ORDER SUMS OF DISTRIBUTIVE LATTICES

RAYMOND BALBES AND ALFRED HORN
ORDER SUMS OF DISTRIBUTIVE LATTICES

RAYMOND BALBES AND ALFRED HORN

In this paper, the authors define the order sum of a family of distributive lattices which is indexed by a partially ordered set P. The order sum reduces to the free product when P is trivially ordered, and to the ordinal sum when P is simply ordered.

It is proved that the order sum of conditionally implicative lattices is conditionally implicative, and that every projective distributive lattice is conditionally implicative. The second half of the paper investigates conditions under which the order sum of projective lattices is projective. It is shown that if $\{L_\alpha | \alpha \in P\}$ is a family of distributive lattices having largest and smallest elements, then the order sum of the family is projective if and only if each L_α is projective, and P is such that the order sum of the family $\{M_\alpha | \alpha \in P\}$ of one-element lattices M_α is projective.

1. Existence and properties of order sums.

Definition 1.1. Let $\{L_\alpha | \alpha \in P\}$ be a family of distributive lattices whose index set P is partially ordered. A distributive lattice L is called the order sum of the family if for each $\alpha \in P$ there exists a monomorphism $\varphi_\alpha : L_\alpha \to L$ such that:

1. L is generated by $\bigcup_{\alpha \in P} L_\alpha$.
2. If $\alpha < \beta$ and $x \in L_\alpha$, $y \in L_\beta$, then $\varphi_\alpha(x) < \varphi_\beta(y)$.
3. If M is any distributive lattice and $\{f_\alpha : L_\alpha \to M | \alpha \in P\}$ is a family of homomorphisms such that whenever $\alpha < \beta$, $f_\alpha(x) \leq f_\beta(y)$ for all $x \in L_\alpha$ and $y \in L_\beta$, then there exists a homomorphism $f : L \to M$ such that $f\varphi_\alpha = f_\alpha$ for all $\alpha \in P$.

The existence of the order sum will be proved in Theorem 1.7.

Theorem 1.2. If L and M are order sums of $\{L_\alpha | \alpha \in P\}$, then $L \cong M$.

Proof. Let $\varphi_\alpha : L_\alpha \to L$ and $\psi_\alpha : L_\alpha \to M$ be monomorphisms as in Definition 1.1. By (1.3), there exist homomorphisms $f : M \to L$ and $g : L \to M$ such that $f\psi_\alpha = \varphi_\alpha$ and $g\varphi_\alpha = \psi_\alpha$. We have $fg\varphi_\alpha = f\psi_\alpha = \varphi_\alpha$ for each α, and therefore by (1.1), $fg = I_L$, the identity function on L. Similarly $gf = I_M$. Thus $g = f^{-1}$ and f is an isomorphism.

By Theorem 1.2, the order sum of a family $\{L_\alpha | \alpha \in P\}$ is unique up to isomorphism. We denote the order sum by $\Sigma_{\alpha \in P} L_\alpha$. If P is
trivially ordered, in the sense that \(\alpha \leq \beta \) only when \(\alpha = \beta \), then the order sum reduces by very definition to the free product [2].

Definition 1.3. Let \(\{ L_\alpha | \alpha \in P \} \) be a family of pairwise disjoint lattices indexed by a chain \(P \). The **ordinal sum** \(L \) of the family is the set \(\bigcup_{\alpha \in P} L_\alpha \) with the following partial order: if \(x \in L_\alpha \) and \(y \in L_\beta \), then \(x \leq y \) if and only if either \(\alpha < \beta \), or \(\alpha = \beta \) and \(x \leq y \) in the original order of \(L_\alpha \). If the lattices \(L_\alpha \) are not pairwise disjoint, then the ordinal sum of the \(L_\alpha \) is defined to be the ordinal sum of pairwise disjoint lattices \(\bar{L}_\alpha \) such that \(L_\alpha \approx \bar{L}_\alpha \). If \(P \) is the chain \(\{0,1\} \) with \(0 < 1 \), then the ordinal sum of \(\{ L_0, L_1 \} \) is denoted by \(L_0 \oplus L_1 \).

Theorem 1.4. If \(P \) is a chain, then the ordinal sum \(L \) of \(\{ L_\alpha | \alpha \in P \} \) is the order sum \(\Sigma_{\alpha \in P} L_\alpha \).

Proof. We may assume the \(L_\alpha \) are pairwise disjoint. Let \(\varphi_\alpha : L_\alpha \to L \) be the inclusion map. Obviously conditions (1.1) and (1.2) hold. Suppose the \(f_\alpha \) are as in (1.3). Let \(f : L \to M \) be the union (combined function) of the \(f_\alpha \). It is clear that \(f \) is a homomorphism and \(f \varphi_\alpha = f_\alpha \).

Corollary 1.5. If \(P \) is a chain, and for each \(\alpha \in P, L_\alpha \) is a one-element lattice, then \(\Sigma_{\alpha \in P} L_\alpha \approx P \).

Proof. In this case the ordinal sum of the \(L_\alpha \) is obviously isomorphic with \(P \).

Theorem 1.6. Let \(\{ x_i | i \in I \} \) be a family of distinct variables. Let \(E \) be a set of inequalities of the form \(x_{i_1} \cdot \cdots \cdot x_{i_m} \leq x_{j_1} + \cdots + x_{j_n} \), where the indices are in \(I \). Then there exists a distributive lattice \(L \) which is generated by a family \(\{ a_i | i \in I \} \) of elements such that

\[
(1.4) \quad \{ a_i | i \in I \} \text{ satisfies every inequality in } E.
\]

\[
(1.5) \quad \text{If } M \text{ is a distributive lattice which contains a family } \{ b_i | i \in I \} \text{ which satisfies every inequality in } E, \text{ then there exists a homomorphism } f : L \to M \text{ such that } f(a_i) = b_i \text{ for all } i \in I.
\]

Proof. This is a special case of a general theorem of algebra, since the class of distributive lattices is equational. A different proof for the case of distributive lattices is given in [1, Th. 1.9].

Theorem 1.7. If \(\{ L_\alpha | \alpha \in P \} \) is a family of distributive lattices, and \(P \) is a partially ordered set, then \(\Sigma_{\alpha \in P} L_\alpha \) exists.
Proof. Let \(\{x_{a,i} \mid \alpha \in P, i \in L_\alpha \} \) be a family of distinct variables. Let \(E_\alpha \) be the set of all inequalities \(x_{a,i_1} \cdots x_{a,i_m} \leq x_{a,i_1} + \cdots + x_{a,i_m} \) such that \(i_1 \cdots i_m \leq j_1 + \cdots + j_n \) in \(L_\alpha \). Let \(E \) be the union of the \(E_\alpha, \alpha \in P \), together with all inequalities \(x_{a,i} \leq x_{b,j} \) such that \(\alpha < \beta, \ i \in L_\alpha \) and \(j \in L_\beta \). By Theorem 1.6, there exists a distributive lattice \(L \) generated by a family \(\{a_{a,i} \mid \alpha \in P, i \in L_\alpha \} \) satisfying (1.4) and (1.5). We will show \(L = \bigcup_{\alpha \in P} L_\alpha \).

Define \(\varphi_\alpha : L_\alpha \rightarrow L \) by \(\varphi_\alpha(i) = a_{a,i} \). To show \(\varphi_\alpha \) is a homomorphism, let \(i \in L_\alpha, j \in L_\alpha \), and let \(k = i + j \). Since \(i \leq k, j \leq k, \) and \(k \leq i + j \), we have \(a_{a,i} \leq a_{a,k}, a_{a,j} \leq a_{a,k}, \) and \(a_{a,k} \leq a_{a,i} + a_{a,j} \), since \(\{a_{a,i} \mid i \in L_\alpha \} \) satisfies \(E_\alpha \). It follows that \(a_{a,k} = a_{a,i} + a_{a,j} \), and so \(\varphi_\alpha(i + j) = \varphi_\alpha(i) + \varphi_\alpha(j) \). Similarly \(\varphi_\alpha(ij) = \varphi_\alpha(i)\varphi_\alpha(j) \).

To show that \(\varphi_\alpha \) is injective, suppose \(a_{a,i} = a_{a,j} \) but \(i \neq j \). There exists a prime filter \(F \) in \(L \) such that \(i \in F \) and \(j \notin F \). Let \(M = \{0, 1\} \) be the chain such that \(0 < 1 \). Let \(b_{a,k} = 1 \) if \(k \in F, b_{a,k} = 0 \) if \(k \in L_\alpha - F \), \(b_{b,k} = 1 \) if \(\beta \leq \alpha, k \in L_\beta \), and \(b_{b,k} = 0 \) if \(\beta < \alpha, k \in L_\beta \). Since \(F \) is a prime filter, \(\{b_{a,k} \mid k \in L_\alpha \} \) satisfies all inequalities in \(E_\alpha \). Clearly if \(\beta = \alpha, \{b_{b,k} \mid k \in L_\beta \} \) satisfies all inequalities in \(E_\beta \). If \(\beta < \gamma, \) then \(b_{b,k} \leq b_{r,r} \) for all \(k \in L_\beta, r \in L_\gamma \). Indeed if not, \(b_{b,k} = 1 \) and \(b_{r,r} = 0 \), which implies \(\gamma \leq \alpha \) and therefore \(\beta < \alpha \), contradicting \(b_{b,k} = 1 \). Thus \(\{b_{b,k} \mid \beta \in P, k \in L_\beta \} \) satisfies all inequalities in \(E \). By Theorem 1.6, there exists a homomorphism \(f : L \rightarrow M \) such that \(f(a_{b,k}) = b_{b,k} \). In particular \(f(a_{a,i}) = 1 \) and \(f(a_{a,j}) = 0 \). This contradicts \(a_{a,i} = a_{a,j} \).

We now verify (1.1), (1.2) and (1.3). \(L \) is generated by \(\bigcup_{\alpha \in P} \varphi_\alpha(L_\alpha) \), since \(L \) is generated by \(\{a_{a,i} \mid \alpha \in P, i \in L_\alpha \} \). Next suppose \(\alpha < \beta, i \in L_\alpha \), and \(j \in L_\beta \). Then \(a_{a,i} \leq a_{b,j} \) since \(x_{a,i} \leq x_{b,j} \) is in \(E \). To show \(a_{b,j} \leq a_{a,i} \), let \(M = \{0, 1\} \) and let \(b_{r,k} = 1 \) if \(\gamma \leq \alpha, k \in L_\gamma \), and \(b_{r,k} = 0 \) if \(\gamma < \alpha, k \in L_\gamma \). Clearly \(\{b_{r,k} \mid \gamma \in P, k \in L_\gamma \} \) satisfies all inequalities in \(E \). By Theorem 1.6, there exists a homomorphism \(f : L \rightarrow M \) such that \(f(a_{b,j}) = 1 \) and \(f(a_{a,i}) = 0 \). Therefore \(a_{b,j} \leq a_{a,i} \).

Finally suppose we have homomorphisms \(f_\alpha \) as in (1.3). Let \(b_{a,i} = f_\alpha(i) \). Obviously \(\{b_{a,i} \mid \alpha \in P, i \in L_\alpha \} \) satisfies all inequalities in \(E \). By Theorem 1.6, there exists a homomorphism \(f : L \rightarrow M \) such that \(f(a_{a,i}) = b_{a,i} \), and therefore \(f\varphi_\alpha = f_\alpha \).

In [2, §9] a construction is given for the free product of a family of distributive lattices which implies that the Stone space of the free product of \(\{L_\alpha \mid \alpha \in I\} \) is the Cartesian product of the Stone spaces of the \(L_\alpha \). This statement and the construction are not accurate. The following theorem describes the set of all prime filters of \(\bigcup_{\alpha \in P} L_\alpha \) in the general case where \(P \) is partially ordered.

Theorem 1.8. Let \(\mathcal{F} \) be the set of all functions \(f \) on \(P \) such that

(1.6) for each \(\alpha \in P, f(\alpha) \) is either a prime filter in \(L_\alpha \) or
\[f(\alpha) = \emptyset, \text{ or } f(\alpha) = L_\alpha \]
\[\text{(1.7) if } \alpha < \beta \text{ and } f(\alpha) \neq \emptyset, \text{ then } f(\beta) = L_\beta \]
\[\text{(1.8) for some } \alpha, f(\alpha) \neq \emptyset, \text{ and for some } \alpha, f(\alpha) \neq L_\alpha \]

There is a one-to-one correspondence between \(\mathfrak{F} \) and the set of all prime filters in \(L = \sum_{\alpha \in P} L_\alpha \) such that if \(F \) is the prime filter corresponding to \(f \), then \(f(\alpha) = \varphi_a^{-1}(F \cap \varphi_a(L_\alpha)) \). Here \(\varphi_a \) is the monomorphism described in Definition 1.1.

Proof. Let \(F \) be a prime filter in \(\sum_{\alpha \in P} L_\alpha \), and let \(f \) be the function on \(P \) such that \(f(\alpha) = \varphi_a^{-1}(F \cap \varphi_a(L_\alpha)) \). We show \(f \in \mathfrak{F} \). Since \(\varphi_a(L_\alpha) \) is a sublattice of \(\sum_{\alpha \in P} L_\alpha \), (1.6) holds. Conditions (1.7) and (1.8) follow immediately from (1.2) and (1.1) respectively. Conversely, if \(f \in \mathfrak{F} \), let \(M = \{0, 1\} \), and let \(f_a: L_\alpha \to M \) be such that \(f_a(x) = 1 \) if \(x \in f(\alpha) \) and \(f_a(x) = 0 \) if \(x \in L_\alpha - f(\alpha) \). Clearly \(\{f_a | x \in P\} \) satisfies the hypothesis of (1.3). Therefore there exists a homomorphism \(g: L \to M \) such that \(g \varphi_a = f_a \). If we set \(F = \{x \in L | g(x) = 1\} \), \(F \) is a prime filter and \(f(\alpha) = \varphi_a^{-1}(F \cap \varphi_a(L_\alpha)) \).

The following lemma describes the inequalities which hold within an order sum.

Lemma 1.9. Suppose \(L = \sum_{\alpha \in P} L_\alpha \), and \(\varphi_a \) is the monomorphism of Definition 1.1. Assume \(\alpha_1, \ldots, \alpha_m \) are distinct members of \(P \), \(\beta_1, \ldots, \beta_n \) are distinct members of \(P \), \(i_r \in L_{\alpha_r} \) for \(1 \leq r \leq m \), and \(j_s \in L_{\beta_s} \) for \(1 \leq s \leq n \). Then
\[\varphi_{\alpha_1}(i_1) \cdot \cdots \cdot \varphi_{\alpha_m}(i_m) \leq \varphi_{\beta_1}(j_1) + \cdots + \varphi_{\beta_n}(j_n) \text{ if and only if either } \alpha_r < \beta_s \text{ or } \alpha_r = \beta_s \text{ and } i_r \leq j_s. \]

Proof. The condition is obviously sufficient. By changing indices, we may assume \(\alpha_1 = \beta_1, \ldots, \alpha_p = \beta_p \), and \(\{\alpha_{p+1}, \ldots, \alpha_m\} \) is disjoint from \(\{\beta_{p+1}, \ldots, \beta_n\} \), where \(p \) may be \(0 \). Let \(M \) be the chain \(\{0, 1\} \). Suppose the condition fails to hold. Then there exist prime filters \(F_k \) in \(L_{\alpha_k} \), \(1 \leq k \leq p \), such that \(i_k \in F_k \) and \(j_k \notin F_k \). Let \(f \) be the function on \(P \) such that
\[f(\alpha_k) = F_k, \quad 1 \leq k \leq p, \]
\[f(\alpha_k) = L_{\alpha_k}, \quad p + 1 \leq k \leq m \]
\[f(\alpha) = L_\alpha, \quad \text{if } \alpha \neq \alpha_k \text{ for some } k, 1 \leq k \leq m \]
and
\[f(\alpha) = \emptyset \quad \text{otherwise.} \]

By Theorem 1.8, there exists a prime filter \(F \) in \(L \) such that \(\varphi_a^{-1}(F \cap \varphi_a(L_\alpha)) = f(\alpha) \). This implies \(\varphi_a(i_k) \notin F \) for \(1 \leq k \leq m \), and
ψβk{3k) & F for 1 ≤ k ≤ n. Since F is a prime filter, (1.9) cannot hold.

DEFINITION 1.10. If P is a partially ordered set, we denote by P^* the order sum $\sum_{\alpha \in \mathcal{P}} M_\alpha$, where for each α, M_α is a one-element lattice. By Lemma 1.9, the set $\bigcup_{\alpha \in \mathcal{P}} \varphi_\alpha(M_\alpha)$ is isomorphic with P. Therefore we will identify the lone member of $\varphi_\alpha(M_\alpha)$ with α, and P will be a generating subset of P^*. If P is a lattice, P will not usually be a sublattice of P^*. P^* is characterized by the property that every order preserving function on P to a distributive lattice M can be extended uniquely to a homomorphism on P^* to M.

THEOREM 1.11. If Q is any nonempty subset of P, then Q^* is isomorphic with the sublattice N of P^* which is generated by Q.

Proof. Let f be an order preserving function on Q to a distributive lattice M. By [1, Lemma 1.7.] f can be extended to a homomorphism on N to M if for any finite nonempty subsets S and T of Q, $\pi(S) \leq \Sigma(T)$ implies $\pi(f(S)) \leq \Sigma(f(T))$. This follows immediately from the fact that by Lemma 1.9, $\pi(S) \leq \Sigma(T)$ only when $\alpha \leq \beta$ for some $\alpha \in S, \beta \in T$.

THEOREM 1.12. Suppose $P = \bigcup_{k \in \mathcal{K}} P_k$, where for each k, every element of P_k is incomparable with every element of $P - P_k$. Then P^* is the free product of the P_k^*.

Proof. By Theorem 1.11, we may assume P_k^* is a sublattice of P^*. Let $\varphi_k: P_k^* \to P^*$ be the inclusion map, and let $f_k: P_k^* \to M$ be a homomorphism into a distributive lattice M. Let $g: P \to M$ be the union of the restrictions $f_k|P_k$. Then g is order preserving, and can be extended to a homomorphism $h: P^* \to M$. We have $h|P_k^* = f_k$, and the proof is complete.

2. Conditionally implicative lattices.

DEFINITION 2.1. If x and y are members of a lattice, $x \rightarrow y$ denotes the largest element z such that $xz \leq y$.

DEFINITION 2.2. A lattice L is implicative if $x \rightarrow y$ exists for all x, y in L.

It is known that every implicative lattice is distributive and has a largest element. Note also that $x \rightarrow y \leq y$.

DEFINITION 2.3. A lattice L is conditionally implicative if whenever x, y are in L and $x \leq y$, then $x \rightarrow y$ exists.
A conditionally implicative lattice with a largest element is implicative. If L is a lattice and L' is obtained from L by adding a largest element, then L is conditionally indicative if and only if L' is implicative. It follows that a conditionally implicative lattice is distributive.

Lemma 2.4. Let $x, y,$ and z be members of a distributive lattice. If $x \rightarrow y$ and $x \rightarrow z$ exist, then $x \rightarrow yz$ exists and equals $(x \rightarrow y)(x \rightarrow z)$. If $x \rightarrow z$ and $y \rightarrow z$ exist, then $(x + y) \rightarrow z$ exists and equals $(x \rightarrow z)(y \rightarrow z)$.

Proof. The proof is immediate.

Theorem 2.5. If L_{α} is conditionally implicative for each $\alpha \in P$, then $\sum_{\alpha \in P} L_{\alpha}$ is conditionally implicative.

Proof. By (1.1) and Lemma 2.4, we need only show that if $\alpha_1, \ldots, \alpha_n$ are distinct members of P, β_1, \ldots, β_n are distinct members of P, $i_r \in L_{\alpha_r}$ for $1 \leq r \leq m$, $j_s \in L_{\beta_s}$ for $1 \leq s \leq n$, $x = \varphi_{\alpha_1}(i_1) \cdots \varphi_{\alpha_m}(i_m)$, $y = \varphi_{\beta_1}(j_1) + \cdots + \varphi_{\beta_n}(j_n)$, and $x \not\leq y$, then $x \rightarrow y$ exists. Indeed every member of L is a sum of elements of type x as well as a product of elements of type y. We may suppose $\alpha_1 = \beta_k$ for $1 \leq k \leq p$ and $\{\alpha_{p+1}, \ldots, \alpha_m\}$ is disjoint from $\{\beta_{p+1}, \ldots, \beta_n\}$. Since $x \not\leq y$, $i_k \not\leq j_k$ for all k. Let

$$z = \sum_{k=1}^{p} \varphi_{\alpha_k}(i_k \rightarrow j_k) + \sum_{k=p+1}^{n} \varphi_{\beta_k}(j_k).$$

Clearly $xz \leq y$ and $y \leq z$. Suppose $w = \varphi_{\gamma_1}(t_1) \cdots \varphi_{\gamma_q}(t_q)$ and $xw \leq y$. By Lemma 1.9, either $w \leq y$, hence $w \leq z$, or for some $r, s, \gamma_r = \alpha_s = \beta_s$ and $i_r, t_r \leq j_s$. In the second case, $w \leq \varphi_{\gamma_r}(t_r) \leq \varphi_{\alpha_s}(i_s \rightarrow j_s) \leq z$. Since every element of $\sum_{\alpha \in P} L_{\alpha}$ is a sum of elements of type w, it follows that $x \rightarrow y = z$.

Remark. It is easily seen using Lemma 1.9 that the converse of Theorem 2.5 also holds. Thus Theorem 2.10 below follows directly from Theorem 2.5 and its converse.

Corollary 2.6. A free distributive lattice is conditionally implicative.

Proof. A free distributive lattice is the free product of one-element lattices.

Definition 2.7. A lattice M is a retract of a lattice L if there exist homomorphisms $f: L \rightarrow M$ and $g: M \rightarrow L$ such that $fg = I_M$.

Theorem 2.8. If for some $\beta \in P$, L_β has a largest and smallest element, then L_β is a retract of $L = \sum_{\alpha \in P} L_{\alpha}$. If P is trivially ordered, the same holds with no hypothesis on L_β.
Proof. Let 0 and 1 be the smallest and largest elements of L_β. For each α, define $f_\alpha: L_\alpha \to L_\beta$ by: for each $x \in L_\alpha$,

$$
\begin{align*}
 f_\alpha(x) &= 1 \quad \text{if } \alpha > \beta \\
 f_\alpha(x) &= x \quad \text{if } \alpha = \beta \\
 f_\alpha(x) &= 0 \quad \text{if } \alpha \leq \beta.
\end{align*}
$$

The family $\{f_\alpha \mid \alpha \in P\}$ satisfies the hypothesis of (1.3). Therefore there exists a homomorphism $f: L \to L_\beta$ such that $f_\alpha \beta = f_\beta = I_{L_\beta}$. In case P is trivially ordered, fix an element x_0 of L_β and define $f_\alpha: L_\alpha \to L_\beta$ by

$$
\begin{align*}
 f_\alpha(x) &= x_0 \quad \text{if } \alpha \neq \beta \\
 &= x \quad \text{if } \alpha = \beta.
\end{align*}
$$

The rest of the proof is as before.

Theorem 2.9. A retract M of a conditionally implicative lattice L is conditionally implicative.

Proof. Let f and g be homomorphisms as in Definition 2.7. Let x, y be elements of M with $x \leq y$. Then $g(x) \leq g(y)$, for otherwise $x = fg(x) \leq fg(y) = y$. Let $z = f(g(x) \to g(y))$. We have $g(x)(g(x) \to g(y)) \leq g(y)$. Applying f to both sides, we obtain $xz \leq y$. Now suppose $xw \leq y$. Then $g(x)g(w) \leq g(y)$, and hence $g(w) \leq g(x) \to g(y)$. Applying f, we find $w \leq z$. Thus $z = x \to y$.

Theorem 2.10. Let L be the free product of a family $\{L_\alpha \mid \alpha \in I\}$ of distributive lattices. Then L is conditionally implicative if and only if L_α is conditionally implicative for all α.

Proof. This follows from Theorems 2.5, 2.8 and 2.9.

3. Order sums and projective lattices. In contrast to the situation for Boolean algebras, the direct product of two projective distributive lattices is not always projective, [1, Example 8.3]. As a replacement for this theorem, the results of this section show that projectivity is often preserved under order sums.

Definition 3.1. A distributive lattice L is projective if for every pair of distributive lattices L_1 and L_2, every homomorphism $h: L \to L_1$, and every epimorphism $f: L_1 \to L_2$, there exists a homomorphism $g: L \to L_1$ such that $fg = h$.

The following lemmas are known and easily proved.
LEMMA 3.2. A retract of a projective distributive lattice is projective.

LEMMA 3.3. If L is projective and $f: L_1 \to L$ is an epimorphism, then there exists a homomorphism $g: L \to L_1$ such that $fg = I$. In particular, every projective distributive lattice is a retract of a free distributive lattice.

THEOREM 3.4. The free product L of a family $\{L_i| i \in I\}$ of distributive lattices is projective if and only if L_i is projective for each $i \in I$.

Proof. The condition is necessary by Theorem 2.8 and Lemma 3.2. If the condition holds, let M and N be distributive lattices, $f: M \to N$ an epimorphism and $h: L \to N$ a homomorphism. For each $i \in I$, let φ_i be the monomorphism of Definition 1.1. Since L_i is projective, there exists a homomorphism $g_i: L_i \to M$ such that $fg_i = h\varphi_i$. There exists a homomorphism $g: L \to M$ such that $g\varphi_i = g_i$. Now for each i, $fg\varphi_i = fg_i = h\varphi_i$. By (1.1), it follows that $fg = h$.

Theorem 3.4 is a generalization of the following known statement.

LEMMA 3.5. A free distributive lattice is projective.

Proof. Since a one-element lattice is projective, the result follows from Theorem 3.4.

THEOREM 3.6. A projective distributive lattice is conditionally implicative.

Proof. This follows from Corollary 2.6, Lemma 3.3 and Theorem 2.9.

THEOREM 3.7. Suppose for each $\alpha \in P$, M_α is a retract of L_α. Then $M = \sum_{\alpha \in P} M_\alpha$ is a retract of $L = \sum_{\alpha \in P} L_\alpha$.

Proof. By hypothesis there exist homomorphisms $f_\alpha: L_\alpha \to M_\alpha$ and $g_\alpha: M_\alpha \to L_\alpha$ such that $f_\alpha g_\alpha = I_{M_\alpha}$. Let $\varphi_\alpha: L_\alpha \to L$ and $\psi_\alpha: M_\alpha \to M$ be the monomorphisms of Definition 1. Let $h_\alpha = \psi_\alpha f_\alpha$. By (1.3) there exists a homomorphism $f: L \to M$ such that $f\varphi_\alpha = h_\alpha$, $\alpha \in P$. Similarly there exists a homomorphism $g: M \to L$ such that $g\psi_\alpha = \varphi_\alpha g_\alpha$. For each α, we have $fg\psi_\alpha = f\varphi_\alpha g_\alpha = \psi_\alpha f_\alpha g_\alpha = \psi_\alpha$. Since M is generated by $\bigcup_{\alpha \in P} \psi_\alpha(M_\alpha)$, it follows that $fg = I_M$.

LEMMA 3.8. If P is a partially ordered set, then P^* is projective if and only if for each $\alpha \in P$ there exists a finite sequence
S_{α,0}, \ldots, S_{α,p(α)} of nonempty finite subsets of P such that
(3.1) α ∈ S_{α,p(α)}, and every member of S_{α,p(α)} is ≥ α.
(3.2) for each r, S_{α,r} has a member ≤ α.
(3.3) if α < β, then for every r there is an s such that S_{α,r} ⊇ S_{β,s}.

Proof. By [1, Th. 5.1], P* is protective if and only if for each α there exist nonempty finite subsets S_{α,0}, \ldots, S_{α,p(α)} of P such that (3.3) holds and

(3.4) \alpha = \sum_{r=0}^{p(α)} \pi(S_{α,r}),

where the products and sum are relative to P*. By Lemma 1.9, (3.4) is equivalent to (3.2) and

(3.5) for some r, every element of S_{α,r} is ≥ α.

By renumbering the indices, we obtain (3.1) from (3.2) and (3.5).

Theorem 3.9. Let \{L_α | α ∈ P\} be a family of distributive lattices each of which have a smallest and largest element. Then L = \sum_{α∈P} L_α is projective if and only if L_α is projective for each α, and P* is projective.

Proof. Suppose L is projective. By Lemma 3.2 and Theorem 2.8, L_α is projective for each α. Since a one-element lattice is a retract of any lattice, the projectivity of P* follows from Lemma 3.2 and Theorem 3.7.

For the converse, let N be a free distributive lattice which is freely generated by a family \{d_{α,i} | α ∈ P, i ∈ L_α\} of distinct elements. Let N_α be the sublattice generated by \{d_{α,i} | i ∈ L_α\}, let f_α: N_α → φ_α(L_α) be the homomorphism such that f_α(d_{α,i}) = φ_α(i), i ∈ L_α, and let f: N → L be the extension of the f_α. By Corollary 3.5 and Lemma 3.3, there exist homomorphisms g_α: φ_α(L_α) → N_α such that f_α g_α = I_{φ_α(L_α)}. By Lemma 3.2, we need only find a homomorphism g: L → N such that fg = I_L.

For each α, there exist sets S_{α,0}, \ldots, S_{α,p(α)} as in Lemma 3.8. For i ∈ L_α, let

\[b_{α,i,β} = \varphi_α(i) \text{ if } β = α \]
\[= \varphi_β(0_β) \text{ if } β > α \]
\[= φ_β(1_β) \text{ if } β ≠ α, \]

where 0_β, 1_β are the smallest and largest elements of L_β. Let
We wish to show that \(\{c_{a,i} \mid \alpha \in P, i \in L_a \} \) satisfies all the inequalities of the set \(E \) defined in the proof of Theorem 1.7. First, suppose
\[i_1 \cdots i_m \leq j_1 + \cdots + j_n, \]
where the elements involved are in \(L_a \).
For each \(i \in L_a \), we have
\[c_{a,i} = g_a(\varphi_a(i))P_a + Q_a, \]
where \(P_a \) and \(Q_a \) are independent of \(i \). Therefore

\[
c_{a,i_1} \cdots c_{a,i_m} = g_a(\varphi_a(i_1)) \cdots g_a(\varphi_a(i_m))P_a + Q_a \\
\leq [g_a(\varphi_a(j_1)) + \cdots + g_a(\varphi_a(j_n))]P_a + Q_a \\
= c_{a,j_1} + \cdots + c_{a,j_n}.
\]

Next, suppose \(\alpha < \beta, i \in L_a \), and \(j \in L_\beta \). To show
\(c_{a,i} \leq c_{\beta,j} \), first observe that for any \(\gamma \in P, b_{a,i} \leq b_{\beta,j}, \) (consider the cases \(\gamma > \beta, \gamma = \beta, \)
and \(\gamma \geq \beta \)). By (3.3) for each \(r, 0 \leq r \leq p(\alpha), S_{a,r} \supseteq S_{\beta,s}, \) for some \(s \).
Therefore for every \(r, \)

\[
\prod_{r \in S_{a,r}} g_r(b_{a,i,r}) \leq \prod_{r \in S_{\beta,s}} g_r(b_{\beta,j,r}) \leq \prod_{r \in S_{\beta,s}} g_r(b_{\beta,j,r}) \leq c_{\beta,j}.
\]

Hence \(c_{a,i} \leq c_{\beta,j} \).

By Theorem 1.6, there exists a homomorphism \(g: L \rightarrow N \) such
that \(g(\varphi_a(i)) = c_{a,i} \) for all \(\alpha \in P, i \in L_a \). Now, since \(f \) extends each \(f_\beta \), we have for \(\alpha \in P, i \in L_a, \)

\[
(3.6) \quad fg(\varphi_a(i)) = f(c_{a,i}) = \sum_{r=1}^{p(\alpha)} \prod_{r \in S_{a,r}} b_{a,i,r}.
\]

By (3.1) and (3.2), it is easily seen that the right side of (3.6) reduces
to \(\varphi_a(i) \). Using (1.1), we conclude that \(fg = I_m \).

We have been unable to find workable necessary and sufficient
conditions for the projectivity of \(P^* \). It is necessary that \(P \) contain
no uncountable chain, since no projective lattice can contain such a
chain [1, Th. 4.2]. On the other hand, the countability of \(P \) is a
sufficient condition, as shown by the following.

Theorem 3.10. If \(P \) is countable, and \(L_a \) is a countable
projective distributive lattice for each \(\alpha \in P, \) then \(L = \sum_{a \in P} L_a \) is
projective.

Proof. Let \(N, N_a, f_a, f, \) and \(g_a \) be as in the proof of Theorem
3.9. Arrange the members of \(\bigcup_{a \in P} \varphi_a(L_a) \) in a sequence \(a_1, a_2, \cdots \)
without repetitions. For each \(\alpha \), let \(\alpha_\alpha \) be the \(\alpha \) such that \(a_\alpha \in \varphi_\alpha(L_a) \).
We define inductively:

\[
c_1 = g_{a_1}(\alpha_1),
\]
and for $n > 1$,
\[c_n = g_{a_n}(a_n) \prod \{c_r \mid r < n, \alpha_r > a_n\} + \sum \{c_r \mid r < n, \alpha_r < a_n\} . \]

We wish to show there exists a homomorphism $g: L \rightarrow N$ such that $g(a_n) = c_n$ for all n. By Theorem 1.6, this will be the case if we show:

(3.7) If $\alpha_m < \alpha_n$, then $c_m \leq c_n$, and
(3.8) If $\alpha_{m_1} = \cdots = \alpha_{m_p} = \alpha_{n_1} = \cdots = \alpha_{n_q}$, then
\[a_{m_1} \cdots a_{m_p} \leq a_{n_1} + \cdots + a_{n_q} , \]
\[c_{m_1} \cdots c_{m_p} \leq c_{n_1} + \cdots + c_{n_q} . \]

We prove (3.7) by proving the following by induction on n:

(3.9) If $m < n$, then $\alpha_m < \alpha_n$ implies $c_m \leq c_n$, and $\alpha_m > \alpha_n$ implies $c_m \geq c_n$.

For $n = 1$, this holds vacuously. Suppose (3.9) holds for all $n < p$, and $p > 1$. If $m < p$ and $\alpha_m < \alpha_p$, then $c_m \leq \sum \{c_r \mid r < p, \alpha_r > \alpha_p\} \leq c_p$, where the second inequality holds by definition of c_p. Suppose $m < p$ and $\alpha_m > \alpha_p$. Then c_m is one of the factors of $g_{a_p}(a_p) \prod \{c_r \mid r < p, \alpha_r > \alpha_p\}$. Hence to show $c_m \geq c_p$, we need only show $c_m \geq c_r$ whenever $r < p$ and $\alpha_r < \alpha_p$. Since $\alpha_m > \alpha_r$ and $m < p$, $r < p$, this follows from the induction hypothesis.

As for (3.8), let α be the common value of $\alpha_{m_1}, \ldots, \alpha_{n_q}$. Replace each of c_{m_1}, \ldots, c_{m_p} by its defining formula and distribute the product of these as a sum of products. We obtain $c_{m_1} \cdots c_{m_p} = A + B$, where
\[A = g_{a_i}(a_{i_1}) \prod \{c_r \mid r < i_1, \alpha_r > \alpha\} \cdots g_{a_{i_p}}(a_{i_p}) \prod \{c_r \mid r < i_p, \alpha_r > \alpha\} \]
and B is a sum of products each of which has a factor c_r with $\alpha_r < \alpha$. By (3.7), $B \leq c_{n_1}$. It remains to show $A \leq c_{n_1} + \cdots + c_{n_q}$. Using (3.7), we have
\[c_{m_1} \cdots c_{m_p} \leq \prod \{c_r \mid r < j_k, \alpha_k > \alpha\} \text{ for } 1 \leq k \leq q . \]

Therefore
\[c_{n_1} + \cdots + c_{n_q} \geq \sum_{k=1}^{q} [g_{a}(a_{n_k}) \prod \{c_r \mid r > j_k, \alpha_k < \alpha\}] \]
\[\geq c_{m_1} \cdots c_{m_p} \sum_{k=1}^{q} g_{a}(a_{n_k}) \]
\[\geq c_{m_1} \cdots c_{m_p} \prod_{k=1}^{p} g_{a}(a_{m_k}) \]
\[\geq c_{m_1} \cdots c_{m_p} A = A . \]
This proves the existence of the homomorphism \(g \). By Lemma 3.2, we have only to prove \(fg = I_L \). This will hold if we show

\[(3.10) \quad fg(a_n) = a_n, \quad \text{for all } n.\]

We have \(fg(a_1) = f(c_1) = f g_a(c_1) = f a g_a(c_1) = a_1 \). Suppose \((3.10) \) holds for \(n < p \), and \(p > 1 \). Then

\[
fg(a_p) = f g_{a_p}(a_p) \prod \{fg(a_r) \mid r < p, \alpha_r > \alpha_p\} \\
+ \sum \{fg(a_r) \mid r < p, \alpha_r < \alpha_p\},
\]

which by the induction hypothesis,

\[
= a_p \prod \{a_r \mid r < p, \alpha_r > \alpha_p\} + \sum \{a_r \mid r < p, \alpha_r < \alpha_p\}
= a_p,
\]

by \((1.2)\).

Corollary 3.11. If \(P \) is countable, then \(P^* \) is projective.

The next theorem gives another sufficient condition for the projectivity of \(P^* \).

Theorem 3.12. Let \(P \) be partially ordered set such that:

\[(3.11) \quad \text{for each } \alpha, \{\beta \mid \beta \geq \alpha\} \text{ is well ordered by } \leq, \text{ and}\]

\[(3.12) \quad \text{if } \alpha < \beta, \text{ then } \{\gamma \mid \alpha \leq \gamma \leq \beta\} \text{ is finite.}\]

Proof. For each \(\alpha \), let \(f(\alpha) = \alpha \) if \(\alpha \) is a maximal member of \(P \), and \(f(\alpha) = \) the immediate successor of \(\alpha \) otherwise. Let \(f^0 = I_P \), and for an integer \(p > 1 \), \(f^p = ff^{p-1} \). Let us write \(\alpha \sim \beta \) whenever for some \(\gamma, \gamma \geq \alpha \) and \(\gamma \geq \beta \). By \((3.11)\), \(\sim \) is an equivalence relation. Let \(\{P_k \mid k \in K\} \) be the set of all \(\sim \) equivalence classes. By Theorem 1.12, \(P^* \) is the free product of \(\{P_k \mid k \in K\} \). Therefore by Theorem 3.4, we may assume \(\alpha \sim \beta \) for all \(\alpha, \beta \) in \(P \).

Fix an element \(\alpha_0 \) of \(P \). For each \(\alpha \), let \(p(\alpha) \) be the smallest integer \(n \geq 0 \) such that \(f^n(\alpha_0) \geq \alpha \), and let \(q(\alpha) \) be the smallest integer \(n \geq 0 \) such that \(f^n(\alpha) = f^{p(\alpha)}(\alpha_0) \). For \(0 \leq r \leq p(\alpha) \), let

\[
S_{\alpha, r} = \{f^r(\alpha_0)\} \cup \{f^n(\alpha_0) \mid 0 \leq n \leq q(\alpha) - 1\}.
\]

Conditions \((3.1)\) and \((3.2)\) of Lemma 3.8 clearly hold. To verify \((3.3)\), we need only show that for each \(r \) there is an \(s \) such that \(S_{\alpha, r} \supseteq S_{f(\alpha), s} \). If \(\alpha_0 \leq \alpha \), then \(p(f(\alpha)) = p(\alpha) \) and \(q(f(\alpha)) = q(\alpha) - 1 \), and for each \(r \), \(S_{\alpha, r} \supseteq S_{f(\alpha), s} \). If \(\alpha_0 \leq \alpha \), then \(\alpha = f^{p(\alpha)}(\alpha_0) \), \(p(f(\alpha)) = \)
\(p(\alpha) + 1, q(f(\alpha)) = q(\alpha) = 0, \) and \(S_{a,r} = S_{f(\alpha),r}\) for each \(r \leq p(\alpha)\). Thus by Lemma 3.8, \(P^*\) is projective.

We return to the question of the projectivity of order sums of protective lattices.

Theorem 3.13. If \(L_0\) and \(L_1\) are free distributive lattices, \(L_0\) is uncountable, and \(L_1\) is infinite, then the ordinal sum \(L_0 \oplus L_1\) is not projective.

Proof. We may assume \(L_0\) and \(L_1\) are disjoint. Let \(L_0\) and \(L_1\) be freely generated by \(A = \{a_\alpha | \alpha \in I\}\) and \(B = \{b_\beta | \beta \in J\}\) respectively.

If \(L_0 \oplus L_1\) is projective, then by [1, Corollary 5.2, and remark following Th. 5.1] for each \(\alpha\) and \(\beta\) there exist finite sequences \(S_{a,0}, \ldots, S_{a,p(\alpha)}\) and \(S_{\beta,0}, \ldots, S_{\beta,p(\beta)}\) of non-empty finite subsets of \(A \cup B\) such that:

\[
(3.13) \quad a_\alpha = \prod_{r=0}^{p(\alpha)} (S_{a,r})
\]

\[
(3.14) \quad b_\beta = \sum_{r=0}^{p(\beta)} \prod (S_{\beta,r})
\]

\[
(3.15) \quad \text{if } r \neq s, S_{\beta,r} \nsubseteq S_{\beta,s}
\]

for each \(\alpha, \beta\) and each \(r, 0 \leq r \leq p(\alpha)\), there exists an \(s, 0 \leq s \leq p(\beta)\), such that \(S_{a,r} \nsubseteq S_{\beta,s}\).

Since \(a_\alpha < b_\beta\) for all \(\alpha, \beta\) and \(B\) is independent, it follows from (3.14) that \(S_{\beta,r} = \{b_\beta\}\) for some \(r\), say \(r = 0\). If \(0 < r \leq p(\beta)\), \(\prod (S_{\beta,r}) \leq b_\beta\) and \(b_\beta \in S_{\beta,r}\) by (3.15). Therefore by the independence of \(B, S_{\beta,r} \cap A \neq \emptyset\) for \(r > 0\).

Let \(\beta_1, \beta_2, \ldots\) be a sequence of distinct members of \(J\). For each integer \(n > 0\), let

\[
\Gamma_n = \bigcup_{r=1}^{p(\beta_n)} S_{\beta_n,r} \cap A.
\]

Since \(\Gamma_n\) is countable, there is an \(\alpha \in A\) such that \(a_\alpha \in \Gamma_n\). If we show

\[
(3.17) \quad b_{\beta_n} = \bigcup_{r=0}^{p(\alpha)} S_{a,r}
\]

for all \(n\), we will have a contradiction since this union is finite.

Suppose (3.17) fails for some \(n\). By (3.16) for \(0 \leq r \leq p(\alpha)\), either \(S_{a,r} \nsubseteq S_{\beta_n,0} = \{b_{\beta_n}\}\), or \(S_{a,r} \nsubseteq S_{\beta_n,s}\) for some \(s > 0\). The first case is impossible by assumption. Hence for each \(r, S_{a,r}\) contains an element \(a_\alpha\) of \(S_{\beta_n,s} \cap A\). By (3.13), \(a_\alpha \leq \sum_{r=0}^{p(\alpha)} a_{a,r}\). Since \(A\) is inde-
pendent, we have $\alpha = \alpha_r$ for some r and therefore $a_\alpha \in \Gamma_n$, which is a contradiction.

Definition 3.14. If L is a lattice, let $D(L)$ be the dual of L, that is, L with reverse order.

The dual of a protective (free) distributive lattice is protective (free).

In contrast to Theorem 3.13, we have the following.

Theorem 3.15. If L_0 and L_1 are projective and either L_0 has a largest element or L_1 has a smallest element, then $L = L_0 \bigoplus L_1$ is projective.

Proof. We may assume L_0 and L_1 are disjoint. Let N be a free distributive lattice with distinct free generators $\{d_{0,i} \mid i \in L_0\} \cup \{d_{1,i} \mid i \in L_1\}$. For $r = 0, 1$, let N_r be the sublattice generated by $\{d_{r,i} \mid i \in L_r\}$, and let $f_r: N_r \to L_r$ be the homomorphism such that $f_r(d_{r,i}) = i$. Let $f: N \to L$ be the homomorphism which extends f_0 and f_1. By Lemma 3.3, there exists homomorphisms $g_r = L_r \to N_r$ such that $f_r g_r = I_{L_r}$.

Suppose L_0 has a largest element 1. Define $g: L \to N$ by

$$
g(x) = g_0(x), \quad \text{if } x \in L_0$$

$$
= g_0(1) + g_1(x), \quad \text{if } x \in L_1.
$$

It is easily seen that g is a homomorphism and $fg = I_L$. Hence L is projective. If L_1 has a smallest element, then $D(L_0) \bigoplus D(L_0)$ is projective, since $D(L_0)$ has a largest element. Therefore $L = D(D(L_1) \bigoplus D(L_0))$ is projective.

Corollary 3.16. Let L_0 and L_1 be free distributive lattices. Then $L = L_0 \bigoplus L_1$ is projective if and only if either

(i) L_0 and L_1 are countable, or

(ii) L_0 or L_1 is finite.

Proof. If (i) holds, L is projective by Theorem 3.10. If (ii) holds, L is projective by Theorem 3.15. Suppose neither (i) nor (ii) holds. Then one of L_0, L_1 is uncountable and the other is infinite. In this case L is not projective by Theorem 3.13 and duality.

Corollary 3.17. Let L_0 and L_1 be uncountable free distributive lattices, and $\{a\}$ be a one-element lattice. Then $L_0 \bigoplus L_1$ is not projective, but $L_0 \bigoplus \{a\} \bigoplus L_1$ is projective.

Proof. This follows from Theorems 3.13 and 3.15 and the associativity of ordinal sums.
REFERENCES

Received August 22, 1966. Part of this material appears in the first author’s doctoral dissertation. The research was supported in part by National Science Foundation Grants Nos. 4038 and 5600.

UNIVERSITY OF CALIFORNIA, LOS ANGELES
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Richard Allen Askey, A transplantation theorem for Jacobi coefficients . . . 393
Raymond Balbes, Projective and injective distributive lattices 405
Raymond Balbes and Alfred Horn, Order sums of distributive lattices 421
Donald Charles Benson, Nonconstant locally recurrent functions 437
Allen Richard Bernstein, Invariant subspaces of polynomially compact operators on Banach space ... 445
Robert F. Brown, Fixed points and fibre .. 465
David Geoffrey Cantor, On the Stone-Weierstrass approximation theorem for valued fields .. 473
James Walton England, Stability in topological dynamics 479
Alessandro Figà-Talamanca and Daniel Rider, A theorem on random Fourier series on noncommutative groups 487
Sav Roman Harasymiv, A note of dilations in L^p 493
J. G. Kalbfleisch, A uniqueness theorem for edge-chromatic graphs 503
Richard Paul Kelisky and Theodore Joseph Rivlin, Iterates of Bernstein polynomials ... 511
D. G. Larman, On the union of two starshaped sets 521
Henry B. Mann, Josephine Mitchell and Lowell Schoenfeld, Properties of differential forms in n real variables .. 525
John W. Moon and Leo Moser, Generating oriented graphs by means of team comparisons ... 531
Veikko Nevanlinna, A refinement of Selberg’s asymptotic equation 537
Ulrich Oberst, Relative satellites and derived functors of functors with additive domain ... 541
John Vincent Ryff, On Muirhead’s theorem .. 567
Carroll O. Wilde and Klaus G. Witz, Invariant means and the Stone-Čech compactification ... 577