ON THE UNION OF TWO STARSHAPED SETS

D. G. LARMAN
ON THE UNION OF TWO STARSHAPED SETS

D. G. LARMAN

Let S be a compact subset of a topological linear space. We shall say that S has the property φ if there exists a line segment R such that each triple of points x, y and z in S determines at least one point p of R (depending on x, y and z) such that at least two of the segments xp, yp and zp are in S. It is clear that if S is the union of two starshaped sets then S has the property φ, and the problem has been raised by F. A. Valentine [1] as to whether the property ψ ensures that S is the union of two starshaped sets. We shall show that this is not so, in general, but we begin by giving a further constraint which ensures the result.

Theorem. If a compact set S, of a topological linear space, has the property φ, and, for any point q of S, the set of points of R which can be seen, via S, from q form an interval, then S is the union of two starshaped sets.

Proof. Consider the collection of sets $\{T_q\}, q \in S$, where T_q denotes the set of points of R which can be seen, via S, from q. If every two intervals of this collection have a nonempty intersection, then it follows from Helly's Theorem that S is starshaped from a point of R. Suppose, therefore, that there exist points q_1, q_2 of S such that $T_{q_1} \cap T_{q_2} = \emptyset$. We partition the collection $\{T_q\}, q \in S$, into three collections $\{T_q\}_1, \{T_q\}_2, \{T_q\}_12$, so that T_q belongs to $\{T_q\}_1$ if T_q meets T_{q_1} but not T_{q_2}, T_q belongs to $\{T_q\}_2$ if T_q meets T_{q_2} but not T_{q_1}, T_q belongs to $\{T_q\}_12$ if T_q meets both T_{q_1} and T_{q_2}. If T_q, T_r are two sets of $\{T_q\}_1, (i = 1, 2)$ then it follows from φ applied to the points q, r and $q_j (j \neq i)$ that T_q meets T_r. If T_q, T_r are two sets of $\{T_q\}_2$, then, since both T_q and T_r span the gap between T_{q_1} and T_{q_2}, it follows that T_q meets T_r. Further, if T_q belongs to $\{T_q\}_12$, then it must meet every set of at least one of the collections $\{T_q\}_i, (i = 1, 2)$. For, otherwise, there exists sets T_{r_1}, T_{r_2}, belonging to $\{T_q\}_1, \{T_q\}_2$ respectively, which do not meet T_q. However, by property φ applied to r_1, r_2 and q, this implies that T_{r_1} meets T_{r_2} and hence that

$$T_{r_1} \cup T_{r_2}$$

spans the gap between T_{q_1} and T_{q_2}. But this implies that $T_{r_1} \cup T_{r_2}$ meets T_q; contradiction. We now form the collections $\{T_q\}_{12}(i = 1, 2)$ so that T_q belongs to $\{T_q\}_{12}$ if either T_q is in the collection $\{T_q\}_i$ or T_q is in $\{T_q\}_{12}$ and meets every member of $\{T_q\}_i$. We note that
and combining the results above with Helly’s Theorem, we deduce that the intersection U_i of all the members of $\{T_q\}_{i=1}^n$ is a nonempty closed set. Let s_i be a point of U_i and let S_i be the set of points of S which can be seen, via S, from S_i. Then S is the union of S_1 and S_2 which are starshaped from s_1 and s_2 respectively.

COUNTER-EXAMPLE. There exists a plane compact set S which has the property φ but, nevertheless, cannot be expressed as the union of two starshaped sets.

We assume the existence of a rectangular coordinate system and let c, e, v be the vertices of an equilateral triangle, with c, e on the x-axis, e lying to the right of c, and v lying above the x-axis. Let o be the centroid of the triangle cev and let the line through o, which is parallel to the x-axis, meet cv, ev at g, h respectively. Let the vertical line through g meet co at i and ce at k. Let the vertical line through h meet eo at j and ce at ρ. Let vi produced meet ck at a and let vj produced meet pe at b. So far we have defined six distinct points c, a, k, ρ, b, e, in that order, on the x-axis. Let d be a point on the x-axis which lies to the left of e and let the line od produced meet cg at m and hv at n. Suppose the lines mi produced, nj produced, meet the x-axis at points k', ρ', respectively. Let kg meet mb at v_2 and let pi produced meet am at v_3. As

$$d \to -\infty, \rho' \to \rho, k' \to k, m \to g, v_1 \to g.$$

Hence we can suppose that d has been chosen as to ensure that (i)
k' and ρ' are distinct interior points of ab, with k' lying to the left
of ρ', and (ii) the quadrilateral mv_1iv is nondegenerate, and i is
closer to the x-axis than is m. We choose a point f on the x-axis
and to the right of e, and a point w on the line ov produced and
strictly above v. Let ev produced meet dw at p and let cv produced
meet wf at z. We also choose a point q on vo produced, which lies
strictly above the x-axis but which lies below the line segments $a|j$
and bi. Now, by (ii), the interior C_1 of the quadrilateral mv_1iv is
nonempty, and, if kj produced meets nb at u, the interior C_2 of
the triangle jun is nonempty. We define C_3 to be the interior of the
triangle aqb together with the open line segment ab. Finally we
take S to be $T - C_1 \cup C_2 \cup C_3$, where T denotes the set within and
on wdf. Note that by construction every point of S, other than those
within $vzwp$, can see, via S, one of a and b, and one of c, d and e.
We first show that S has the property ϕ, with $R = df$.

Suppose that p_1, p_2, p_3 are points of S for which no two can toge-
ther be seen from any point of df. As any point within $vzwp$ can
see each of c, d and e, we deduce, from above, that none of p_1, p_2, p_3
can lie within $vzwp$. But this implies that each of p_1, p_2, p_3 can see
one of a and b; contradiction. Therefore, we conclude that such a
triple of points cannot be chosen in S and hence that S has the pro-
erty ϕ, with $R = df$.

We now show that S is not the union of two starshaped sets.
Suppose, therefore, that p_1, p_3 are points of S and that each point of
S can be seen from at least one of p_1, p_3. Let am produced meet
dw at a' and let bn produced meet wf at b'. If neither of p_1, p_2 lie
within $aa'd$, then neither point can see the interior of the segment
mv_1. Hence p_1, say, lies within $aa'd$ and, similarly, p_3 lies within $bb'f$.
Let iv_2 produced meet dw at i' and let ju produced meet wf at j'.
Then p_1 must lie within dv_2v', for, otherwise, the interior of the line
segment v_1i cannot be seen from p_1 or p_3. Similarly p_3 lies within
$fbuj'$. Let ni produced meet the x-axis at n' and let mj produced
meet the x-axis at m'. As p_2 cannot see the interior of the line seg-
ment nj, p_1 must lie within $a'n'$. But then p_1 cannot see the interior
of the line segment mv_1 and so p_2 must lie within jbm'. We note
that $p_1 = a$, $p_2 = b$ is impossible and that i and j are the same
distance from the x-axis. It follows that $p_1 i$ produced, $p_2 j$ produced meet
at an interior point g' of ijv. But as C_1 and C_2 are nonempty open
sets, it follows that there is a nonempty quadrilateral Q, which lies
within ijv and has g' as its lowest vertex, whose interior cannot be
seen from either p_1 or p_3. As Q lies in S, this is a contradiction, and
we conclude that S cannot be expressed as the union of two starshaped
sets.
REFERENCE

Received December 22, 1965, and in revised form May 2, 1966.

UNIVERSITY COLLEGE, LONDON, ENGLAND
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Richard Allen Askey, *A transplantation theorem for Jacobi coefficients* 393
Raymond Balbes, *Projective and injective distributive lattices* 405
Raymond Balbes and Alfred Horn, *Order sums of distributive lattices* 421
Donald Charles Benson, *Nonconstant locally recurrent functions* 437
Allen Richard Bernstein, *Invariant subspaces of polynomially compact operators on Banach space* 445
Robert F. Brown, *Fixed points and fibre* 465
David Geoffrey Cantor, *On the Stone-Weierstrass approximation theorem for valued fields* 473
James Walton England, *Stability in topological dynamics* 479
Alessandro Figà-Talamanca and Daniel Rider, *A theorem on random Fourier series on noncommutative groups* 487
Sav Roman Harasymiv, *A note of dilations in L^p* 493
J. G. Kalbfleisch, *A uniqueness theorem for edge-chromatic graphs* 503
D. G. Larman, *On the union of two starshaped sets* 521
Henry B. Mann, Josephine Mitchell and Lowell Schoenfeld, *Properties of differential forms in n real variables* 525
John W. Moon and Leo Moser, *Generating oriented graphs by means of team comparisons* 531
Veikko Nevanlinna, *A refinement of Selberg’s asymptotic equation* 537
Ulrich Oberst, *Relative satellites and derived functors of functors with additive domain* 541
John Vincent Ryff, *On Muirhead’s theorem* 567