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An integer of an algebraic number field K is called irre-
ducible if it has no proper integer divisors in KX, Every integer
of K can be written as a product of irreducible integers,
usually in many different ways., Various problems have been
inspired by this lack of unique factorization. This paper
studies the question: When are the irreducible integers of K
determined by their norms? Attention is confined to the case
in which K is a quadratic field. With this assumption it is
possible to give a complete answer in terms of the ideal class
group of K and the nature of the units of K,

The fields sought in this problem are those quadratic fields K
(with N: K — @ denoting the norm) which satisfy

Property N: If ais an irreducible integer of K and £ is another
integer of K such that Na = NB, then B is also irreducible.

In many cases Property N can be studied by looking at the class
group H of K. However the study is complicated by the existence
of quadratic number fields K satisfying:

(1) K is real and Ne = +1, for every unit ¢ of K.

When K satisfies (1), we are forced to consider an extended class
group H’ of K defined as follows:

Two nonzero fractional ideals a,b are said to be strongly equiva-
lent if a-b~ = (v) is a principal ideal generated by an element v of
positive norm., This is clearly an equivalence relation. The strong
equivalence classes form the group H' under the usual multiplication.
There are two strong equivalence classes of principal ideals: the class
o consisting of all principal ideals («) such that one, and hence all,
generators of (a) have negative norm; and the identity class 1 of
principal ideals («) all of whose generators have positive norm. Clearly
0® =1, and the class group H is naturally isomorphic to H’/{c>.

If K does not satisfy (1), notice that H’, as defined above, and
the class group H coincide.

In any case, if p is any prime ideal of K and p’ is the conjugate
prime ideal, then p-p’ = (Np). But N(Np) = (Np)* > 0. So

(2) p and P lie in inverse strong equivalence classes.
Our main result is
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THEOREM. Let K be a quadratic number field. Then K satisfies
property N if and only if:

(a) H has exponent 2
or (b) H is odd
or (¢) K satisfies (1) and the 2-Syloew subgroup of H' is cyclic

Proof. TFirst we assume that one of (a), (b), and (¢) holds. If
K does not satisfy property N then there exist an irreducible integer
«a and a reducible integer 8 such that Nao = NBS. Let (@) = p, --- b,,
where the p; are prime ideals. Since NS = Na, the ideal (8) must
equal q, ---q,, where, for each 4, either q; is p;, or q; is p,. But
B = v.6, where v, 6 are nonunit integers. Hence we may assume:

M=q--q, (0 =0qu---aq, wherel <s<t.

Let e¢; be +1 if q; = b, and —1 if q; = p.. By (2) there are num-
bers ¢, { in K such that:
(3) (&) = pir---piz, () = piit -« pit, and (7), (9) are strongly equiva-

s+1

lent to (¢), (£), respectively.

In case (a), pi is equivalent to p;,. Therefore (3) implies that
P, --- P, = () is a principal ideal. Clearly 7 is an integer and a proper
divisor of «, contradicting its irreducibility.

In any case, if ¢, = ... =¢,, then p, --.p, is principal, and we
arrive at a contradiction. Therefore we may assume

(4) e =+-=e,=+1, ¢, =+---=¢,= —1, wherel <r <s,

and e, = - =€, = +1, ¢ = +--=¢, = —1, where s<u<t.
Define the integral ideals a, b by:

a = (‘pl e pr)(‘ps+1 v ’pu)
b= (‘pr+1 T ps)(pu-u s pt) .

By (4), both a and b are proper integral ideals. By (3), a-b~! = (&)
is strongly equivalent to (v-0) = (8). Since NS = Nea, the ideals («),
(B) are strongly equivalent. Therefore a-b~" is strongly equivalent to
() = a-b. So:

(5) P =(a-b)a-b7) = (\), where Nx > 0.

In case (b), this implies that b is principal. Hence « has a proper
divisor.

In case (c), the only strong equivalence classes of orders dividing
2 are 1 and ¢. By (5), b must lie in one of them. So it is principal,
and « has a proper divisor.
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In each of the three cases, &« must have a proper divisor, contra-
dicting its irreducibility. So K must satisfy property N.

Now suppose that K satisfies property N. We first show that H’
cannot contain an element 7 satisfying:

(6) m has even order 2n > 2 and, 1f K satisfies (1), then ©" + o.

Suppose such a 7 exists. By Dirichlet’s theorem there exists a prime
ideal p in the class 7@ (or, if K satisfies (1), in the class 7{o)).
Evidently p* = («) is generated by an irreducible element « satisfying
Na = p*, where p = Np. But p™ = N(p"), and, since n > 1, p" =
p-p"~' is reducible. This contradicts property N. So no 7 satisfying
(6) can exist.

Suppose K does not satisfy (1). It follows immediately from (6)
that, if H has even order, then it must have exponent 2. So one of
(a) or (b) must hold.

Now we assume that K satisfies (1). Then H' cannot contain
elements 7, p satisfying:

(7) " =0, where m = 2, and p* =1, p¢ o).

Suppose 7, p exist. Choose prime ideals p,, p, in the classes (o),
7' 0{o>, respectively. Then pi-p; lies in the strong equivalence class 1.
So it is a principal ideal («), where Na = pipi = N(pp.) and p;, = Np;,
1 =1,2. By property N, a must be reducible. One of its proper
divisors must generate an ideal from the list: p,, p,, i, bi-p.. But these
lie in the classes <o), t7'0 o), t%({0), {0, respectively. By (7), none
of these classes is <{o)». So none of the ideals in our list can be
principal. This contradiction shows that 7, 0 cannot exist.

Now we can finish the proof. Assume that the 2-Sylow subgroup
S of H’ is not cyclic. Choose an element 7¢S of largest possible
order such that o0 ed{z)>. Then {(z) is a direct factor of S. Let S’ be
a complementary subgroup. Since S’ N <o) = {1}, no element of S’ can
have order greater than 2 (by (6)). S’ must contain some element
p # 1, since S is not cyclic. If H’ contains an element @ == 1 of odd
order, then @ = p-w satisfies (6), which is impossible. So H’' = S is
a 2-group. If o = *™, where m = 2, then 7, p satisfy (7), which is
impossible. So o = 7% or 7. Therefore

H = S)i{o) = S’ x t)[Ko)) has exponent 2.

We conclude that, if K satisfies (1) and property N, then (a) or
(c) must hold.

A simple modification of the above argument shows that the irre-
ducible integers « of a quadratic number field K are determined by
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the absolute values | Nat| of their norms if and only if the class group
H is of type (a) or (b) in the theorem above.

The problem considered in this paper was raised by Niven and
Zuckerman in [2]. A more general form of this problem was treated
by other methods in [1].
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