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PROJECTIVE AND INJECTIVE DISTRIBUTIVE LATTICES

RaYMOND BALBES

This paper is concerned with the properties of projective
and injective distributive lattices.

By considering the minimal Boolean extension of a dis-
tributive lattice L, the question of the injectivity of L is
transferred to the category of Boolean algebras, where a
characterization is known., The result is that L is injective-
in the category of distributive lattices-if and only if it is a
complete Boolean algebra,

The first section deals with a method of defining E-free sequences
of elements in a distributive lattice. Roughly speaking, these are
elements which satisfy a given set E of inequalities and no others
except consequences of FE.

We prove that a finite distributive lattice is projective if and only
if the sum of any two meet irreducible elements is meed irreducible.
For the general case we show that a distributive lattice is projective
if and only if it is generated by an E-free sequence, where E is a
certain set of one-sided inequalities.

The last section concerns the projectivity of Boolean algebras,
chains, and direct products.

1. E-free distributive lattices. Throughout this paper {x;}, ¢ € I,
will denote a sequence of distinet variables.

DerFINITION 1.1. An dnequality in {x;},7¢ 1, is a formula of the
form
( 1 ) Ly o oo

. .xinéle_]_..._}_xj

DerINITION 1.2. Suppose {a;}, 2 €, is a sequence of elements of a
distributive lattice and 7< J. Then {a;}, 7 € J, satisfies the inequality
@) if @ - cai, a; + -0 +a; . If Bis a set of inequalities in
{x;}, t e I, then {a;}, ¢ e J, satisfies E if it satisfies all members of E.

THEOREM 1.3. If {a;},i€d, is a sequence of elements of o dis-
tributive lattice L, I< J, and f:L— M is a homomorphism into
o distributive lattice M, then if {a;},iedJ, satisfies a set E of
inequalities tn {x;}, 1€ I, then {f(a;)}, t€d, satisfies E.

Proof. This follows from the fact that homomorphisms preserve
order.
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DeFINITION 1.4, Let E be a set of inequalities in (x;), 7¢I, and
e an inequality in (x;),7¢J, where IS J. Then ¢ is said to be a
consequence of E if and only if whenever {a;}, ¢ ¢ J, is a sequence in
a distributive lattice L which satisfies E, then it satisfies e.

DErFINITION 1.5. If E is a set of inequalities in {x;}, ¢ € I, then a
sequence {a;},ieJ, < J, is said to be E-free if and only if:

(i) {a;}, ted, satisfies E.

(il) If {a;}, 2 e J, satisfies an inequality e in (x;),7¢e I, then e is
a consequence of E.

It is clear that if {a;},ieJ, is E-free and ¢ is a consequence of
FE, then {a;}, t € J, satisfies e.

THEOREM 1.6. Let {a;},7 ¢ I be a sequence in a distributive lattice.
Then there exists a set E of inequalities in {x;}, 1 € I, such that {a;},
1¢ 1, is an HE-free sequence.

Proof. Let

E:{mil. cee .xinéle_{_ .ee +xfm|“i1' N .aingaﬂ.l_}_ ...+a/jm}.

Now {a;},iel, is E-free for it satisfies E and if it satisfies an
inequality e in {x;},7¢ I, then ec E. It is trivial that ec E, implies
that e is a consequence of E.

LEmMMA 1.7. A mapping f of a set G of generators of a dis-
tributive lattice L into a distributive lattice M can be extended to
a homomorphism f': L — M if and only tf for any finite nonempty
subsets S, T of G, whenever

(2) (S) = 3(7T)
then
(3) 7(f(S)) = 2(f(T)) where f(S) = {f(s)|seS}.

Proof. The necessity follows immediately. Now if ae L, then
a = >2,7(S;) where S; is a finite nonempty subset of G for 1 <7 < n.
Define f': L— M by f(a) = S 7(f(Sy). Since o, a(S) = Sr, (T))
is equivalent to a collection of relations of the form (2), which by
hypothesis are preserved by f, the function f’ is well defined. It is
now easy to show that f’ is a homomorphism and an extension of f.

THEOREM 1.8. If {a;},tedJ, generates a distridbutive lattice L
and E is a set of inequalities in {x;},1¢ I, IS J, then {a;},1¢€d, is
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E-free if and only if

(i) {a;},1ed, satisfies E.

(il) whenever {b;}, 1€ dJ, is a sequence of elements of a distribu-
tive lattice M such that {b},1ed, satisfies K, then there exists a
homomorphism f: L — M such that f(a;) = b;.

Proof. For the necessity of (ii), let M be such a distributive
lattice. By Lemma 1.7, we need only show that

(4) @+ oo @, < @; + o+ +a;  implies
(5) bil'."'bingbjl_‘—...—{_bjm'
But if (4) holds then {a;}, 7 € J, satisfies

€=y » o0 oWy STy koo By

Ty =

Since {a;},i€J is E-free, e is a consequence of K. But M satisfies
E so (b) holds. Conversely, suppose {a;},tcJ satisfies an inequality
e in {x;},7eJ. To show ¢ is a consequence of K, let {b;},7¢J, be a
sequence in a distributive lattice M which satisfies E. By hypothesis
there is a homomorphism f:L — M such that f(a;) = b,. Thus, by
Theorem 1.3, {b;}, 7€ J, satisfies E. So ¢ is a consequence of E.

THEOREM 1.9. (Euxistence) If E is a set of inequalities {x},
1el, and J 2 I, then there exists an E-free sequence {A;}, i€ .

Proof. For each inequality e = Lyy» ove o0
{w;},7el, let

Le) ={se2|s(i) = +++» =8(,) =1, 8(J1) = +-+ = 58(j,,) = 0}

and if E is a set of such inequalities, let (E) = U.ez %e). Let
A, ={se2"|s(4) = 1, s¢ &(&)}. Finally, for each teJ, set A;; = 4;
and A4;,=27 — A,.

We first show that

(i) If N4, = @ then sc&(E).

(ii) Let {a;}, 7€ J, be a sequence of members of a ring of subsets
of aset Xandlet e=w;+ -+ -2, S2; + o0+, .

Then {a;}, ¢ cJ, satisfies e if and only if f); a;,i., = @ for all se &(e),
where a,, = a; and a;, = X — a;.

For (i) if s¢ Q(E) then if s(z) =1, se 4;, and if s(@) = 0, se 4;,.
Hence se): Ai,,». For (i) first suppose {a;}, ¢ €J, satisfies e. Then
a;, N+ Na;,Na;N---Naj = and hence M) a;,: = & whenever
se ¥(e). Conversely, suppose there exists

éwh—{- AR +x]m in

*n

pea,N---Na;,Na;N---Naj

Im *
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Define se2’ by s(i) =1 if and only if peea,. Then sc&e) but
DEN: Cigrir
Suppose

I I R =

Then Ni-, 4, & Uik Ajl, for if s¢ &) and s(iy) = -+ =s(¢,) =1
then s(j;,) =1 for some le{l, ..., m}. Hence {4}, e J, satisfies FE.
Now suppose {4}, 7€, satisfies an inequality e¢ in {z;},teJ and
{a;}, 1€, is a sequence in a distributive lattice M which satisfies E.
We can assume that M is a ring of sets. Note that if we apply (ii)
to {4}, 7€ J, then (i) shows that every member s of ¥(e) is in ¥(F).
Again by (ii), {a;}, 1 € J, will satisfy ¢ provided every member of ¥(e) is
a member of £(¢’) for some ¢’ ¢ E. But this follows since £(e) & ¥(F).

DErFInITION 1,10, A distributive lattice is said to be E-free if it
is generated by an E-free sequence.

By Theorem 1.6 every distributive lattice is E-free for some set
E, and any @-free distributive lattice is free.

THEOREM 1.11. (Uniqueness) Let E be a set of imequalities in
{&;},vel. If L and M are distributive lattices generated by FH-free
sequences {a;},1e€d, and {b;},ieJ, where I = J, then L = M.

Proof. Follows immediately from Theorem 1.8,

The following type of theorem is easily proved: Suppose L is
generated by the E-free sequence {a;}, 7€ I, where the inequalities of
E are of the form x;, < ;. If P and @ are finite nonempty subsets
of {a;},7¢€ I, and n(P) < X(Q), then there exist a,e P and a,€Q and a
finite sequence a, < a; = --+ = a; = a, such that all of the inequalities
T, =¥, e, @, = a, are in E. Also it can be shown that if e is a
consequence of K then it is a consequence of a finite subset of E.

Again suppose E is a set of inequalities in {x;},7¢ I and {4,},1¢ 1,
is the E-free sequence as in the proof of Theorem 1.9. Let L be the ring
of sets generated by {4;},7¢l. Setting X' = {sc2'|s¢ &(XK)}, the
following theorem can be proved by direct computation.

THEOREM 1.12. F is a prime filter in L tf and only +f F 1s
the filter generated by {A;|s(i) = 1} for some se X'.

Thus we obtain the following characterization of the Stone space
of the E-free distributive lattice L.
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THEOREM 1.13. The Stone space of L is X' with {A;|1e I}, as
a subbasis for its topology.

2. Definitions. The definitions in this section are of a universal
nature, so we consider an arbitrary category of algebras.

DErFINITION 2.1. An algebra A is a retract of an algebra A, if
there exist homomorphisms f: A,— A and g: A— A, such that fg = I,
the identity function on A.

DEFINITION 2.2. An algebra A is injective if for every pair of
algebras A, and A4,, every homomorphism A: 4, — A, and every mono-
morphism g¢: A, — A,, there exists a homomorphism f:A4,— A such
that fg = h.

DEFINITION 2.3. An algebra A is projective if for every pair of
algebras A, and A,, every homomorphism h:A— A4,, and every
epimorphism f:A4,— A,, there exists a homomorphism g¢: A — A, such
that fg = h.

The terms retract, injective, and projective, when prefixed by
(0,1)-, will be taken in the category of distributive lattices with a
smallest and a greatest element, and homomorphisms which preserve
0 and 1. Otherwise, the category will be distributive lattices. It is
immediate that retracts of injective (projective) distributive lattices
are injective (projective).

3. Injective distributive lattices. We make use of the following
theorem, proved by Halmos [3; p. 141] in the category of Boolean
algebras: A Boolean algebra is injective if and only if it is complete.

LEmMMmA 3.1. A complete Boolean algebra L is (0, 1)-imjective.

Proof. Let M be a distributive lattice with 0 and 1. Nerode has
shown that there exists a Boolean algebra A, and a (0, 1)-monomorphism
@: M— A such that ¢(M) Boolean generates A. A is unique to within
isomorphism, and is called the minimal Boolean extension of M [4].

Now let L, and L, be distributive lattices with 0 and 1, h: L,— L
a (0, 1)-homomorphism, and g¢g: L,— L, a (0,1)-monomorphism. Let
B, B, and B, be the minimal Boolean extensions of L, L,, L, and
@, o1, @, the corresponding (0, 1)-monomorphisms. By a theorem of
Nerode [4, p. 399] there exists Boolean homomorphisms %’: B,— B and
¢': B,— B, such that #'¢, = @h and ¢'p, = ¢.g.
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Furthermore since g is one-to-one, so is ¢’. By hypothesis, L is a
Boolean algebra, so @: L — B is an isomorphism. Now since B is
complete, it is injective in the category of Boolean algebras. Therefore,
there is a Boolean homomorphism f’: B,— B such that f'¢’ = h'. Since
@ is an isomorphism, we can define f: L,— L by f= ¢ 'f'¢,. Then
f9 =97 f'pg = o7 f'9'p, = 7W'p, = p7'ph = h. Clearly f preserves
0 and 1.

THEOREM 3.2. A distributive lattice is imjective if and only if
it 18 a complete Boolean algebra.

Proof. Suppose first that L is a complete Boolean algebra. Let
L, and L, be distributive lattices, h:L,— L a homomorphism and
9: L,— L, a monomorphism. Let L;= L,U{0,1'} where 0/ <2 <1’
for all xe L,, and L} = L, U {0*, 1*} where 0* < x < 1* for all x ¢ L,.
Define W':L,— L by h'|L,=h, k'(0*) = 0, and A'(1*) = 1,. Define
g:L,— L by ¢'|L, =9, ¢(0*) =0 and ¢'(1*) =1'. Since L is a
complete Boolean algebra, it is (0, 1)-injective so there is a (0, 1)-
homomorphism f’: L;— L such that f’g’ = h’. Define f:L,— L by
f=f"|L,. Then if xec L,, fo(x) = f'g'(x) = W' (x) = h(x).

Conversely, suppose L is injective and B is the complete Boolean
algebra of all subsets of the collection of prime filters of L. Then
there exists a monomorphism ¢g:L — B. Since L is injective there
exists a homomorphism f: B— L such that fg = I,. Thus L is the
homomorphic image of a Boolean algebra and is therefore a Boolean
algebra. For completeness, let S< L. Then X {g(s)|se S} = p exists
in B, It is easily verified that Y,(S) = f(p).

4. Basic properties of projective distributive lattices.

LevMmA 4.1. A distributive lattice is projective if and only if
it 18 a retract of a free distributive lattice.
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Proof. Essentially as in [3, p. 137].

Shanin [5, p. 91] has shown the topological dual of the statement
that free Boolean algebras contain no uncountable chains. This implies
the same condition of free distributive lattices, so we have:

THEOREM 4.2. There are no uncountable chains in a projective
distributive lattice L.

Proof. Since L is projective, there is a free distributive lattice
F and a monomorphism g¢: L— F. If C was an uncountable chain
in L, {G(¢)|ce C} would be an uncountable chain in F.

In the category of Boolean algebras, every projective Boolean
algebra satisfies the w-chain condition. For distributive lattices there
is an even stronger condition.

DEFINITION 4.3. A subset S of a distributive lattice L is said
to be a-disjointed (e e L) if xy = a whenever x and y are distinct

elements of S.

LEmMMA 4.4, Let {Z},t=1,---,m and {T},2=12 ... be
sequences of finite sets such that

Zl%le"'yzm%Tl
Zlg—-:_TZ)"'yZm%TZ-

Then there exists v, J such that v+ j, and Z, EZ T, U T+, Z, LT, U T;.

Proof. The sequence {Z, — T;},% = 1,2, ... contains only finitely
many distinet sets since Z, is finite. So there exists a subsequence
{T,;},+=12 ... of {T},i=1,2,-.- such that Z, — T,, = Z, —
T,,=++--. Hence Z, £ T, ,UT,,U--+. Proceeding by induction,
suppose {7,.:;},2=1,2, -.- is a sequence such that Z, — T,,, = Z, —
T,.=+++. Now the sequence {Z,.; — T,.;},7=1,2,..- contains only
finitely many distinct sets, so there is a subsequence {T,...}, 7 =
1,2,.--0f{T,.,;},2=1,2,---suchthat Z,,, — T, =Z,11— To10o= -+
Hence Z, ;1 & Thi1,U Tpire U-++. In particular, Z, & T U ThaU=v-.
Now for each ne{l,.--,m}, Z, £ T,,UT,,U--- and since {T,..},© =
1,2, ... is a subsequence of {T,,;},7=1,2,--- wehave Z, & T,,,U T,
for all ne{l, --., m}.

LeMMA 4.5. Let F be a free distributive lattice generated by an
independent set G. Then w(S,) + +++ + n(S,) < n(T) + +++ + n(T,),
where S; and T; are finite nonempty subsets of G if and only if for
each 1€{l, «++, n} there exists je{l, -+-, m} such that T, = S;.
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Proof. The sufficiency follows immediately. On the other hand
if there exists pe{l, .+-,n} such that for each je{l,--.,m} there

is an element ¢;e¢ T; — S,, then =(S,) <¢, + --- + ¢,, contradicting
independence.

THEOREM 4.6. In a free distributive lattice L, every a-disjointed
subset ts finite.

Proof. Let L be generated by the independent set G and suppose
D={d;|t=1,2,...} is an infinite a-disjointed subset. There are
finite nonempty subsets S;,; of G such that d; = 329 #(S;,;). Let
a = >7.n(Z;) where Z; is a finite nonempty subset of G for 1 <
j =<m. We can assume a¢ D. Thus we have

(i) a<d; #=1,2,.-.).

(ii) did; = a whenever 7 = j.

(iii) There exists a positive integer » such that for each
ke{l,---,pn)}, Z, = S,,, for some re{l, .-, m}.

If (iii) does not hold then for each 7 there is an S;; such that
Z, & 8S;,; for all refl, ..., m}. By Lemma 4.4 there exists S;,;, and
Si.i, (1 # k) such that Z, £ S,,; US,,; for all re{l,...,m}. But
7(Si,5, U Sy5,) = did; = a, so by Lemma 4.5 there is an » such that
Z, = 8;,;, U Sk, a contradiction.

By (iii) we have d, < a, contradiction (7).

COROLLARY 4.7. In a projective distributive lattice every a-
disjointed set is finite. ’

Proof. Similar to the proof of Theorem 4,2,

ExAMPLE 4.8. Neither the ring of all sets of integers nor the

ring of finite sets of integers is projective since the singletone form
an infinite disjointed set.

ExAMPLE 4.9. The field of all finite and co-finite sets of integers
is Boolean projective [3; p. 139, Corollary 2], but not projective.

5. Some characterizations of projective distributive lattices.

THEOREM 5.1. A distributive lattice L generated by an E-free
sequence {a;}, t € I, is projective if and only if for each i there exist
finite nonempty subsets S;,, ++-, Si,u of I such that

(i) a; = 338 P(S;,) where P(S;,) = m{a;[le S}

(ii) If

Ly oovoe oy S0 + o0 +; €H

L iy =

then for each fe P(i, +-+,1,) there exist q,r such that qu,,g
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Ui Si,.r6, where P(iy, -+ +,1,) is the set of all function on {i,, -+, ,}
such that for each t, f(1,) is a positive integer <p(i,).

Proof. Suppose L is projective and F is the free distributive
lattice generated by the independent sequence {b;},7¢ 1. Let h: F— L
be an epimorphism such that 4(b;) = a;. By hypothesis there exists a
homomorphism g¢: L — F such that hg = I,. Let g(a;) = 329 Pp(S:,2)
where for each 7 and %, S;,, is a finite nonempty subset of I and
Pu(S;,) = {b,|leS;,.}. Then

a; = hg(a;) = ,Ek‘.; h(P#(S;,1)) = };4 P(Si,k) .

Next suppose Lyo voe oy, S®; + «+- +; €B. Since {a;},tel is
E-free, we have a; - -+ -a;, < a; + -+ +a; , 50 g(a;): -+ -g(a;) =

9(@;) + +++ + g(a;,). Thus for each fe P(iy, +++,1,)

PF(Q Sit,f(it)) = (}’;4 PF(Sil,k)) ceee <Zk‘; PF(Sin,k))
= 51;"‘ Pp(S;0) + -+ + % Pr(S;,.4) -

By Lemma 4.5, we have that for each f, there exist ¢, such that
qu,r S Uia Sit,f(it)-

Now suppose (i) and (ii) hold and again let F be the free
distributive lattice generated by the independent sequence {b;},% € I,
and 4: F— L an epimorphism such that A(b;) = a;. Define a sequence
{e:},2eI in F by ¢, = 329 Px(S;,;) for each 7¢I. We will show
that {c;}, v € I satisfies . If o;. .- -w; = x; + -+ +; €k, then
by hypothesis, for each fe P(i, +--,1,), there exist ¢, r such that
Sﬁ,fr c U Sit,f(it)- So Pr(U?- Sitf(it)) = PF(qu,r) = Cs, s, ety
Thus,

Cije ven vy = (; Pr(&.y,ﬂ)). (ZI;‘ pF(Sz.M)>
= ”%-:‘PF<1:L:J], Sit,f(it)) = R HERRIE 7R

Since {c¢;}, 7 € I satisifies F, by Theorem 1.8, there exists a homomorphism
g: L — F such that g(a;) = ¢;. Hence hg(a;) = h(c;) = >3% P(S;,;) = a,.
By Lemma 4.1, L is projective.

It may be remarked that for each 4, the sets S;,, -+, S; ) may
be chosen so that no one of them contains any other one.

COROLLARY 5.2. Suppose L is a distributive lattice generated by
a sequence {a;},1€l. Then L is projective if and only if for each
1, there exists finite nonempty subsets S;,, ++-, S; . of the distinct
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elements of {a;}, 1€ I, such that
(i)

(1) a -> (S:,0).

(i) Ifa;----a;, =a; Ty, then for each fe P(iy,---,1,),
there exist q,r Quch that S i & Ui Si, s, where P(iy, -+, 1,) is
the set of all functions on {i,, ---, 1,} such that for each t, f(i,) is a

positive integer < p(i,).

Proof. This follows immediately from Theorem 5.1 by defining
F as in Theorem 1.6.

In Theorem 5.1 and Corollary 5.2, we shall refer to condition (i)
as the projective representation of the element a;, and to (ii) as the
projective criterion for ;- -« m; S &; + ece + @ (A ee 0y =
a;, + -+ +a; ). Observe that in (ii) of Corol]ary 5.2, if a;, = a;, for
some 1, and j,, then the criterion is automatically satisfied. From

this we again see that free distributive lattices are projective.

DEFINITION 5.3. An inequality e = Bo»oove oWy, Sy ke T n
{x;}, 7¢I, is said to be ong-sided if n =1 or m = 1. If G = {a,i [1el},
is a subset of a distributive lattice then G is said to be lower semi-
independent (upper semi-idependent) if whenever G satisfies e then
there exists pe{l, ---,n} such that a; < a; + -+- -+ a;, (there exists
ge{l, ---, m} such that a;- --- -abn < a e

For the following theorem {x;}, 1 ¢ I, WIH be, as before, a sequence
of distinet variables. Fix a definite simple ordering of I. If z'l ce <1,
and X = {w;,---,x; }, then w(X) will denote the expression ®;« -+ -@;
and X(X) will denote =; + --- + @; .

THEOREM 5.4. Let L be a distributive lattice generated by {a.},
vel. If L is projective then {a;}, 1€ I, ts E-free for some set K of
one-sided 1nequalities. Specifically, L is projective if and only if
{la},iel, 1s E-free for some set K of inequalities of the form
FE,UE, where

By =U{n(Xy,) 2wl =1, .-+, p(i)} and
1€IL
E=U 22X p)ld=1, -, ¢@)} and

(1) X, is a finite subset of {x;|tcl}, 1 <7 < p(3).

(il) For each ©: Y, -+, Y .0 are all possible sets of the form
{we, o0, x; } where @, € X i

(i) If wye--- o, =; +---+a; €l (sothat n=1o0r m=1),
then for each feP(iy, ---,1,), there exist q,r such that qu,, =
Ui Xi,,f{it)'
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Proof. For sufficiency, let
S j = {klkaXz,g}, and Ti,j = {kixke Yi,j} .

Since {a;}, 7 € I, satisfies K, for each 4, we have 7{a,|ke S, ;} < a; for
j=1,+«-,0(). Therefore >7t% w{a,|keS;,} £ a;. Similarly, a; <
Sarlke T} forj=1,.-+,9(¢). A simple caleulation shows that a; =
>4 P(S;,;) where P(Si J) = ria, ke S;;}. Since X; . S Ul Xiprup
implies SJ » & Uta Si,.56,, L is projective by Theorem 5.1,

For the necessity we use Theorem 5.2, Thus, let a;, = 3324 7(S;,;)
be a projective representation for each ¢. Then for each ¢ we have
7(S;,;) < a; for j=1,.-.,p(t) and a; < 3(T;,;) for j =1, ---, q(¢) where
Tiny v+, Tipges are all possible sets of the form {a;, ---, a; } and a;, € S, ;.
Setting X;,; = {x,]a, € S;,;} and Y,,; = {x,|a, € T},;}, define E as in the
statement of the theorem. Consequently (i) and (ii) are satisfied. For
(iii) suppose »; + +-+ +@; =< &; + +-- + a; € K. By the definitions of
Sy Tejy Xiyy, and Y,,;, we have a;-----a;, <a; + -+ +a,; . But
L is projective so for each fe P(il, -++,1,) there exist ¢, » such that
qu,r s U Sit,f(it% Hence X o= Uz =1 ” JFlig)e

It remains to show that {a,b}, tel, is E-free, First, {a;},71¢ 1,
obviously satisfies £. Now suppose {a;}, ¢ € I, satisfies an inequality
6=+ vve 2Ty S Ly h e Xy Then a; - --- -a;, a4+ +ay,.
Since L is pro;]ectlve for each feP(ty, ---,1,) there exist ¢, such
that S; . = Ui Si,riy. Hence

(6) o S U X -

To show e is a consequence of K, let {b;},7¢ I, be a sequence in a
distributive lattice that satisfies E. Let B;; = {b,|%,€ X;,;}. Then
b, = S2Y m(B;,,) and by (6), for each fe P(iy,---,1,) there exist g, r
such that B; .S Ui Bi,.suy. Hence w(lJin By, rup) = n(B;,..) = b;,.
Thus

b; -

1

H

< ( w))' '<%17T(Binyk)>
S7(Q Bise)) S by + - + by,

i

So ¢ is a consequence of E, and {a;}, ¢ ¢ I, is E-free.

EXAMPLE 5.5. Let {x;},7=1,2,..-. be a sequence of distinct
variables and E = {#x, < x, + 2,}. Then any E-free distributive lattice
is nonprojective for xx, < 2, -+ 2, is not a consequence of one-sided
inequalities.

ExamPLE 5.6, Let {x;},7=1,2, ... be a sequence of distinct
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variables and

E= {0 <, 20, S0, © = 0 + 0, 0 < &, + 5} .

Then the distributive lattice generated by the E-free sequence {a},
1 e I, is projective for a projective representation is: «a, = a,a, + a,a;,
Uy = @y, Ay = sy + sty + Az, A, = A, + 0,05, and a; = a; for 7 = 5.

6. Meet and join irreducible elements.

DEFINITION 6.1. An element a of the lattice L is called meet
irreducible (M.I1.) if whenever 2y < a then 2 <a or y < a. Join
irreducible (J.1.) elements are defined dually.

In a distributive lattice the following are equivalent

(i) a is M.I.
(ii) If a;+ +-+ -a, < @ then a; < a for some ie{l, ---, n}.
(iii) If a,- -+« ra, = a then a; = ¢ for some 71e{l, ---, n}.

THEOREM 6.2. In a projective distributive lattice the sum of
any two meet irreducible elements is meet irreducible and the product
of any two join irreducible elements ts join trreducible.

Proof. Let L = {a;,}71 €I and suppose a, and a, are M.I. and
(7) aa, = ay + a, .

Let a; = 324 n(S;,;,) be a projective representation for each ¢. If
a; £ a, + a, and a, £ a, + a, then there exist integers m, n such that
7w(8Ss,.) £ a, + a, and 7(S,,,) £ a, + a,. For otherwise, for either k=1
or k=2, n(S,,) £a,+ a, for all te{l, --., p(k)} and so a, < a, + a,.

Now choosing fe P(3,4) such that f(3) = m and f(4) = n, we have
(8) 7(Ses) Z a; + a, for t = 3,4,

By the criterion (applied to (7) and for the given f), there exist
ge{l,2} and ref{l,---, p(q)} such that S,,<= S; ;s US, n. Hence
(S5, ;)T (S, rw) = 7(S,,,) < @, But a, is M.I. so for either n = 3 or
n =4, (S, ;) < @, < a, + a,, contradicting (8).

Since the dual of a projective distributive lattice is projective,

the second statement follows.

7. Finite projective distributive lattices. We will now choose
a special set of generators and apply Theorem 5.2, In particular,
recall that in a finite distributive lattice every element is a product
of M.I. elements.
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THEOREM 7.1. In a finite distributive lattice L, the following
are equivalent.

(i) L 1is projective.

(ii) L 1s generated by a lower semi-independent set.

(ii") L s generated by an upper semi-independent set.

(iii) The sum of any two meet irreducible elements is meet
irreducible.

(iii’y The product of any two join irreducible elements is join
1rreducible.

Proof. (i) = (iii) and (i) = (iii") follows from Theorem 6.2, (iii)=
(ii): Let G be the set of M.I. elements. Then G generates L. If

Q; ¢ =*° A

1 in

éajl'i' e ta;,

where a;,, a;, € G then by (iii) a; + --- + a; is M.I., so there exists
pefl,---,n} such that a;, <a; + -+ +a; . (ii’) = (ii"): This is
the dual of (iii) = (ii). (ii") == (i). For each a;e G, it will be proved
that a projective repesentation is a; = 7(S;,) + --- + 7(S; ) Where
the S;,; are all possible sets such that 7(S;,;) < a;. Equality holds
since one of these sets is {a;}. To show the criterion is satisfied,
Suppose @; - +-+ @, = @ -a; . Then there exists g such that

. P
ty = Ty

@ v c0;, =0, Let fe Py, ++-,1,), then
n n
7f<tU_l Sit,fut)) = tH_lﬂ(Si,,mz)) S Qe e, S0

But by the definition of S; ,, S;,,., -+- there is an r such that Sjpr =
Ui Si,sap. (i) = (i):  Since (ii') = (i), by duality if (ii) then the
dual of L is projective and hence L is projective.

The hypothesis of finiteness is essential for the J.I. elements in
ring of subsets of the integers are the singletons and @. So (iii’) is
satisfied but we have seen (Ex. 4.8) that this lattice is not projective.

ExaMPLE 7.2, Let f be the free distributive lattice generated
by the independent set {a,, a,, a;}. Then the sublattice

L, = {0,a,0,, 105, 0,03, a:(Q; + @3), Ay, @y + a3, & + @y + 3}

is not projective for a, and a, + a, are J.I. in L, but a,a, + a,a, is
not J.I. in L,.

By considering the partially ordered set of nonzero J.I. elements of
a finite distributive lattice we obtain the following theorem [1, p. 139].

THEOREM 7.3. Ewvery finite distributive lattice 1s isomorphic
with the family of all hereditary subsets of partially ordered set.
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Conversely, the family of all hereditary subsets of a finite partially
ordered set is a lattice.

By adding a 0 and 1 to the partially ordered set, we find that
every finite distributive lattice is isomorphic with the family of all
nonempty proper hereditary subsets of a partially ordered set with 0, 1,
Conversely, every such family is a distributive lattice. In contrast,
for finite projective distributive lattices we have:

THEOREM 7.4, Hwvery finite projective distributive lattice s
iwsomorphic with the family of all nonempty proper hereditary
subsets of a finite lattice. Conversely, the family of all nonempty
proper hereditary subsets of a finite lattice is a projective distribu-
tive lattice.

Proof. Let L be a finite projective distributive lattice and P
the set of all nonzero J.I. elements. Then L is isomorphic with the
family of hereditary subsets of P. Let M = {0}U P U{1*} where 1* >
for all xe L. Now M will be a lattice if S & M implies 7(S) exists.
If S= @ then n(S) =1*e M and if S @ it is sufficient to consider
S ={z,y}. If x or y equals 0 then n(S) =0 and if « or y equals 1*
then 7(S) equals y or « respectively. Thus, suppose z, y € P. Since
2,y are J.I. and L is projective z-,y e P U{0} and therefore is equal
to x-,y. Hence, M is a lattice. Finally, the lattice of hereditary
subsets of P is isomorphic with the lattice of nonempty proper he-
reditary subsets of M under the correspondence He P« {0} UHe M.

Now suppose L is the family of all nonempty proper hereditary
subsets of a finite lattice M. Clearly L is a distributive lattice. Let L,
be the set of all hereditary subsets of M; then L, = {®, M} U L. By
the proof of [1, Th. 5, p. 139], the set of all nonzero J.I. elements of L,
is isomorphic with the collection of principal ideals of M. Therefore,
the set of J.I. elements of L is isomorphic with the set consisting of @
and all proper principal ideals of M, and is therefore closed under
products. Hence L is projective.

8. Applications and Examples.

THEOREM 8.1. Boolean algebras and Boolean rings are projective
if and only if they are finite.

Proof. Infinite Boolean algebras and rings contain infinite dis-
jointed sets, and hence can not be projective. On the other hand,
a finite Boolean ring is a Boolean algebra and every finite Boolean
algebra is isomorphic with the collection of all subsets of a finite
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set.- Clearly the J.I. elements-the singletons and @-are closed under
products.

THEOREM 8.2, A chain is projective if and only if it 1s countable.

Proof. Theorem 4,2 shows the necessity. Now suppose C =
{a;1i=1,2, ...} is a chain. It will be shown that C is a retract of
the free distributive lattice I generated by the independent set {b;|7 =
1,2, ...}, Let f: F— C be an epimorphism such that f(b;,) = a; for
2=1,2,.... Define,inductively, a function ¢g: C— F by g(a,) = b, and

g(an) = bnﬂ{g(ai)iai > a/ny /L < n} + Z{g(a"v) | a/'i < CL,,” ?’ < /n} .
Then ¢ is a homomorphism and fg = I,.

ExampLE 8.3. Let C be the chain of nonnegative integers. Then
C x C is not projective.

Proof. C x C is generated by the elements a; = (¢, 0) and b; =
(0,7) where ¢ > 0,5 > 0. If C x C is projective then there exists a
projective representation:

a; = w(S;n) + o0 4+ 7(Si ) (@ > 0)
bj = ﬂ'(Tj,x) + oo+ ﬂ(Tj:;v(j)) (j > 0) .

Now for some 7, say » =1, S,, is of the form S,, = @iy <o+, a;,
where ¢ <4, < -+ < 1,. For if not, by distributivity, we have a; <
¢, + + -+ + ¢, where for each r,¢c.€8;, and either ¢, = b; for some j
or ¢, = a, for some k <+. This is impossible, as is seen by comparing
first coordinates. Similarly, we may assume 7;, = {0, +++,b;,}, where
JTEH< s <Jne ‘

Now let p be an integer larger than the subscripts of all elements
a; or b; which occur in the projective representation of @,, Since
ab, < a,, by the projective criterion, S,,U T,,,2 S,,; for some 4.
This is a contradiction.

THEOREM 8.4. The direct product [[;e; L; of finite distributive
lattices is projective +f and only if L, is projective for each iel
and | L;| =1 for all but finitely many i< L.

Proof. Suppose the condition holds. Then it is sufficient to show
that if L, and L, are projective then L, x L, is projective. It is
easily verified that the M.I. elements of L, x L, are those of the
form (x, %), (x,1) and (1,y) where z and y are M.IL. in L, and L,
respectively. But since the M.I. elements of L,(L,) are closed under
sums, the M.I. elements of L, x L, also have this property. Hence
L, x L, is projective. Conversely, each L, is a retract of [l;e; L; and
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is therefore projective. If L;>1 for infinitely many 7 ¢ I, then [[;e; L;
has an infinite disjointed subset and could therefore not be projective.
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