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Let M be a metric space, and if x and y are points in M9

let ίci/ denote the metric. The space M and its metric are called
ptolemaic if for each quadruple of points x{ (i = 1,2,3,4)
the ptolemaic inequality

holds. If the inequality holds only in some neighborhood of
each point the space and its metric are said to be locally
ptolemaic. Euclidean space is known to be ptolemaic and
therefore, locally ptolemaic. We are interested here in certain
non-euclidean spaces which may possibly be locally ptolemaic.
The author has proved in his thesis (Michigan State University
Doctoral Dissertation, 1963) that a Riemannian geometry is
locally ptolemaic if and only if it has nonpositive curvature,
and that a Finsler space which is locally ptolemaic is Rieman-
nian. The main result established here extends the theorem
regarding Finsler spaces to include Hubert geometries as well:
A Hilbert geometry is locally ptolemaic if and only if it is
hyperbolic.

The ptolemaic inequality is related to problems of curvature in
metric geometry. Assuming this condition enables one to prove
that a curve is a geodesic if and only if its metric curvature is
zero at each of its points (see [3]). Blumenthal has investigated a
number of properties peculiar to ptolemaic metric spaces in [2]. It
is then significant to determine what metric spaces are ptolemaic. A
question which remains unsettled is whether a non-Riemannian G-space
(Busemann [4, p. 37]) can be locally ptolemaic. The result obtained
here concerning Hilbert geometries, together with several in the
author's thesis lends support to the conjecture that such a space
does not exist.

Hilbert geometry is a generalization of the well-known Klein
model for hyperbolic geometry. Consider an arbitrary bounded
convex body C with nonempty interior D in euclidean space. If
x and y be any two points in D, & distance function may be
•defined as

h(x, y) = k\ log R(xy, ab)

where k is a positive constant, a and h are the points of intersection
of C with the afϊine line Lxy determined by x and y, and R(xy, ab) is
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the usual (euclidean) cross-ratio. It can be proved that h(x, y) is a
metric, and moreover if C is either strictly convex or has the property
that all linear triples which it contains belong to the same hyperplane,
linearity under h coincides with linearity under the euclidean metric.
Hence, the geodesies for h are the portions of affine lines contained
in D. The function h is then called a Hubert metric for D and
with this metric, D is called a Hilhert geometry.

Let p be any point in D. With the euclidean metric understood,
let C be the reflection of C in p. Each ray r from p will cut C
and C" in unique points xr and x'r respectively. Define Up as the set
of all points ur such that ur e r and

c\ -t -i

( 1 )
pur ρxr pxr

r

where xy denotes the euclidean metric. It is clear that Up is sym-
metric about p. With our former assumptions on C we can convince
ourselves that Uv is strictly convex. Suppose rays r, s, and t with
origin p meet C in x, y, and z, and C" in x\ y', and z\ If further,
w, v, and w are the intersections of those rays with Up we may use
(1) to deduce

R(pu, xx') = R(pv, yy') = R(pw, zzr) = — 1 .

Assume that v1 is a point on the segment joining u and w, Suw, and
that s passes through vlu Finally, let y1 = s x Sxz and |/J = s x Sa.̂ /.
Now, q = Lxz x Z/a./z/ is the center of a projectivity which maps x into
z, u into w, and x' into «'. It also maps x, u, and »τ' into yu vu and
2/ί, so

which is equivalent to

-λ\l

Since C and C are convex we have ~py1 S py and py[ ^ p^', with
strict inequality in at least one case. Hence

VPVI + ifpvΊ > VPV + VW = 2 / P ^

Therefore, pVi < pv proving that Up is strictly convex.
As proved in [5], it follows that Up is the unit sphere of a

Minkowski metric mp(x, y) defined on D having the same geodesies as
h. Further,
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Km *<*'»> = 1 .
*,*-* mp(x, y)

In this sense a Hubert metric is "locally" Minkowskian. The metric
mp(x, y) is called the associated local Minkowskί metric of h(x, y) at
2>.

1* Perpendicularity in Hubert geometries* Suppose D is
metrized as a straight space by the metric d(x, y). We shall say that
a geodesic Lx is perpendicular to another geodesic L2 at p e ^ Π L2

whenever xeLλ and y e L2 implies

d(x, p) g d(x, y) .

This condition will be denoted L1±dL2m The problem of existence
has been solved in [4, pp. 119-122]: Given a geodesic L2 and a point
q not on it there exists a unique geodesic L1 such that q e Lγ and
Li J_dL2 at some point 3?, and if p is any point on L2 and if is any
planar section of D containing L2 (H is then a two-dimensional straight
space) then precisely one geodesic Lt exists in H such that L1±dLz

at p. Since the Hubert metric and the metrics mp(x, y) for pe D
metrize D as a straight space this statement applies to those metrics.

Perpendicularity is called symmetric if for any two geodesies L1

and I/2, L1A_dL2 implies L2±_dL1. The following theorem was proved
in [6]:

THEOREM 1. Perpendicularity is symmetric in a Hilbert
geometry if and only if it is hyperbolic.

Of significance to us is

THEOREM 2. At any point in D, perpendicularity under the
local Minkowski metric coincides with perpendicularity under the
original Hilbert metric.

Proof. Let L1l_hL2 at peD and suppose xeLl9 yeL2i xΦp,
and y Φ p. With p as origin, define the points xλ = Xx and yλ = Xy
for each real λ, 0 < λ < 1, where Xx denotes the usual scalar multi-
plication in euclidean space. Under the local Minkowski metric
m(x, y) at p, the triangles determined by the triples (p, x, y) and
(V, #λ, Vλ) are similar and thus m(x, p)/m(xλ, p) = m(x, y)/m(xλ, yλ).
Since h(xλ, p) ^ h(xλ, yλ) for each X we have

m(x, p) £ h ^ y ^ .m(x, y) .
m(x y)

m(x, p) £
m(xλ, p) m(xλ1 yλ)

But limλ_0 [h(xλ,p)/m(xλ, p)] = limλ^0 [h(xλ, yλ)/m(xλ, yλ)] = 1 so it fol-
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lows that m(x, p) ^ m(x, y) and therefore Lx ±_mL2 at p.
Conversely, suppose Lx ±_mL2 at p. Consider L[ the geodesic

which passes through p, lies in the plane determined by Lx and L2,
such that L[ JL h L2 at p. Then, from the preceding case, L[ J_ m L2 at
29. Since the geodesic perpendicular to L2 at p is unique in this plane,
L[ = Llm Therefore L1 ±hL2 at p.

If a Hubert geometry has the property that the local Minkowski
metric at each point is euclidean (that is, its unit sphere is an
ellipsoid) we shall say it is locally euclidean. We have an immediate
corollary, making use of Theorem 1:

COROLLARY 1. A locally euclidean Hίlhert geometry is hyperbolic.

2* Ptolemaic metrics* In [9] Schoenberg has proved that a
ptolemaic normed linear space is an inner product space. We may
state this in the more pertinent form:

THEOREM 3. A Minkowski metric is euclidean if and only if
it is ptolemaic.

This enables us to prove

THEOREM 4. A locally ptolemaic Hilbert geometry is hyperbolic.

Proof. It will be shown that the given Hilbert metric h(x, y) —
xy is locally euclidean. The rest follows immediately from Corollary
1. Let p be any point in D and suppose m(x, y) = xy is the associated
local Minkowski metric at p. In view of Theorem 3 it suffices to
show that ~%y is ptolemaic. Let x, y, z, and w be four points in D
and let N be the neighborhood about p in which the Hilbert metric
is ptolemaic. As before, with p as origin define xλ = Xx, yλ = Xy,
zλ = \z, wλ = Xw for λ a positive real number. For all sufficiently
small λ the points xλj yλ, zx, and wλ lie in N and we therefore have

or,

XχW\ y^Z\ λ̂Ί/λ * Z\W\
/V 01 C Oil 1* Oil m 01 C Ύ OΠ i

/ Λ x ^χyχ'Z\Wχ άχwλ yχZ\ ^λ^λ

Since u—^Xu = uλ is a similarity mapping we have
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x\Vx

%Mx
*zλwλ
zλwλ

xλwλ
xλwλ

xλwλ

'y\%\

*y\Z\

xy
xw

xz-

•zw
-yz

yw
( 3)

xw-yz

Taking the limit in (3) as λ->0 yields

xy-zw Έz yw > .
XW'ΊJZ XW'ψz ~~

the desired inequality.
If x, y, and z are any three points in D and m is the midpoint

of segment Syz, the euclidean formula for the median Sxm is

( 4 ) (xmf = (xyf/2 + (xzf/2 - (yzf/4 .

It can be shown that for a hyperbolic metric, instead of (4), we have

( 5 ) {xmf ^ (xyf/2 + (xzY/2 - (yzf/A

with equality only when x, y, and z are linear. Inequality (5) in
turn implies the ptolemaic inequality as we shall see. This fact may
then be used to derive the ptolemaic inequality in hyperbolic geometry.

We shall use (5) to derive the more general inequality

••(5') (xmf ^ X(xyf + (1 - λ) (xzf - λ(l - λ) (yzf , 0 g λ ^ 1 ,

for any point m on Syz with λ = mz/yz. Induction will establish
(5') for λ a diadic rational μ/2v where μ and v are nonnegative
integers and 0 5Ξ μ 5Ξ 2\ The inequality is clear for the case v — 1.
Assume it has been proved for all diadic rationale of the form μ/2κ,
K < v, and let μ\2v be given, excluding the cases μ = 0, μ = 2% and
μ even, as trivial. Then, there exist points y' and zf on Syz such
that (μ + l)/2y = ?/^/^ and (μ — 1)/2V = z'zjyz. Since /̂  is odd,
(μ + l)/2" and (/J - 1)12? are diadic rationals of the form ^72K for
K < v and the induction hypothesis implies

^ μ ^ 1 (xyf

( 6 )

(xz'Y ύ -P-z-—
Δ

Since μ/2u = mz/yz, m is the midpoint of the segment Sy,z, and (5)
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yields

( 7) (xmf g (xy'Y/2 + (xz'Y/2 - (y'z'Y/4 .

Substituting yz/2ι>~1 for y'z' and making use of (6), (7) becomes

JbHί) _r= \wU) -γ~ \ -I — HΛ/,6) — I J_ — ]\UZ)

1 — O» \ O» J 0v \ 9^ /

Δ \ Δ / Δ \ Δ '

and induction carries. Then (5') is true for arbitrary real λ, 0 S λ ^ 1.

THEOREM 5. ΓΛβ ptolemaic inequality holds in any metric space
D in which the inequality (5) holds, provided the metric is complete
and convex.

Proof. The completeness and convexity of the metric guarantees
the existence of segments. Moreover, (5) implies the uniqueness of
the segment joining each pair of points. Let x, y, z, and w be any
four points in D. We must prove that

(8) xy-ziv + xz yw ^ xw-yz .

If the four points are not distinct, (8) follows immediately; hence we
set aside this case, as well as the case when the four points lie
on a segment. In a euclidean plane, the euclidean metric denoted pq, let
x\ y', and z' be the vertices of a triangle such that x'y' = xy, x'z' —
xz, and ψz' = yz, and let w' be a point such that y'w' = yw, w'z' =
wz, and the segment Sx,w, has at least one point m' in common with
the line Ly,z,. Point m' is determined uniquely since the linearity of
x', y', z', and w' would imply that x, y, z, and w lie on a metric
segment (see [4] p. 29).

Case 1. m' lies on Sy,z,. Locate m in D such that m lies on
the metric segment joining y and z, and mz = m'z'. Put λ = mz/yz =
m/z'/yψ. Applying (5'),

(xmY ^ X(xyY + (1 - λ) (xzY - λ(l - λ) (?/̂ )2

- λ) (y'z'Y

Therefore xm ^ m'α;' and similarly, mw ^ m'^'. Thus,

xw g α m + mw ^ ^ rm ; + m'^

Apply the ptolemaic inequality for the euclidean metric

%'y' z'w' + x'z'-yrwf ^ x'w'- y'z'
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and we have

xy zw + xz yw ^ x'w'>yz ^ xw*yz .

Case 2. m' is exterior to Sy,z,. We may assume that x'w' < xw,
for otherwise we could derive (8) just as we did above. Since
%', y', z', and w' are not linear, at most one of the points x', w'
lies on Ly,z,. We may suppose that xf does not lie on Ly,z,, for a
reversing of the roles of x and w leaves (8) unchanged. Similarly,
it may be assumed that y' is between m' and zf. Let K be the
semicircle with center at y' and radius x'y' which passes through
xf and whose base lies on Ly,z,m Further, let v! be the endpoint
of K lying on the same side of y' as z\ and v' the point where
the ray from w' through yf meets K. Since the sum of Z.xfy'u'
and Z-W'y'x' is greater than or equal to π, v' lies on, or in the
interior of, /.x'y'u' and therefore belongs to K', the sub-arc of
K whose endpoints are x' and ur. Now, every point V on Kr has
the property that Ύz' 5£ xΎ. Consider the continuous function f(t') =
¥W, V e K'. f(x') = xW < xw and f(v') = vW = w'y' + y7vr =
ivy + yx^ xw, so there exists a point V on Kf such that t'wf = xw.
Applying the ptolemaic inequality to t', yf, z\ and wf,

t'y'-z'w' + t'z' y'w' > t'w' y'z' ,

which gives us

xy zτυ + xz-yw ^ xy zw + t'z'-yiυ

= t'y' 'Zfwr + t'z'' y'wf ^ t'w' *y'zf = xw yz .

Remark. This proof applies to G-spaces. Unfortunately, even in
G-spaces, it is not known whether (5) characterizes the ptolemaic
inequality. It is interesting to note in this connection that Blumenthal
has investigated a property he calls the euclidean four-point property
which is merely our (5') (or its equivalent (5) in complete convex
metric spaces) with equality prevailing (see [1]).

Theorem 5 then provides an easy proof of

THEOREM 6β Hyperbolic geometry is ptolemaic.

Proof. If xy is a hyperbolic metric, we observe from the cosine
inequality (see [4, p. 268]) that if x, y, and z are the vertices of a
triangle and m is the midpoint of Syz, with A one of the angles at
m, then

(xyf ;> (xmf + (myf — 2(xm) (my) cos A

(xzf ^ (xmf + (mzf + 2(xm) (mz) cos A ,
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and, since my = mz = yz/2, we have

(xyf + (xzf ^ 2(xmf + (yzfβ ,

which is (5). By Theorem 5 the metric is ptolemaic.

Theorems 4 and 6 combine to give

COROLLARY 2. A Hilbert geometry is locally ptolemaic if and
only if it is hyperbolic.

3* Related inequalities. In a G-space the ptolemaic inequality
appears to be related to the "curvature" of the space. It can be
easily verified that spherical geometry (a space having positive
curvature) is not ptolemaic. This illustrates the theorem in the
author's thesis that a Riemannian space is locally ptolemaic if and
only if its curvature is nonpositive, which leads to the definition:
A metric space has nonpositive curvature if and only if the ptolemaic
inequality (8) holds locally. Other concepts of space curvature have
been proposed. In [4, p. 237] Busemann defines nonpositive curvature
as follows: If for each point there exists a neighborhood such that
given any triple of points (x, y, z) in that neighborhood, with my the
midpoint between x and y, and mz the midpoint between x and zf

the inequality

( 9 ) 2mymz ^ yz

holds, the space is said to have nonpositive curvature. In his thesis
the author proposes this definition (making use of inequality (5) above):
If for each point there exists a neighborhood such that if (x,y, z) be
any triple of points in that neighborhood with m the midpoint between
y and z then

(10) (mxf ^ (xyf 12 + (xz)2/2 - (yzf/A

holds, the space is said to have nonpositive curvature. F. P. Pederson
[8] has investigated still a different concept of nonpositive curvature
and relates it to (9).

Relatively little is known concerning the various implications
which may exist among these concepts of curvature. The seemingly
stronger (10) is shown to imply (9) in [4, pp. 268-269]. Our Theorem
5 shows that (10) implies (8) (locally). In Riemannian spaces they are
each equivalent to nonpositive Riemannian curvature, but the situa-
tion is completely unsettled in Finsler geometry. In view of our
Corollary 2 and the theorem of P. Kelly and E. Strauss [7] that a
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Hubert geometry has nonpositive curvature in the sense of (9) if
and only if it is hyperbolic, we may conclude (trivially) that the
conditions (8), (9), and (10) are equivalent in Hubert geometries. It
would be of interest to determine further implications—if such exist—
among (8), (9), and (10) outside of Hubert and Riemannian geometry.
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