Pacific Journal of Mathematics

AN INTEGRAL INEQUALITY WITH APPLICATIONS TO THE DIRICHLET PROBLEM

JAMES CALVERT

Vol. 22, No. 1

January 1967

AN INTEGRAL INEQUALITY WITH APPLICATIONS TO THE DIRICHLET PROBLEM

JAMES CALVERT

An existence theorem for the elliptic equation $\Delta u - qu = f$ can be based on minimization of the Dirichlet integral $D(u, u) = \int |\nabla u|^2 + q |u|^2 dx$. The usual assumption that $q(x) \ge 0$ is relaxed in this paper.

Actually the paper deals directly with the general second order formally self-adjoint elliptic differential equation $\sum_{i,k} D_i(a_{ik}D_ku) + qu = f$ where q(x) is positive and "not too large" in a sense which will be made precise later. The technique consists in showing that the quadratic form whose Euler-Lagrange equation is the P.D.E. above is positive for a sufficiently large class of functions.

Earlier inequalities of Beesack [1] and Benson [2] show that there are positive functions q(x) for which $\int |\nabla u|^2 - q |u|^2 dx \ge 0$ for functions u which vanish on the boundary of the domain. D. C. Benson suggested to the author that this inequality might lead to existence theorems for $\Delta u + qu = f$.

Let $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. Let D be an open domain in \mathbb{R}^n which may be unbounded unless the contrary is assumed. Let $C^{\infty}(D)$ denote the set of all infinitely differentiable complex-valued functions and $C_0^{\infty}(D)$ denote the subset of $C^{\infty}(D)$ of functions with compact support contained in D. Let $||u||_1^2 = \int_D \sum_{i=1}^n |D_i u|^2 + |u|^2 dx$ and let $C^{\infty*}(D)$ be the subset of $C^{\infty}(D)$ of functions with $||u||_1 < \infty$. Let $H_1(D)$ be the Sobolev space which is the completion of $C^{\infty*}(D)$ under $||u||_1$. For a function q of the special type encountered in §1, let $H_1^q(D)$ be the Sobolev space which is the completion of $C^{\infty*}(D)$ under the norm

$$||\,u\,||_q^2 = \int_{\mathcal{D}} \sum_{i=1}^n |\,D_i u\,|^2 + \,q\,|\,u\,|^2 dx$$
 .

Let \mathring{H}_1 and \mathring{H}_1^q be the completions of $C_0^{\infty}(D)$ with respect to $||u||_1$ and $||u||_q$. The reader who is not familiar with the Sobolev spaces can find a discussion of their calculus in Nirenberg [5].

1. An integral inequality.

THEOREM 1.1. Let D be smooth enough to apply Gauss' Theorem. Let $a_{ik}(x)$ be hermitian positive definite, $a_{ik} \in C^1(D)$, and let f_1, f_2, \dots, f_n be continuously differentiable complex valued functions of x, for all $x \in D$. Then

$$\begin{split} \int_{D} \sum_{i,k=1}^{n} a_{ik} D_{i} u D_{k} \overline{u} + (a_{ik} f_{i} \overline{f}_{k} + D_{k} (\operatorname{Re} a_{ik} f_{i})) | u |^{2} dx \\ & \geq \int_{D} \sum_{i,k=1}^{n} \operatorname{Re} \left(a_{ik} f_{i} \right) | u |^{2} \nu_{k} ds, \quad where \quad \nu_{k} \end{split}$$

is the k^{th} component of the normal, $u \in C^1(D)$, and the integral on the right is assumed to exist. In the case of unbounded D, we will understand $\lim_{R\to\infty} \int_{\Sigma_R} \sum \operatorname{Re}(a_{ik}f_i) |u|^2 \nu_k ds = 0$ for Σ_R a sphere of radius R. Equality holds if and only if $D_i u = uf_i$, for every *i*.

$$\begin{array}{ll} Proof. & \mathrm{From} \ \sum a_{ik}(D_{i}u - uf_{i})(D_{k}\bar{u} - \bar{u}\bar{f}_{k}) \geqq 0, \ \mathrm{obtain} \\ & \sum a_{ik}D_{i}uD_{k}\bar{u} + \left[a_{ik}f_{i}\bar{f}_{k} + \frac{1}{2} \ D_{k}(a_{ik}f_{i} + \bar{a}_{ik}\bar{f}_{i})\right] |\,u\,|^{2} \\ (1) & \geqq \sum a_{ik}(f_{i}uD_{k}\bar{u} + \bar{f}_{k}\bar{u}D_{i}u) + \frac{1}{2} \ D_{k}(a_{ik}f_{i} + \bar{a}_{ik}\bar{f}_{i}) \,|\,u\,|^{2} \\ & = \sum a_{ik}f_{i}uD_{k}\bar{u} + \frac{1}{2} \ D_{k}(a_{ik}f_{i}) \,|\,u\,|^{2} + \bar{a}_{ik}\bar{f}_{i}\bar{u}D_{k}u + \frac{1}{2} \ D_{k}(\bar{a}_{ik}\bar{f}_{i}) \,|\,u\,|^{2} \end{array}$$

Where the last line was obtained by interchanging the order of summation and using the symmetry of a_{ik} .

Now obtain a new inequality from (1) by taking conjugates of both sides and interchanging the order of summation in the first two terms. Add this new inequality to (1) and obtain

$$egin{aligned} &\sum a_{ik} D_i u D_k \overline{u} \,+\, \left[a_{ik} f_i \overline{f}_k \,+\, D_k (\operatorname{Re} a_{ik} f_i)
ight] \,|\, u\,|^2 \ &\geq \sum D_k (|\, u\,|^2 \operatorname{Re} a_{ik} f_i) \;. \end{aligned}$$

Now integrate both sides and use Gauss' Theorem to obtain the desired result.

DEFINITION 1.1. We will reserve the notation q(x) for a positive function of the form $q(x) = -\sum a_{ik}f_i\overline{f}_k + D_k(\operatorname{Re} a_{ik}f_i)$.

COROLLARY. If D is any open set in \mathbb{R}^n and $a_{ik}(x)$ are uniformly bounded in D, then $\int_D \sum_{i,k} a_{ik} D_i u D_k \overline{u} - q |u|^2 dx \geq 0$, for every $u \in \mathring{H}_1^q$ and equality holds if and only if $D_i u = u f_i$, for every i, a.e.

Proof. Let us first establish the inequality for any $u \in C_0^{\infty}(D)$. Let K denote the support of u and Ω denote a sphere containing K. Let $\tilde{u} \in C_0^{\infty}(\Omega)$ such that $\tilde{u} = \begin{cases} u \text{ on } K \\ 0 \text{ on } \Omega - D \end{cases}$ and let $\tilde{u}, \tilde{f}_i, \tilde{q}$ be continuously differentiable extensions of u, f_i, q to Ω . Then

$$egin{aligned} &\int_{D}\sum a_{ik}D_{i}uD_{k}\overline{u}\,-\,q\mid u\mid^{2}\!dx = \int_{a}\sum\widetilde{a}_{ik}D_{i}\widetilde{u}D_{k}\widetilde{u}\,-\,\widetilde{q}\mid\widetilde{u}\mid^{2}\!dx \ & \geq \int_{b}\sum \operatorname{Re}\left(\widetilde{a}_{ik}\widetilde{f}_{i}
ight)\mid\widetilde{u}\mid^{2}\!
u_{k}ds = 0 \end{aligned}$$

Now let $|a_{ik}(x)| \leq M$ for every $i, k, x \in D$. For any $u \in \mathring{H}_1^q$, choose a sequence $u_m \in C_0^\infty$ such that $||u - u_m||_q \to 0$.

Then

$$\int_{D} \sum_{i} |D_{i}u_{m}|^{2} dx \xrightarrow{m} \int_{D} \sum_{i} |D_{i}u|^{2} dx$$

and

$$\int_{D} q \mid u_{m} \mid^{2} dx \xrightarrow{m} \int_{D} q \mid u \mid^{2} dx$$

and we have established that

$$\int_{\mathcal{D}} \sum a_{ik} D_i u_m D_k \overline{u}_m - q \mid u_m \mid^2 dx \geq 0$$
 , for every m_k

We need only show that

$$\int_{D} a_{ik} D_i u_m D_k \overline{u}_m dx \xrightarrow{m} \int_{D} a_{ik} D_i u D_k \overline{u} dx$$

which follows from

After proving three existence theorems, we will give some examples for choices for q(x).

2. Existence theorems.

THEOREM 2.1. Let q(x) be a function of the special form of definition 1.1 and let p(x) be a continuously differentiable function such that $0 < p(x) \leq (1 - \varepsilon)q(x)$, where $\varepsilon > 0$ and fixed. Let

$$\int_{\mathcal{D}}\!q^{-1}\,ert\,fert^2dx<\,\infty$$
 ,

 $g \in H_1^q$ and let

$$Au = \sum_{i,k} D_i(a_{ik}D_ku) + pu$$
 be a

uniformly elliptic operator. That is, a_{ik} is hermitian and there exist positive constants M and λ such that $|a_{ik}(x)| \leq M$ and

$$\lambda \sum_{i} |\xi_1|^2 \leq \sum_{i,k} a_{ik} \xi_i \overline{\xi}_k$$
 ,

for any $(\xi_1, \xi_2, \cdots, \xi_n)$. Then the Dirichlet problem

has a weak solution and any two weak solutions differ only on a set of measure zero.

Proof. We must show that there is a function $u \in H_1^q$ such that $u - g \in \mathring{H}_1^q$ and $(u, A^* \varphi) = (f, \varphi)$ for every $\varphi \in C_0^\infty$. Here A^* denotes the formal adjoint of A (actually $A = A^*$ on the domain of A). Equivalently, we can set $u_0 = u - g$ and consider the problem of finding $u_0 \in \check{H}_1^q$ such that $(u_0, A^*\varphi) = (f, \varphi) - (g, A^*\varphi)$.

Let

$$\begin{split} B(u, v) &= \int_{D} \sum_{i,k} a_{ik} D_i u D_k \overline{v} - p u \overline{v} \, dx \\ &= \int_{D} \sum_{i,k} \overline{a}_{ik} D_k u D_i \overline{v} - p u \overline{v} \, dx \\ &= -\int_{D} \sum_{i,k} u D_k (\overline{a}_{ik} D_i \overline{v}) + p u \overline{v} \, dx \\ &= -(u, A^* v), \quad \text{for every } v \in C_0^{\infty}(D) \, . \end{split}$$

We will show that there exist $C_1, C_2 > 0$ such that

 $|B(u, v)| \leq C_1 ||u||_a ||v||_a$

and

$$B(u, \, u) \geq C_{\scriptscriptstyle 2} \, || \, u \, ||_q^2, \hspace{1em} ext{for every} \hspace{1em} u, \, v \in \check{H}_1^q$$
 .

For, having shown this, we can apply the Lax-Milgram Theorem which guarantees that any bounded linear functional $F(\varphi)$ on the Hilbert space \mathring{H}_1^q can be represented as $F(\varphi) = \overline{B(u_0, \varphi)}$ for some $u_0 \in \mathring{H}_1^q$.

Take $F(\varphi) = -\overline{(f,\varphi)} - \overline{B(g,\varphi)}$, then

$$egin{aligned} &|F(arphi)| &\leq \left(\int_{oldsymbol{p}} q^{-1} \,|\,f|^2 dx
ight)^{1/2} &\left(\int_{oldsymbol{p}} q \,|\,arphi\,|^2 dx
ight)^{1/2} + \,C_1 \,||\,arphi\,||_q \,||_q \,||_q \ &\leq ext{const} \,||\,arphi\,||_q \,. \end{aligned}$$

So $B(u_0, \varphi) = -(f, \varphi) - B(g, \varphi)$ which was to be shown. To see that B(u, u) is positive, consider

$$egin{aligned} B(u,\,u)&=\int_D\sum\limits_{i,k}a_{ik}D_iuD_k\overline{u}\,-\,p\mid u\mid^2\!dx\ &\ge\int_D\sum\limits_{i,k}a_{ik}D_iuD_k\overline{u}\,-\,q\mid u\mid^2\!dx\,+\,arepsilon\!\int_Dq\mid u\mid^2\!dx\;. \end{aligned}$$

By the corollary to Theorem 1.1, both integrals are positive and, therefore,

$$egin{aligned} B(u,\,u) &\geq arepsilon &\int_{\mathcal{D}} q \mid u \mid^2 \! dx \quad ext{and} \ B(u,\,u) &\geq \int_{\mathcal{D}} \sum a_{ik} D_i u D_k \overline{u} - q \mid u \mid^2 \! dx \;. \end{aligned}$$

Then

$$egin{aligned} & \left(1+rac{2}{arepsilon}
ight)B(u,u) \geqq \int_{\mathcal{D}} \sum a_{ik}D_{i}uD_{k}ar{u}+q \mid u \mid^{2}dx \ & \geqq \int_{\mathcal{D}} \lambda \sum\limits_{i} \mid D_{i}u \mid^{2}+q \mid u \mid^{2}dx \geqq C \mid\mid u \mid^{2}_{q} \ & ext{ with } \quad C=\min\left(1,\lambda
ight) \,. \end{aligned}$$

The positivity of B(u, u) implies

 $egin{aligned} &|B(u,\,v)|^2 \leqq B(u,\,u) \cdot B(v,\,v) ext{ so that we need only show that } \ &B(u,\,u) \leqq ext{ const } ||\,u\,||_q^2 ext{ to see that } |B(u,\,v)\,| \leqq C_1\,||\,u\,||_q\,||\,v\,||_q \ &B(u,\,u) \leqq M {\int_{\mathcal{D}}} \sum\limits_{i,k} |D_j u D_k ar{u}\,|\,+\,p\,|\,u\,|^2 dx \ &\leqq M {\int_{\mathcal{D}}} \sum\limits_{i,k} rac{1}{2} \,(|D_i u\,|^2\,+\,|D_k ar{u}\,|^2)\,+\,p\,|\,u\,|^2 dx \ &\leqq Mn {\int_{\mathcal{D}}} \sum\limits_{i} |D_i u\,|^2\,+\,p\,|\,u\,|^2 dx = Mn\,||\,u\,||_p^2 \leqq Mn\,||\,u\,||_q^2 \ . \end{aligned}$

To obtain the uniqueness result, let $Au = 0, u \in \mathring{H}_1^q$, then

$$0 = -(u, Au) = B(u, u) \ge C_2 ||u||_q^2$$
 $\therefore u = 0$ a.e.

THEOREM 2.2. Suppose that D is bounded and \dot{D} is smooth enough for integration by parts, that (a_{ik}) is real symmetric positive definite, that $a_{ik} \in C^4(D)$, and that $|a_{ik}(x)| \leq M$, for every $i, j = 1, \dots, n$ and $x \in D$. Let $q(x) = -\sum_{i,k} (a_{ik}f_if_k + D_k(a_{ik}f_i))$ be such that $q \in C^2(D)$ and the system

$$\begin{cases} D_i u = u f_i \ u = 0 \ on \ \dot{D} \end{cases}$$
 has only the trivial solution.

Let $Au = \sum_{i,k} D_i(a_{ik}D_ku) + qu$.

Then the Dirichlet problem $iggl\{ egin{array}{ccc} Au = 0 & in \ D \\ u = g & on \ \dot{D} \end{array} iggr\}$

has a unique solution.

Proof. We use a result of Browder [4] which says that under the assumptions above uniqueness implies existence. Thus we need only show that if u is such that Au = 0 and u = 0 on \dot{D} , then $u \equiv 0$. But that is immediate since

$$egin{aligned} B(u,\,u) &= \int_{D}\sum\limits_{i,\,k} a_{i\,k} D_i u D_k \overline{u} \,-\,q \mid u \mid^2 dx \ &= -(u,\,Au) = 0 \,\,. \end{aligned}$$

By Theorem 1.1, B(u, u) = 0 only if $D_i u = u f_i$. By the assumption, $u \equiv 0$.

It will be seen in §3 that many functions q(x) have the required uniqueness property.

THEOREM 2.3. Let
$$q(x)=-\sum_i |f_i|^2+D_i(\operatorname{Re} f_i)$$
 so that $\int_{\mathcal{D}}\sum\limits_i |D_i u|^2-q |u|^2 dx \ge 0$,

for every $u \in H_1^q(D)$. Suppose that $q \in C^1(D)$ and $0 < m \leq q(x) \leq M$ for every $x \in D$. Suppose that (a_{ik}) is hermitian and

$$\lambda \sum_{i} |\hat{\xi}_{i}|^{2} \sum_{i} a_{ik}(x) \hat{\xi}_{i} \overline{\hat{\xi}}_{k}$$

for all $x \in \overline{D}$, all ξ and some fixed $\lambda > 0$. Suppose that $a_{ik} \in C^2(D)$, $b_i \in C^1(D)$ and a_{ik} , b_i are bounded in D. Let

$$Eu = \sum_{i,k} D_i(a_{ik}D_ku) + \sum_i b_iD_iu + (p(x) - \mathscr{K})u$$

where $0 < p(x) \leq (\lambda - \mu - \varepsilon)q(x)$ for $x \in \overline{D}$, μ and ε are any fixed positive numbers with $\mu + \varepsilon < \lambda$, and

$$\mathscr{K} \geq rac{1}{\mu} \max_{x \in \overline{D}} \sum_{i} |b_i|^2 \; .$$

Then the Dirichlet problem

$$egin{cases} Eu = f \ in \ D \ u = g \ on \ \dot{D} \ || \ u \mid|_1 < \infty \end{cases}$$

has a weak solution and any two weak solutions differ only on a set of measure zero. [Note: In the usual theorem of this sort, one requires $\mathscr{K} \geq (1/\lambda) \max_{x \in \overline{D}} [\sum_i b_i^2 + \lambda p]$ so that $p(x) - \mathscr{K}$ is necessarily negative. For example, see Hellwig [5].]

Proof. Let

$$\begin{split} B(u, v) &= \int_{\mathcal{D}} \sum_{i,k} a_{ik} D_i u D_k \overline{v} - \sum_k b_k \overline{v} D_k u - (p - \mathscr{H}) u \overline{v} \, dx \\ &= - \int_{\mathcal{D}} \sum_{i,k} u D_i (a_{ik} D_k \overline{v}) - \sum_i u D_k (b_k \overline{v}) + (p - \mathscr{H}) u \overline{v} \, dx \\ &= -(u, E^* v), \quad \text{for } v \in C_0^{\infty}(D) \; . \end{split}$$

we will show

and the result follow from the Lax-Milgram Theorem by the argument in the proof of Theorem 2.1.

Recall μ from the statement and use the inequality derived from $[(\mu/2)^{1/2}\alpha - (\mu/2)^{-1/2}\beta]^2 \ge 0$ to obtain for each k,

$$|\,b_k\overline{u}D_ku\,| \leq rac{1}{\mu}\,|\,b_k\overline{u}\,|^2 + rac{\mu}{4}\,|\,D_ku\,|^2$$
 .

Sum on k,

$$\begin{split} \left| \begin{array}{l} \sum\limits_{k} b_{k} \overline{u} D_{k} u \end{array} \right| &\leq \frac{1}{\mu} | u |^{2} \sum\limits_{k} | b_{k} |^{2} + \frac{\mu}{4} \sum\limits_{k} | D_{k} u |^{2} \\ &\leq \mathscr{K} | u |^{2} + \frac{\mu}{4} \sum\limits_{k} | D_{k} u |^{2} \\ | B(u, u) | &\geq \int_{D} \sum\limits_{i,k} a_{ik} D_{i} u D_{k} \overline{u} - (p - \mathscr{K}) | u |^{2} dx - \int_{D} \left| \sum\limits_{k} b_{k} \overline{u} D_{k} u \right| dx \\ &\geq \int_{D} \lambda \sum\limits_{k} | D_{k} u |^{2} - (\lambda - \mu - \varepsilon) q | u |^{2} + \mathscr{K} | u |^{2} \\ &- \mathscr{K} | u |^{2} - \frac{\mu}{4} \sum\limits_{k} | D_{k} u |^{2} dx \\ &\geq (\lambda - \mu) \int_{D} \sum\limits_{k} | D_{k} u |^{2} - q | u |^{2} dx + \varepsilon \int_{D} q | u |^{2} dx . \end{split}$$

Since both integrals are positive,

$$egin{aligned} &|B(u,\,u)| \geq (\lambda-\mu) {\int_{D}\sum\limits_{k} |D_{k}u|^{2} - q \mid u \mid^{2}} dx \ &|B(u,\,u)| \geq arepsilon {\int_{D}q \mid u \mid^{2}} dx \ . \end{aligned}$$

Let $\delta = 2(\lambda - \mu/\varepsilon) > 0$, then

$$|B(u, u)| \geq rac{\lambda-\mu}{1+\delta} ||u||_q^2 \geq C_2 ||u||_1^2$$

$$egin{aligned} |B(u,v)| &\leq ext{const.} \int_{D} \sum\limits_{i,k} |D_i u| |D_k v| + \sum\limits_k |v| |D_k u| + |u| \cdot |v| \, dx \ &\leq ext{const.} \Big[\sum\limits_{i,k} \left(\int_{D} |D_i u|^2
ight)^{1/2} & igg(\int_{D} |D_k v|^2
ight)^{1/2} \ &+ \sum\limits_k \left(\int_{D} |v|^2
ight)^{1/2} & igg(\int_{D} |D_k u|^2
ight)^{1/2} + \left(\int |u|^2
ight)^{1/2} & igg(\int |v|^2
ight)^{1/2} \ &\leq ext{const.} \Big[\sum\limits_{i,k} ||u||_1 \, ||v||_1 + \sum\limits_k ||v||_1 \, ||u||_1 + ||u||_1 \, ||v||_1 \Big] \ &\leq ext{const.} \, ||u||_1 \, ||v||_1 \, . \end{aligned}$$

3. Examples. Let

$$q(x) = -\sum_{i,k} a_{ik} f_i f_k + D_k (a_{ik} f_i)$$
,

for real f_i , a_{ik} .

3.1. Let

$$a_{ik}=\delta_{ik}, f_i=egin{cases} 1/2x_i & i=1,\,\cdots,\,s\ 0 & i=s+1,\,\cdots,\,n \end{cases}$$
 $1\leq s\leq n$.

Then

$$q(x) = rac{1}{4} \sum_{i=1}^{s} rac{1}{x_i^2}$$

and the inequality is

$$\int_{D}\sum\limits_{k}|\,D_{k}u\,|^{2}-rac{1}{4}\sum\limits_{i=1}^{s}rac{1}{x_{i}^{2}}\,|\,u\,|^{2}dx\geqq 0$$
 .

Notice that this generalizes the well-known inequality

$$\int_{\mathcal{D}} | \, u \, |^2 dx \leq 4 \mu^2 \!\! \int_{\mathcal{D}} \sum\limits_k | \, D_k u \, |^2 dx \;, \qquad u \in \mathring{H}_1 \;,$$

where $\mu = \min_{1 \leq i \leq n} \max_{x_i \in D} |x_i|$.

In particular for s = 1, Theorem 2.1 solves the Dirichlet problem for $\Delta u + p(x_1)u = 0$ where $0 < p(x_1) \leq ((1 - \varepsilon)/4x_1^2)$ and the plane $x_1 = 0$ is not in \overline{D} . This differential equation has an application in Generalized Axially Symmetric Potential Theory where solutions of

$$\frac{\partial}{\partial x}\left(y^{n-2}\frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(y^{n-2}\frac{\partial u}{\partial y}\right)=0$$

are sought (see [7]). If we let $u = y^{-1/2(n-2)}v$, we obtain

$$v_{xx} + v_{yy} - \frac{(n-2)(n-4)}{4y^2} v = 0$$

and $0 < (-(n-2)(n-4)/4) \le 1/4$ when 2 < n < 4.

It sometimes happens that equations of mixed type, that is equations which are elliptic in one part of the plane and hyperbolic in the complementary part can be transformed into equations which are elliptic but which have singular coefficients. The Tricomi equation $yu_{xx} + u_{yy} = 0$ is of this sort. If we let $z = 2/3y^{3/2}$ we obtain $u_{xx} + u_{zz} + (1/3z)u_z = 0$. Now let $v = z^{1/6}u$ and obtain

(*)
$$v_{xx} + v_{zz} + \frac{5}{36} \frac{1}{z^2} v = 0$$
 .

Since 5/36 < 1/4, Theorem 2.1 guarantees a solution to the Dirichlet problem in any domain for which $z \neq 0$. In [3], Bergman uses (*) to study the Tricomi equation by means of his technique of integral operators. His technique is, of course, limited to two dimensions, but there are analogues of (*) in any dimension.

3.2.

$$a_{ik} = \delta_{ik}, f_i = egin{cases} - rac{s-2}{2} rac{x_i}{\sum\limits_{i=1}^s x_i^2} & 1 \leq i \leq s \ & \sum\limits_{i=1}^s x_i^2 & 0 & s \leq i \leq n \end{cases}$$

Then

$$q(x) = rac{(s-2)^2}{4\sum\limits_{i=1}^s x_i^2}$$
 .

In particular, for s = n = 3, $q(x) = (1/4r^2)$ where $r = (\sum_{i=1}^{3} x_i^2)^{1/2}$, and

$$\int_{\mathcal{D}} | \, arpsi u \, |^{\scriptscriptstyle 2} - rac{1}{4r^{\scriptscriptstyle 2}} \, u^{\scriptscriptstyle 2} dx \geqq - rac{1}{2} \int_{\dot{D}} rac{m{r} \cdot m{v}}{r^{\scriptscriptstyle 2}} \, | \, u \, |^{\scriptscriptstyle 2} d\sigma \; .$$

Notice that the right hand side is positive whenever D is the exterior of a region which is starshaped with respect to the origin.

Theorem 1.1 solves the Dirichlet problem for $\Delta u + ((1/4 - \varepsilon)/r^2)u = 0$. This example shows the value of having $\varepsilon > 0$. If we take D to be the exterior of the unit circle, the function $u = r^{-1/2 - \sqrt{\varepsilon}}$ solves $\Delta u + (1/4 - \varepsilon/r^2)u = 0$ with boundary values u = 1 and

$$||\,u\,||_1^q = \left(\int_{{m D}} |\,{m
abla} u\,|^2 + rac{1}{4r^2}\, u^2 dx
ight)^{1/2} < \infty \;.$$

For $\varepsilon = 0$, the expected solution of $\Delta u + (1/4r^2)u = 0$ is $u = r^{-1/2}$, but $||r^{-1/2}||_1^q = \infty$. It is not even clear that the solution is unique.

3.3. Let $a_{ik} = \delta_{ik}$, $\boldsymbol{f} = (f_1, \dots, f_n) = \alpha r^t r$ where $\boldsymbol{r} = (x_1, x_2, \dots, x_n)$. Then

$$\int_{D}\sum\limits_{k} |D_{k}u|^{2} + \left[lpha^{2}r^{2t+2} - lpha(n+t)r^{t}
ight]|u|^{2}dx > 0$$

for every $u \in \mathring{H}_1^q$.

3.4. Let $a_{ii} = x_i^2$, $a_{ik} = 0$ for $i \neq k$, $f_i = -(1/2x_i)$. Then q(x) = (n/4)and Theorem 2.1 applies to $\sum_{k=1}^{n} D_k(x_k^2 D_k u) + \alpha u = f$ where $0 < \alpha < n/4$.

3.5. It is possible to derive from Theorem 1.1 Rayleigh's characterization of the first eigenvalue of $\sum_{i,k} D_i(a_{ik}D_ku) + \lambda qu = 0, u = 0$ on \dot{D} , where q > 0 and continuous on \bar{D} and D is bounded. Let λ_1 be the first eigenvalue and u_1 its eigenfunction. Then $u_1 \neq 0$ in D and we may set $f_i = (D_i u_1/u_1)$. Then

$$\sum_{i,k} a_{ik} f_i f_k + D_i (a_{ik} f_k) = \sum_{i,k} rac{D_i (a_{ik} D_k u_1)}{u_1} \, \lambda_1 q \, \, .$$

Let $u \in C_0^{\infty}(D)$ and K be the support of u. Then

$$\int_{\mathcal{K}}\sum_{i,k}a_{ik}D_{i}uD_{k}u-\lambda_{1}qu^{2}dx\geq0$$

since $f_i u^2 \in C^1(k)$. Since all the functions are bounded this implies that

$$\int_{\mathcal{D}}\sum\limits_{i,k}a_{ik}D_{i}uD_{k}u-\lambda_{1}qu^{2}dx\geqq 0\;,\qquad ext{for every}\;\;u\in C_{_{0}}^{\infty}(D)\;.$$

Since this is the only conclusion of Theorem 1.1 used in the corollary, we have this same inequality valid for all $u \in \mathring{H}_1^q(D)$. That is,

$$\lambda_1 \leq rac{\int_{\mathcal{D}} \sum\limits_{i,k} a_{ik} D_i u D_k u dx}{\int_{\mathcal{D}} q u^2 dx}$$

with equality if and only if $D_i u = f_i u = (D_i u_1/u_1)u$ if and only if $u = ku_1$.

One can employ the technique of this example to obtain inequalities whenever a suitable solution of the string equation is known.

References

1. P. R. Beesack, Integral inequalities of the Wirtinger type, Duke Math. J. 25 (1958), 477-498.

2. D. C. Benson, Inequalities involving integrals of functions and their derivatives, J. Math. Analysis and Applications 17 (1967).

3. S. Bergman, Integral Operators in the Theory of Linear Partial Differential Equations, Springer-Verlag, 1961.

4. F. E. Browder, The Dirichlet problem for linear elliptic equations of arbitrary even order with variable coefficients, Proc. N.A.S. **38** (1952), 230-235.

5. Gunter Hellwig, Partial Differential Equations, Blaisdell.

6. L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math. 8 (1955), 649-675.

7. A. Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953).

Received October 3, 1966. This paper is part of the author's doctoral dissertation which was directed by Assoc. Prof. Donald C. Benson.

UNIVERSITY OF CALIFORNIA, DAVIS

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California

J. P. JANS University of Washington Seattle, Washington 98105 J. Dugundji

University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

F. WOLF

E. F. BECKENBACH

B. H. NEUMANN

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of MathematicsVol. 22, No. 1January, 1967

Charles A. Akemann, <i>Some mapping properties of the group algebras of a compact group</i>	1
A. V. Boyd, <i>Note on a paper by Uppuluri</i>	9
Thomas Craig Brown, A semigroup union of disjoint locally finite subsemigroups which is not locally finite	11
Richard Thomas Bumby and Everett C. Dade, <i>Remark on a problem of</i> <i>Niven and Zuckerman</i>	15
James Calvert, An integral inequality with applications to the Dirichlet problem	19
Jack Gary Ceder and Terrance Laverne Pearson, <i>On products of maximally</i> <i>resolvable spaces</i>	31
William Guignard Faris, <i>The product formula for semigroups defined by</i> <i>Friedrichs extensions</i>	47
Robert S. Freeman, <i>Closed operators and their adjoints associated with elliptic differential operators</i>	71
Thomas Lee Hayden, <i>The extension of bilinear functionals</i>	99
Gloria Conyers Hewitt, Limits in certain classes of abstract algebras	109
Tilla Weinstein, <i>The dilatation of some standard mappings</i>	117
Mitsuru Nakai, On Evans' kernel	125
Ernest Levane Roetman, On the biharmonic wave equation	139
Malcolm Jay Sherman, <i>Operators and inner functions</i>	159
Walter Laws Smith, On the weak law of large numbers and the generalized elementary renewal theorem	171
A. J. Ward, On H-equivalence of uniformities: The Isbell-Smith problem	189