA(D + Ay 'ady Ny~ S:m”“(Ny—l — m)'dm
= ¢, — S:A(Nn + A)‘lxn““‘ldngzm—“(n—l — m)~'dm .
Since n—** lm""(n‘1 — m)~'dm is absolutely integrable in » and since

0
A(Nn + Ay 'v =z — Nn(Nn + Ay ' tends to zero as N-— co, the
second term converges to zero as N — oo,
Next we write
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SNv—ldx r;r“(x - p)—ld/xg*A(u + Ay wdy
0 A ®~
N v os
- S Al + A)“zxdvg N’—ldxg (g — N~
o N o
+ g AW + A)*%dvg x"“ldxg (e — N)=dge
N 4] v
— Iﬂ ‘}" Ig .

Changing variables as above, we have
I = SNA()J + A)‘zxdvgll"—idlrm—“(m — l)dm
0 [} 1
=¢N(N+ A "'x—cx as N-— oo,

Finally,

I, = S”m—ade: te=m — )dt|”" A + Ayady

1 N

tends to zero as N — <o because SmNA(v -+ Ay2?xdy = mN(mN + A)~'¢ —
N

N(N + A)~z tends to zero and m~ S l*=(m — 1)y~'dl is absolutely in-
tegrable,

Next suppose that A has not necessarily a bounded inverse. We
have, for £ > 0,

(A* — (e + Ay (¢ + A)w

= SE([ e [T A = (o ) )0 A+ Ao

because the integral is absolutely convergent and the equality holds
for all ® € D(A) which is dense in X. This shows together with the
above that

A+ A = (p + A (e + A
(e SZ(N“A — (v e+ 4))

(N 4 A+ A)mwda

.. sinrea
+ s-lim =>=——=
N—seo T

— o F(l) y a—1 t —1 —a
= slim ot S NTTA( - A)H 4 Ayeady

3. Interpolation spaces. Let X and Y be Banach spaces con-
tained in a Hausdorff vector space Z. Lions and Peetre [4] defined
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the mean space S(p, 0, X;p,60 —1,Y), 1=p=<0,0<0<1 of X
and Y as the space of the means

3.1) = Sju(x)dx/x ,

where u()\) is a Z-valued function such that
(3.2) Mu(n) e LX) and A~'u(\) e L(Y) .
S(p, 0, X;p,0 — 1,Y) is a Banach space with the norm

(3.3) 1% |lsp6.x.00-1.1)

= inf { max (V00 [l2ee, [0 2700 # = | w0 |
0

Theorem 3.1. S(p, 0, X;p,6 —1, D(A™),0<0<1,1=Zp = oo,
cotncides with Dfim(A).

Proof. By virtue of Proposition 2.5, we may assume that A has
a bounded inverse without loss of generality. In particular, D(4™)
is normed by || A™x||. Further, if we change the variable by N\ =
AY™, condition (3.2) becomes

(3.4) Au(h) € LX) and AP Amu(h) e L(X) .
Suppose x € D? and define
u(N) = eN"A™\ + Ay,
where ¢ = I"(2m)/(I"(m))’. Then
Nu(n) = eOvh + A" V(AN + A)H)me e LA(X)
and
AV mAmu(N) = eN (AL + A)7)yme e LX) .

Thus u(\) satisfies (3.4) with ¢ = m#. Moreover, it follows from
Lemma 2.3 that

INRTHAG + A))AT

0

S?u(x)dx/x — LCm) S

(L'(m))’

=X .

Therefore, = belongs to S(p, o/m, X; p, 6/m — 1, D(4A™)) .
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Conversely, let e S(p, o/m, X; p,0/m — 1, D(A™)) so that x is
represented by integral (3.1) with an integrand satisfying (3.4). Then

A (A + A)Ymz = (A + A)—l)mvﬁjp—wu(x)dp/p
+ O+ e e A dp

Sinece both (AN + 4A)™)™ and (MM + A)™)™ are uniformly bounded,
N(AN + A)7Y)™z belongs to L?(X), that is, x e D?.

THEOREM 3.2. Let A be an operator of type (w, M(0)). Then
D;(A*) =Dy*(4), O0<a<m/w,0>0.

Proof. It is sufficient to prove it in the case 0 < a < 1, because
otherwise we have A = (A%)"* with 0 < 1/a < 1 (see (2.6)). In view
of Theorem 2.6 we may also assume that ¢ is sufficiently small,

By {2] Proposition 10.2 we have

3 oo og+l~a—ao
A+ Aoy = SR N reeA(z + A)adefc .
T oAE 4+ 2NT* eos T + T

Since the kernel

()\Jﬂlz.a)l—-a
1+ 2(\"'c%) cos T + (M%)

0<o<1l,

defines a bounded integral operator in L?(X), Df*(A) is contained in
DZ(A%).
If « = 1/m with an odd integer m, we have conversely
Dg(AY™y < DgI™(A) .

In fact, let x e DJ(AY™). Since
NAN + A)t =\ TT (A (e + AY™) )z,
i=1

where ¢; are roots of (—e&)™ = —1 with &, = 1, and since
A'men + AV™) =2, v0e,m,

are uniformly bounded, NA(A™ + A)™'x ¢ L?(X). Changing the variable
by M =A™, we get A"A(\ + A)'w e L*(X).

In a general case choose an odd number m such that 0 < 1/m < a.
Since AY™ = (A%)Y*“™, we have

D7 (A) c DZ{A*y < DE™(AY™) C Dxo(A) .
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Another less computational proof will be obtained from the Lions-
Peetre theory and Proposition 2.8.

4. Infinitesimal generators of bounded semi-groups. Through-
out this section we assume that T,,¢{=0, is a bounded strongly
continuous semi-group of operators in X and — A is its infinitesimal
generator:

(4.1) T, =exp(—t4), ||T.]=M.
A is an operator of type (w/2, M(6)).
DerFINITION 4.1. Let 0 < ¢ < m, where ¢ is a real number and

m an integer, and let 1’ < p < . We denote by Cg, = C:,.(A) the
set of all elements « € X such that

4.2) t=°(I — Ty e L*(X) .
As is easily seen, C7, is a Banach space with the norm
Heflog ,, = llwll + {[t7°(L = T)"® |l22x) -

Since (I — T,)™ is uniformly bounded, condition (4.2) is equivalent to
that ¢°(I — T,)™x belongs to L?(X) near the origin. In particular,
we have

(4.3) Cim(A) = Coa(tt + A), 1> 0.

Cg,, and CZ_,, coincide with C° and Cg of [2], respectively, and
CZ,, consists of all elements # such that T, is (weakly) uniformly
Holder continuous with exponent o.

ProrosiTION 4.2, If x¢CgZ,, then x belongs to D(A*) for all
0 <Rea < o, and

(4.4) A= ~K1 4Smt“"—1(1 — T)adt, O0<Rea<a,

asm 0

where

K, = S”t—a—l(l — etydt .

Proof. If 0 < Rea < o, the right-hand side of (4.4) converges
absolutely and represents an analytic function of a.
If xe D(A), then we have by [2] Proposition 11.4

rt“’—l(l _ T)madt
0
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I
Ms

L (-0 | - Tt

0

&1
I

I

(- @) k§=j'l‘ (=1 (m)kA*s, 0<Rea<1.

The coefficient of A*x does not depend on A. Taking A = 1, we see
that it is equal to K,,,.

Next let 0 <Re @ <min (¢, 1) and € C;,.. Then integral (4.4) with
x replaced by p(u + A)y~'x, 1 > 0, exists and converges to the integral
(4.4) as pt— . Thus A*pu(p + A)~'x converges to the integral (4.4).
Since A« is closed and p(px + A~z —a as p— oo, it follows that
x e D(A*) and (4.4) holds.

In the general case the assertion is obtained by [2], Proposition
8.4 or by repeating an argument as above.

Lions and Peetre [4] gave another proof when « is an integer.

THEOREM 4.3. CZ, coincides with DI with equivalent morms.

Proof. First we note that

(4.5) - T)e =ALx, reX,
where
(4.6) Iz :Sthxds .

Obviously we have
4.7) [L|=M, t>0.
Let xeCZ,. Then (A + A)y ™z, » > 0, belongs to C;/ir since

e [ = To™(n + A)~"x||
st AN+ A" e [ — Ty || .

Hence we have by Proposition 4.2
(A, + Ay e = cS:t‘m—l(I — T)m00 + A)"
— CS:/)\ (AOv + A)) =TI — T, wdt
+ CS:AO\, + A)ymemm(T — Tymdt
where ¢ = K;%,. Therefore,
N AN+ A )| = cL’”M””MS:Mt"t“” (L = Ty e di/t

+ cMm(zM)mv~mS°°Mta~Mt~° (I = Ty || deft .
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This shows that xe DS ,,.
Conversely, let ze D;,. Since
(AN + Al = (0 + Ay ™I — T)™(AN + A,
it follows that Iz e DZir. Thus by Proposition 2.2 we get

(I— T)mo = A"Ir o — crm—‘(A(x Ay
_ Cgl/tltmkm—l(A(x + A)‘l)”‘xdx
o] @ = Ty A+ A

where ¢ =I"(2m)/(I"(m))’. By the same computation as above we con-
clude that zeCZ,.

In particular, C;, does not depend on m. We denote Cg, with
the least m > o by CZ. Because of Theorem 2.6, CZ coincides with
C< of [2] if ¢ is not an integer.

THEOREM 4.4. Let 0 < Rea < m. If there is a sequence ¢;,— 0
such that
(4.8) y = w-lim 1 rra—l(l — T)adt
Joeo £

Qar»m

exists, then xe D(A*) and y = A*x.
Conversely, if xe D(A%), then

(4.9) Ag = s-lim K1 rt"“—l(l — Tymudt .

Proof. The former part is proved in the same way as Theorem
2.10.

To prove the latter part, let us assume for a moment that T,
satisfies

H Tt” éMe—“y t>0y

for a ¢ > 0. Then A® is the inverse of A~* which can be represented
by the absolutely convergent integral

(4.10) Aeg — 1 S”s«—lTsxds
T(@ do

(2], Theorem 7.3 and Proposition 11.1).
Now it is enough to prove that

1 Sm —~a—1 m SN —_
_\ I — Ty~dt\ s*'T.xd
Ka,ml‘(a) . ( t) DS sLAS
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converges strongly as ¢— 0, because the limit must coincide with
A*A~x = x,

We have
1= [T = myra] s
= é—“l (= D)k Sks T = Todt S:Sd_l Tots .
Now
("t s 20

= S;t"’“ldtr(s —t)*' T, xds

_ S: TsxdsY t=oi(s — tydt

1 X (s — key*T,xds/s .

a(ke)”

Furthermore,

S ore| et s Teds
=1

1 (> o
=——\ "' T,zds,
ae®Jo

so that we obtain

L =L 3 (—1xm g“ (s — ke)*T,ads/s .
AE k=0 ke

Since T,z — x as s— 0, it follows that

=3 0w |6 — ke Tadss

et k=
— % PFCRING S (s — k)* Tods/s
%}Zﬁ,( 1) )S:’(s — k)*ds/sx as e— 0,
On the other hand, the Taylor expansion up to order m gives

£i(s) = 35 (= DHE)s — ko)

B e el A G
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where 0 < k&' < k. Hence we have

ir fe(s) T eds/s
e Jme

—la=h @ m i DS e [T — k) Tads)s
m! k=0 "

Since (s — k’)*~™s~! is absolutely integrable, this converges to a con-
stant times x as ¢ — 0.

To prove (4.9) in the general case, it is sufficient to show that
(4.11) (A" — (2 + A))(p + A~

= 2T = Ty = (= e T+ Ay

>0 ceX,

and that the integral converges absolutely.
By Theorem 2.6, (4.5) and a similar decomposition of I — e™*T,

we have
I — T)™I — e*T)x=0@t),xcCZ, m+n>0.
Since (¢t + A)—*x € D(A*)c C&=, it follows that

(I = Ty — (I~ e Ty
= (e = DTI — T)™ + -oe + ([ — e =Ty

—_ O(tmin(Rea,m——l) +1)

This shows that integral (4.11) is absolutely convergent. (4.11) is valid
for all @€ D(A) which is dense in X, Therefore, (4.11) holds for all
xe X.

5. Infinitesimal generators of bounded analytic semi-groups.
Let T, be a semi-group of operators analytic in a sector |argt| <
/2 — w,0 £ w < /2, and uniformly bounded in each smaller sector
largt| =7/2 — w — ¢, > 0. We call such a semi-group a bounded
analytic semi-group. ,

It is known that the negative of an operator A generates a
bounded analytic semi-group if and only if A is of type (w, M(#)) for
some 0 = w < /2. A bounded strongly continuous semi-group 7, has
a bounded analytic extension if there is a complex number Rea > 0
such that

(5.1) AT, || = Ct=™, ¢ > 0,

with a constant C independent of ¢, Conversely, if T, is bounded analytic,
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(5.1) holds for all Rea > 0 (|2], Theorems 12.1 and 12.2).
We assume throughout this section that — A is the infinitesimal
generator of a bounded analytic semi-group T,.

DEFINITION 5.1. Let 0 <o <Rep and 1=p = . We denote
by Bz = BZg(A) the set of all x <€ X such that

(5.2) t%PAPT ,x ¢ L X).
B;; is a Banach space with the norm

@ llag , = @] + | £ AP T |2z,

ProrosiTION 5.2. Let 0 < Rea < 0. Then every x e BZ, belongs
to D(A*) and

(5.3) Avg = ;—Smtﬁ—“—lABTﬁcdt ,

I'@—a)lk

where the integral converges absolutely.

Proof. Since APT.x is of order t°~%f as ¢t-—0 and of order
t~FB+e ag ¢t — oo in the sense of L?(X), the integral converges absolutely

for 0 < Rea < 0.
To prove (5.3), first let xe D(A?). Then it follows from [2],
Proposition 11.1 and Theorem 7.8 that

| e Tt
I'(B—a)b

= s-lim —————1———5“158_“-16"“ T, APxdt
g=0 F(B — a) 0
= s-lim(e + A)*FA%x

g0
= s-linol AP + A)*PA%g .
Because of [2], Propositions 6.2 and 6.3, Af~*(¢ + A)*=® converges
strongly to the identity on E(A) as eé— 0. Since A*X is contained
in R(A) ([2], Proposition 4.3), (5.3) holds for all xeD(AF). In the
general case (5.3) is proved by approximating x € B by (p(pt + A)=")™x,
m > Re B8, which belongs to D(AF).

THEOREM 5.3. Bf coincides with Dg. In particular, By, does
not depend on B.

Proof. Let xzeBgZgs. If m is an integer greater than Reg, x
belongs to Bg,, for
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" A"T,x = t"FPA™ET,, « tF°AFT,
and t"fA™*T,, is uniformly bounded. Since
" AT (N + A) ™ = (AL + A)H"tm—AT,x ,

(v + A"z belongs to Bgi®. Hence it follows from Proposition 5.2
that

A™(n 4+ A" = ¢ S”tMAzmT,(x + A)madt/t
— o(A(n + A)*l)’”Smt’"Am Twdt/t
+oe(n + A)—mg“; tm AT adit i
1A

where ¢ = I'(m)~. The rest of the proof is the same as that of
Theorem 4.3,

Conversely, assume that x ¢ D7, = D7Z,,. Since Tz, t > 0, belongs
to any Dg,, we have by (2.1)

APT = chMH(A(x + A9 Tad
—eT, g:”xﬁ—l(A(x + A)mady
+ cA”‘TtS:tM’“l(h £ Ay (AQ + A))mdn
where ¢ = I'(2m)/(I"(B)["(2m — B)). Arguing as before, we get x € By ;.
THEOREM 5.4 Let 0 < Rea < Rep. If

. 1 eo
5.4 ¥ = w-lim ~___S 18-t ABT (it
(5.49) lim -t ,

exists, then xe D(A%) and y = A%x, If xe D(A*), then

(5.5) A%y = silim — L+ S“tﬁ—a~1AﬂTtxdt :
g0 F(B - a’) €

Proof. The former part is proved in the same way as Theorem 2.10.
Let us prove the latter assuming that g — A generates a bounded
analytic semi-group for a ¢£>0. D(A®) is the same as the range R(A~*)
in this case, and we have APT.A—*x = AP=T.x by the additivity of
fractional powers. So it is sufficient to prove the following:

(5.6) = s-lim—l—rtf‘*lAﬁTtxdt, se X,
I'(B) Je

€0
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when Re 8 > 0.
First we note that if Rea > 0, then

(5.7) t*A*T,w— 0 as t—0 or as { — o

for each x ¢ X, because (5.7) holds for v € D(A) and ¢*A*T, is uniformly

bounded.
Let B be equal to an integer m. Since d/dtAPT,x = —AP*' Tz,

we have, by integrating by parts,
rt’”—lA"‘T,xdt
— ATy 4 (m — l)rt”‘—ﬁA"‘—l Twdt .

(5.7) shows that the first term tends to zero as e— 0 if m > 1. When
m =1, we have

SwATtxdt = To—zase—0,

Thus (5.6) holds if B is an integer.
If B is not an integer, take an integer m > Re 8. We have

APT,x = AF™A™T,x

L .
— — " E-AT ad t>0,
e Kl wds, >0,

by [2], Proposition 11.1. Therefore,

1 rtﬁ—lAf‘ T,wdt

') Je
— 1 * m ¢ B—1 - m—pB—1
AT &A T,xdsget (s — t)"—f-1d
-1 Sms”‘—lA”‘ T,xds
I'(m) Je
_ e” S”Am Tgaxdaglrﬁ“l(a _ oymb-igr
r'g)yrm— g) J: 0

The first term tends to x as ¢ — 0. The second term converges to
zero, because

oo 1
5 o~ "do S h Yo — )" PF-ldr
1 0
is absolutely convergent and (eo)"A™T.,x tends to zero as ¢ — 0.

The proof in the general case is obtained from the absolutely
convergent integral representation:
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(A" — (1t + A + Az

“‘_._L__&ﬂ“‘ﬂ’——l B __ ,—put 8 e
T TE - Sot (AP — e #(p + AP)T (¢ + A)~"xdt .

The absolute convergence follows from [2], Propositions 6.2 and 6.3.
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