ON OPERATORS WHOSE FREDHOLM SET IS THE COMPLEX
PLANE

MARINUS A. KAASHOEK AND DAVID CLARK LAY
ON OPERATORS WHOSE FREDHOLM SET IS THE COMPLEX PLANE

M. A. KAASHOEK AND D. C. LAY

Let T be a closed linear operator with domain and range in a complex Banach space X. The Fredholm set $\Phi(T)$ of T is the set of complex numbers λ such that $\lambda - T$ is a Fredholm operator. If the space X is of finite dimension then, obviously, the domain of T is closed and $\Phi(T)$ is the whole complex plane \mathbb{C}. In this paper it is shown that the converse is also true. When T is defined on all of X this is a well-known result due to Gohberg and Krein.

Examples of nontrivial closed operators with $\Phi(T) = \mathbb{C}$ are the operators whose resolvent operator is compact. A characterization of the class of closed linear operators with a nonempty resolvent set and a Fredholm set equal to the complex plane will be given.

Throughout the present paper X and Y will denote complex Banach spaces. Let T be an arbitrary closed linear operator with domain $\mathcal{D}(T)$ in X and range $\mathcal{R}(T)$ in Y. The nullity $n(T)$ of T is the dimension of the null space $\mathcal{N}(T)$ of T. The defect $d(T)$ of T is the dimension of the quotient space $Y/\mathcal{R}(T)$. No distinction is made between infinite dimensions, so that $n(T)$ and $d(T)$ may be nonnegative integers or $+\infty$. We say that T is Fredholm if $n(T)$ and $d(T)$ are both finite. Note that $d(T) < \infty$ implies $\mathcal{R}(T)$ is closed (cf. [5], Lemma 332).

In 1957 Gohberg and Krein [3] showed that if A is a bounded linear operator on X with $\Phi(A) = \mathbb{C}$, then the dimension of X (denoted by $\dim X$) is finite. The following theorem extends this result.

Theorem 1. Let T and S be bounded linear operators from X into Y. Suppose that S is a homeomorphism, and that $T + \lambda S$ is Fredholm for each $\lambda \in \mathbb{C}$. Then

$$\dim X \leq \dim Y < +\infty.$$

Proof. Since S is a homeomorphism, $\mathcal{R}(S)$ is closed and $n(S) = 0$. By a well-known stability theorem (cf. [5], Theorem 1), this implies the existence of a positive constant ρ such that for $0 < |\mu| < \rho$

$$d(S) = d(S) - n(S) = d(S + \mu T) - n(S + \mu T).$$

The right-hand side is finite because $S + \mu T$ is Fredholm for $\mu \neq 0$. Hence $d(S) < +\infty$, and so S has a bounded left inverse, say R. Then $n(R) \leq d(S) < +\infty$ and $d(R) = 0$, so R is Fredholm. Define $A = RT$.

275
Then A is a bounded linear operator on X and
\[
\lambda - A = \lambda RS - RT = R(\lambda S - T).
\]
For each complex value of λ, $\lambda - A$ is the product of two bounded Fredholm operators and hence is Fredholm. But $\Phi(A) = C$ implies that $\dim X < \infty$ by the result of Gohberg and Kreĭn ([3], Theorem 3.2). Then $\dim Y = \dim X + d(S) < \infty$, concluding the proof.

Corollary. Let T be a closed linear operator with domain $\mathcal{D}(T)$ and range in X. Then $\dim X < \infty$ if and only if $\mathcal{D}(T)$ is closed and $\Phi(T) = C$.

In [1] Caradus has proved that if T is a closed linear operator with domain and range in X such that $\dim X/\mathcal{D}(T) < \infty$, $\Phi(T) = C$ and such that the resolvent set of T is neither empty nor the whole complex plane, then $\dim X < \infty$. The following lemma shows that Caradus’ result is contained in the Corollary.

Lemma. Let T be a closed linear operator with domain in X and range in Y. Suppose there exists a closed subspace M of X such that $X = \mathcal{D}(T) \oplus M$. Then $\mathcal{D}(T)$ is closed.

Proof. Let Y_1 be the Banach space $Y \times M$, with the norm
\[
\|(y, m)\| = \|y\| + \|m\|.
\]
Define the linear operator J from X into Y_1 by setting
\[
J(x + m) = (Tx, m)
\]
for each $x \in \mathcal{D}(T)$ and $m \in M$. It is easily verified that J is a well-defined closed linear operator. Since the domain of J is the Banach space X, the closed graph theorem implies that J is bounded. Hence
\[
(\|Tx\| + \|m\|) \leq \|J\| \cdot \|x + m\|
\]
for each $x \in \mathcal{D}(T)$ and $m \in M$. In particular,
\[
\|Tx\| \leq \|J\| \cdot \|x\|
\]
for each $x \in \mathcal{D}(T)$. Thus T is both closed and bounded, implying that $\mathcal{D}(T)$ is closed.

We have learned recently that similar statements for the range of a closed linear operator are proved by S. Goldberg in [4]. That this can be done follows easily from the observation that the range of a closed linear operator is always the domain of some other closed linear operator, and conversely (cf. [6], Chapter IV).
The Corollary states that the closed linear operators T with closed domain and $\Phi(T) = C$ are trivial. Examples of nontrivial closed operators whose Fredholm set is the complex plane are the operators with compact resolvent (cf. [7], § 2). The following theorem shows that each closed operator T with a nonempty resolvent set $\rho(T)$ and with $\Phi(T) = C$ is characterized by the fact that for each $\mu \in \rho(T)$ the resolvent $(\mu - T)^{-1}$ is a Riesz operator. For the definition of Riesz operators and one of their characterizations we refer to Dieudonné ([2], XI. 4, problem 5).

Theorem 2. Let T be a closed linear operator with domain and range in X. If $\Phi(T) = C$, then $(\mu - T)^{-1}$ is a Riesz operator for all $\mu \in \rho(T)$. Conversely, if $(\mu - T)^{-1}$ is a Riesz operator for some $\mu \in \rho(T)$, then $\Phi(T) = C$.

Proof. We may assume that $\dim X = \infty$ and that $\rho(T)$ is not empty. Take μ in $\rho(T)$ and let $A = (\mu - T)^{-1}$. Then for $\lambda \neq \mu$,

$$(\lambda - T)(\mu - T)^{-1} = (\mu - \lambda)(\zeta - A),$$

where $\zeta = (\mu - \lambda)^{-1}$. This implies that $\Phi(T) = C$ if and only if $\Phi(A) = C \setminus \{0\}$. Hence it is enough to show that A is a Riesz operator if and only if $\Phi(A) = C \setminus \{0\}$. In order to do this, let \mathcal{H} be the ideal of all compact linear operators in the Banach algebra $\mathcal{L}(X)$ of all bounded linear operators on X, and let π denote the canonical homomorphism from $\mathcal{L}(X)$ onto the quotient algebra $\mathcal{L}(X)/\mathcal{H}$. Then it follows from Atkinson's characterization of the class of all Fredholm operators in $\mathcal{L}(X)$ that $\zeta - A$ is Fredholm if and only if $\zeta - \pi(A)$ has an inverse in $\mathcal{L}(X)/\mathcal{H}$. So $\Phi(A) = C \setminus \{0\}$ if and only if the spectrum of $\pi(A)$ in $\mathcal{L}(X)/\mathcal{H}$ is $\{0\}$, i.e., the spectral radius $r(\pi(A))$ of $\pi(A)$ is zero. But

$$r(\pi(A)) = \lim_{n \to \infty} \| [\pi(A)]^n \|^{1/n} = \lim_{n \to \infty} \| \pi(A^n) \|^{1/n} = \lim_{n \to \infty} [d(A^n, \mathcal{H})]^{1/n},$$

where $d(A^n, \mathcal{H})$ is the infimum of $\| A^n - K \|$ for $K \in \mathcal{H}$. Thus $\Phi(A) = C \setminus \{0\}$ if and only if

$$\lim_{n \to \infty} [d(A^n, \mathcal{H})]^{1/n} = 0,$$

which is equivalent to the statement that A is a Riesz operator (cf. [2], XI. 4, problem 5).

When T is a self-adjoint closed linear operator in a Hilbert space Theorem 2 can be strengthened. This is because $(\mu - T)^{-1}$ is normal for $\mu \in \rho(T)$, and a normal operator is Riesz if and only if it is compact.
Hence, in this special case, $\Phi(T) = C$ if and only if $(\mu - T)^{-1}$ is compact for each μ in $\rho(T)$.

REFERENCES

Received March 28, 1966. This paper was written while the first author was supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.) under a Postdoctoral Fellowship.

UNIVERSITY OF CALIFORNIA, LOS ANGELES
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arne P. Baartz</td>
<td>The measure algebra of a locally compact semigroup</td>
<td>199</td>
</tr>
<tr>
<td>Robert F. Brown</td>
<td>On maps with identical fixed point sets</td>
<td>215</td>
</tr>
<tr>
<td>C. Buttin</td>
<td>Existence of a homotopy operator for Spencer's sequence in the analytic case</td>
<td>219</td>
</tr>
<tr>
<td>Henry Werner Davis</td>
<td>An elementary proof that Haar measurable almost periodic functions are continuous</td>
<td>241</td>
</tr>
<tr>
<td>Zeev Ditzian</td>
<td>On asymptotic estimates for kernels of convolution transforms</td>
<td>249</td>
</tr>
<tr>
<td>Robert E. Edwards</td>
<td>Boundedness principles and Fourier theory</td>
<td>255</td>
</tr>
<tr>
<td>John A. Hildebrant</td>
<td>On compact unithetic semigroups</td>
<td>265</td>
</tr>
<tr>
<td>Marinus A. Kaashoek and David Clark Lay</td>
<td>On operators whose Fredholm set is the complex plane</td>
<td>275</td>
</tr>
<tr>
<td>Sadao Katô</td>
<td>Canonical domains in several complex variables</td>
<td>279</td>
</tr>
<tr>
<td>David Clifford Kay</td>
<td>The ptolemaic inequality in Hilbert geometries</td>
<td>293</td>
</tr>
<tr>
<td>Joseph D. E. Konhauser</td>
<td>Biorthogonal polynomials suggested by the Laguerre polynomials</td>
<td>303</td>
</tr>
<tr>
<td>Kevin Mor McCrimmon</td>
<td>Macdonald’s theorem with inverses</td>
<td>315</td>
</tr>
<tr>
<td>Harry Eldon Pickett</td>
<td>Homomorphisms and subalgebras of multialgebras</td>
<td>327</td>
</tr>
<tr>
<td>Richard Dennis Sinkhorn and Paul Joseph Knopp</td>
<td>Concerning nonnegative matrices and doubly stochastic matrices</td>
<td>343</td>
</tr>
<tr>
<td>Erling Stormer</td>
<td>On anti-automorphisms of von Neumann algebras</td>
<td>349</td>
</tr>
<tr>
<td>Miyuki Yamada</td>
<td>Regular semi-groups whose idempotents satisfy permutation identities</td>
<td>371</td>
</tr>
</tbody>
</table>