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Several of the interesting analytic and geometric conditions
known to be equivalent to the classical partial order < on
Er given by Hardy, Littlewood and Pélya have also been shown
to be true in the continuous case, Muirhead’s inequality, from
which virtually all generalizations of the arithmetic-geometric-
mean inequality follow, is perhaps less tractable and does not
readily suggest a continuous analogue., The purpose of this
paper is to discuss two such possibilities,

The author is indebted to Professor G.-C. Rota who sug-
gested that such a generalization should exist.

Suppose that % and 7 are real m-vectors and that Z*, j* are the
vectors obtained from Z and % by rearranging their components in
descending order. Then we say that § magjorizes %, writing % < %,
whenever

(1) BF 4 e FOF S YF A oo 40k

By e B =Y+ Y

where the numbers z¥, y are the components of Z* and %*. A con-
tinuous version of this partial order is suggested by means of the
decreasing rearrangement x* of a measurable function z. If z is
measurable, real valued on [0, 1] and g is Lebesgue measure, then there
exists a nonincreasing function xz* on [0, 1] such that

m(s) = plw > s} = p{a* > s}

for all s. The function 2* is made unique by requiring that it be
right-continuous and, in fact, it is the inverse of m(s). Moreover, 2
will be integrable if and only if the same is true of «* and their
integrals will be equal. Further details are given in [6] and [7].
Guided by (1), we define a partial order < in L*0,1) = L' in the
following manner: If x and y are in L' then x < y is to mean

Ssx*ggsy*, 0s<«1
0 0

@)
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568 JOHN V. RYFF

We might remark in passing that (1) and (1') do not define partial
order: in the strict sense, since one may have x < y and y < « with-
out * = y. In the vector case this will happen if and only if « and
3y are rearrangements of one another. In the continuous case this
occurs if and only if « and y are equimeasurable, that is x* = y*,
We now outline the current state of affairs in the table below.
It will be convenient to use the symbol P(y) for the set of all vectors
which are rearrangements of ¥ and P(y) for all functions equimeasur-
able with y. Then all statements in each column are equivalent.

n-vectors L'*-functions
(@ <y @) <y
(b) 2 = T¥y, T a doubly stochastic | (b') 2« = Ty, T a doubly stochastic
matrix operator
(¢) % belongs to the convex hull | (¢/) =« belongs to the closed convex
of P(y) whose set of extreme hull of P(y) whose set of
points is exactly P(%) extreme points is exactly
P(y) [8].
(d) If ¢ is a convex function of | (d’) If ¢ is a convex function of
one real variable, then one real variable for which
éox and goy are in L',
S o) < 6w 1 1
(-2 oo
(e) Muirhead’s inequality (¢') To be given.

There is another equivalent assertion in the discrete case that is
worth mentioning. A real function F' of n real variables is said to
be Schur-convex, or simply S-convex, if for each %, F(T%) < F (%)
whenever T is doubly stochastic. These (necessarily) symmetric func-
tions have been studied by Ostrowski [4] who gives necessary and
sufficient conditions on certain partial derivatives of F' in order that
it be S-convex. As every function of the type listed in (d) is S-convex
one sees that the latter functions form a larger class. From the point
of view of economy, those of type (d) have preference.

While we cannot put Muirhead’s inequality in category (d), it is an
inequality arising from a certain S-convex function. Suppose that
= Uy, +++,U,) iS a positive n-vector (v, >0,k =1,-..-,7n), and S,
is the symmetric group of all permutations = of (1,2, ---,n). Set

(2) Mu, ) = > Ugiyy = ** Usiw)

€8y

Muirhead’s inequality is then
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(3) M@; %) = M(%; 9)

for all positive n-vectors # if and only if # < 7. We also should single
out the interesting work of R. Rado [5] in which the summation in
(2) is taken over any subgroup L, of S,. The inequality (3) then
obtains in this restricted sense if and only if Z belongs to the convex
hull of the vectors ¥, = (Y, ***) Ysw), T€L,. We note also that M
is symmetric in Z and each term ug}, - u;%, in the summation (2) is
a convex function of #. This convexity allows one to determine when
equality can occur in (3) by an elementary argument.

In order to develop a continuous version of (3) we first proceed
with some heuristic remarks. If & = (%1, 2,,0, --+,0) and ¥ = (¥, ¥., 0,
..., 0) are m-vectors and % = (u,, ---,u,) a positive n-vector, then
Z <7y gives

M@; %) = (n — 2)! ; i < (n — 2)! ;u’{lugz = M@; %) .
153 177

Adding the terms with 47 = j, we note that the inequality persists
since «;, + ®, = ¥, + ¥,. Thus

“ (Fu)gw) = (g ).

Now let w be a positive continuous function on [0,1] and set u, =
u(k/n). Dividing (4) by n~* and passing to the limit we obtain

1 1 1 1
S u“ls U2 = S u”lg uv?

0 0 0 0

This generalizes easily (replace (x,,®,,0,---,0) by (2, 2, *++, %,, 0,
.+, 0)) to

m 1 m 1
I {wre < 11 (o
k=1 Jo T k=1 Jo

Now suppose that  and y are continuous functions on [0,1] and we
set x, = x(k/m). Taking logarithms, dividing by m and making m — oo
we arrive at the inequality
(5)  Mu;a) = S log {Slu(t)”“’dt}ds < Sl log {Slu(t)'“"dt}ds
0 0 0 0
= M(u; y)

2. A proof of the inequality. The remainder of this section
will be devoted to the proof of the following theorem.

THEOREM. Let x and y be bounded, measurable functions on
[0,1]. If x <y and w s a positive function such that w?e L' for
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all p, —oo < p < oo, then inequality () results. Conversely, if the
inequality holds for all such u then x < y. Actually, all one requires
is that p lie in some finite interval [m, M) for which m < x,y < M
almost everywhere.

A word or two is in order concerning the existence of the integrals.
The function

(6) 5(p) = log | ur = plog ||ull,

is convex and bounded on bounded subsets of the line. Therefore, it
is continuous and the composite 4o« is measurable. The integrability
of gox and oy is then a consequence of the boundedness of « and
Y.

Our principal concern here is the assertion that (5) implies 2 < v.
That < y implied (5) was shown to be the case, at least for bounded
functions u, in a paper of Hardy, Littlewood and Pélya [1, Theorem
10]. Using more recent results we offer here a short proof of this
in the slightly more general setting. First we note that the function
¢ in (6) is rearrangement-invariant in the sense that

§:¢°z7= S:sboy

for any bounded measurable function ¥ equimeasurable with y. Then,
if x <y, we may choose convex combinations > Ny; (1 =1, «-+, m)
where each y; is equimeasurable with y (see [7], Theorem 5, and (c’)
of the preceding table) such that

1

[I=n - <e

for each ¢ > 0. Now we use the convexity of ¢ to give
o (X NY:) = 2 Nigoys .

The rearrangement-invariance of ¢ now implies

1 1

So¢ o (MY = §0¢ °Y .
A convex function is Lipschitz continuous on bounded sets and so
1 1
[ 1#e () = powl < K| S — 2

for some constant K. This implies (5).

That inequality (5) is also a necessary condition for x <y does
not seem to be as accessible. We shall use the following approxima-



ON MUIRHEAD’S THEOREM 571

tion lemma in conjunction with a brief remark mentioned in Inequalities

[2].

LEMMA. If = 1s bounded, measurable on [0,1], there exist
sequences {0,} and {G,} of simple functions such that

g, <x<da, n=1,2 -
and

1 1
Slx—gnl—»O, §1x—5”|—>0asn-»oo.
o 0

Proof. Let x* be the decreasing rearrangement of x. Divide
[0, 1] into » equal subintervals I, L,, ---, I,, and set

ak:%S x* A=sk<sn.
L

Finally, denote by y, the characteristic function of I, and define

o) = %aka .

Since a, lies between the infimum m, and the maximum M, of x* on
I, and, since the average value of the integral of #* in nonincreasing,
one sees that o} < 2*., Furthermore,

Solx* —or| g%;(Mk—mk)—ao, n— oo .

To complete the argument, we maintain the same partition and
define

0, = ; Mka

with M, still representing the maximum of 2* on I,. This function
is simply the upper Darboux sum of a* for the given partition.
Moreover, ¢, is nonincreasing and, for 0 < s < 1, we have

v = [a* = [ =4 -

Choose a < x*(1) = lim,_,-x*(¢), define B, = ¥,(z,) (where 7, =1 — (1/n))
and let v = ¥(1) = Sm* Then for each s in [0, 1]
0

M8) = B, + Mu(s — T,) = Pa(s) = ¥(s)
Ws) =7+ a(s — 1) = ¥(s),

both of which follow directly from the preceding definitions. The



572 JOHN V. RYFF

graphs of these two linear functions intersect at

vET@W =g M, —«

To see this, we note that

#
ogg

0

o, — ©*) + g (M, — o)

with equality occurring only in the case where z* = ¢,. The inequality
may be rewritten as

0=B8,+M(1~-17,)—"7.

Adding o to both sides and remembering that M, > « we establish
the inequality. Equality obtains only if z* = ¢,, in which case
x* is a step function and therefore x is already a simple function.

As «a is still at our disposal (subject only to a < z*(1)) and since

' —1 as &« — — < we may choose « such that ' = 7, satisfies 7, =
(r, + 1)/2. Set

7%(3) g.(8) 0=s=r7,
ox(s) =
" o ,<s=1.
Then G* is nonincreasing, and for 0 < s < 7/, we have
8 8
Sx*sgﬁf.
0 — Jo
Also,
1_ Tn r,’n L
Sa;“:g 0-71,+5 Mn+S,a
0 0 Ty Ty

= Bn =+ Mn(z-"n - Tn) + (X(l - T’,ﬂ)

1
V:Soc*

0

I

as a direct calculation will bear out. If 7, <s <1
[ = o = "0, — a9 + [ @ —w.
0 0 Tn

The integral on the left tends to zero as s— 1. On the right, the
first integral is nonnegative while the second is negative and becomes
more so as s — 1. It must be that the integral on the left is non-
negative. That is, x* < JF.

Now z* — 6} = (#* — a,) + (g, — GF), so that
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Sllx* —0F| < Sl(an —x*) + Sl,(M,, - Q)
0 Tn
= [(a =) + L = <)M, + (8, =)

= —an+ ("0 - e+ @ —zom, - | o

As n— < we have both 7, and 7] tending to 1. Since 2* is Riemann
integrable and bounded, the left side of the inequality tends to zero
as m— o, The approximation of x is now obtained by means of a
measure preserving transformation @ of [0,1] into itself such that
¢ = ax*ow (by virtue of Lemma 2, [7]). Then &, =6}-® and ¢, =
o}ow are simple functions which posses the properties set forth in
the statement of the lemma. (Both the partial order < and L*—norms
are preserved under composition with measure preserving transforma-
tions.)

The remainder of our argument becomes technically simpler if we
think of the functions o} and &; as step functions associated with a
partition of [0, 1] into 2n equal subintervals. We keep the same func-
tions and just make the partition finer. This step is necessary because
¥ is not constant on the last subinterval of the original subdivision but
becomes so relative to the refinement. Both functions remain step
functions when we do this.

Next we point out an elementary but useful connection between
the partial order < for vectors and for certain step functions. If
(@ oo+, ) < (Y, *++, Yn) then

>0 e < 2% Yrde
k=1 k=1

where y, is the characteristic function of [(X — 1)/m, k/m], (k=1, --+, m).
The reader can easily fill in the details.

Assume that (5) is valid for all functions % > 0 for which the
integrals exist. As the quantities M(u; ®) and M(u; ) are rearrange-
ment-invariant it will be enough to work with x2* and y*. Moreover,
we need only require that (5) hold for positive step functions as the
following argument demonstrates. Select sequences ¢} < z*, y* < G}
(n=1,2, -..) of step functions associated with subdivisions of [0, 1]
into m = 2n equal subintervals as given by the lemma and our remark
above. We should then have

(7) Mu; 07) = M(u; ©*) = M(uw; y*) = M(u;6;)  n=1,2,---

where

m
U = kZﬂakXJ,‘
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with a, >0 (k =1, ---,m) and {J,} is an arbitrary partition of [0, 1]
into m mutually disjoint subintervals. Denote the length of J, by
0.. Then (7) becomes

log (atx0, + -+ + azi,,)

Ms

_1_ i log (agxf, + -+ + a%F0,) < _1_
m k=t m

k=1

I

where
* m m
g
On = 2, %l Or = 2 Yk
k=1 k=1
Of course @, = @, &, =Xy ***, Tpy = T ANA Y = UYs, ** *y Yms = Ymes

but the last two components ¥,_, and y, are, in general, distinct.
Set i; - (x]_, xz, b °, xm) and g - (yly y29 b .3 ym)' Then

o

(8) Sano, < 11 35 e,
3 k=1 1

k=1 4=1 1=

0

and this inequality is true for all positive 6 = (4,, ---, 0,) for which
>.6; =1 and all positive choices of a = («,, ---,«,). It is known
[2, p. 51], and not very difficult to prove, that this implies % < 7.
Hence ¢ < G, from which we derive z* < y*.

There is a certain bias in the derivation of (5) regarding the order
of summation. Suppose that we first started with arbitrary exponents
= (®,+,2, and ¥ = (y, -+, ¥,) and rather special positive # of
the form % = (u,, %, 1, -+-,1). Then if % <% Muirhead’s inequality
becomes

(n — 2)! S ufuii < (n — 2)! > ufsuli .
2 1F7

Inserting the terms > (w,u,)* the inequality holds (because by (d) of
our table, s — (u.u,)* is a convex function of s) and we have

@ (pue)(gu) = () ().

As before, this suggests that perhaps

(5') S: log {S:u(t)”“‘”ds}dt < S: log {S:u(t)””’ds}dt

is valid whenever 2 < y. This will be the case for bounded x and ¥
except that the integrals may not be finite.

In order to prove this, assume that » satisfies the conditions of
theorem together with the restriction w(t) =6 >0 in [0,1]. Then
both integrals in (5’) exist (finite). For each fixed value of ¢, s — u(t)*
is a convex function so that by (d’) of the table
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Slu(t)"“”ds < Slu(t)"(”ds .
0 0

This inequality implies (5’). If u is not bounded away from 0, replace
% by v+ 6,0 > 0. Then, as 6 — 0, (u(t) + 6)** converges downward
to u(t)*® for each fixed t. The inequality now follows by an applica-
tion of the monotone convergence principle.

One cannot conclude that the validity of (5) for all admissible
functions » implies © < y. It is because of this that we feel (5) is
the preferable generalization of the Muirhead inequality. The example
we shall give utilizes the nonnegativity of the polynomial

p(t):t6—2t5+2t3~—2t+1:(t_1)2(t4_t2+1)
for all values of ¢. Equivalently,
26° + 2t < t° + 2% + 1',

Divide the unit interval into 4 equal subintervals and let y, denote
the characteristic function of [(k — 1)/4, k/4] (k =1,2,3,4). Set

=8+ 5)+ Xs + X
y:6X1+3X2+3X8+0'X;-

For any positive (admissible) »
Slu(t)“”ds - % [2u(t)® + 2u(?)]
< % [u(t)’ + 2u(t)® + 1] = Slu(t)’“”ds .

Taking logarithms and integrating again we find that (5’) is indeed
valid. But by inspection, it is clear that x < y is false and so (5') is
not a sufficient condition.

3. The case of equality. It would be of interest to establish
when equality can occur in (5). In view of the results in the discrete
case we conjecture that equality occurs only when # is constant or
else when x and y are equimeasurable. We give here a relatively
simple proof for the discrete case which may lend itself to generali-
zation,

Let equality hold in (3) and Z < 7. Write

U = (uly "'yun) = (e”l’ ...’e”n)
and Z = 3, \¥;, where the ¥, are distinct rearrangements of %, 3\ \;, =

1 We wish to thank G. A. Converse for bringing this to our attention.
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1I,v;, >01=<1%<m, with » =2. Then equality in (3) becomes
M@ %) = 3 exp (S NG, 3> = 5 exp <, v = (@ 3) -
The exponential is strictly convex, hence
M(u; %) = M(w; 30y = 30 8Ms §:) = M@; ),

since M(u; y) is unaffected by a rearrangement of 7. It must be that
the numbers {%;, v.y, 1 < ¢ < n, are all equal for each 7. An elementary
argument shows that all the components of ¥ (hence %) are the same.
We could exploit this argument further if it were possible to answer

the following.

Question 1. Let  <y. Then is it possible to approximate z by
convex combinations 3 N;y; (y; equimeasurable with y) such that
© < 3\ My:? A second question which arose during the course of this
investigation represents a possible generalization of (8).

Question 2. If for all positive n-vectors & = («y, -+, «,) one has
the inequality

n n
1L
k=1 4=1

ape < 11

n
o
2 Y
a,‘-k
14=1

does it follow that # < y? The inequality is not true if we interchange
7 and k£ when n > 3.
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