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{X.} is a sequence of independent, nonnegative, random
variabies and G,(¢) = P{X, + -+ X, = z}. {a.} is a sequence

of nonnegative constants such that, for some a >0, 7 >0, and
function of slow growth L(x),

y aNYL(N) .
2110” ——_F(l“H’) , a8 N—oo.

A Generalized Elementary Renewal Theorem (GERT) gives
conditions such that, for some . > 0,

. L{x) X\
(*) Uz :Za,GT(xN——a—<—>, as r— oo .
) "~ Tar

The Weak Low of Large Numbers (WLLN) states that
(Xi+ -+ X))n— u, as n— oo, in probability. Theorem 1
proves that WLLN implies (*). Theorem 3 proves that (*)
implies WLLN if, additionally, it is given that

(i) P P{X; > neg—0 as n— oo, for every small ¢ > 0;

ne

(ii) for some ¢ >0, n~ ' 7 P{X; > z}dx is a bounded
function of n, Theorem 2 supp&ses the {X,} to have finite
expectations and proves (¥) implies WLLN if it is given that

lim sup XA Xt A X P

n—co n

b

in which case (X, + --- + & X,)/n necessarily tends to u
as n—oo, Finally, an example shows that (*) can hold while
the WLLN fails to hold. Much use is made of the fact that
a necessary and sufficient condition for the WLLN is that,
for all small ¢ > 0,

%SME;‘ PX; > x}de — u, as n—>o00 ,
0

Let {X,},n=1,2,---, be a sequence of independent, nonnegative,
random variables; write F,(x) = P{X, <zh S, =X+ X, + -+ + X,;;
G,(x) = P{S, < «}; when the first moments exist, write p, = £ X,.
Let {a,} be a sequence of nonnegative constants such that, for some
constants & > 0, v > 0, and some function of slow growth L(z),

(]_,]_) %anNM as N — oo !

n=t I'ad+q)’
1 We carry the factor I"(1+y) to simplify comparisons with Smith (1964).
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172 WALTER L. SMITH

By a Generalized Elementary Renewal Theorem (GERT) we shall mean
a theorem that establishes conditions such that

(1.2) S, 0.G,(0) ~ O (2

A+ \p

for some constant g > 0. The special case of (1.2) when a, =1 for
all » is the Elementary Renewal Theorem (ERT).

By a Weak Law of Large Numbers (WLLN) we shall mean a
theorem that establishes conditions such that

S,
n

7
>,asx—»oo.

(1.3)

— M, as m— oo .

in probability.

This paper extends and leans heavily upon an earlier one (Smith,
1964) which we shall henceforth refer to simply as S. It will be
concerned with weakening conditions of S for a GERT to hold for
nonnegative random variables (specifically, we drop the assumption of
finite means) and with investigating to what extent a GERT implies
the WLLN and vice versa.

Two conditions play an important role in our work. They are

(A) For every small ¢ > 0,

Sl — Fyne)l—0, as n— oo ;
i=1

(B) For every small ¢ > 0,

71@- Sm Sn‘_, {1 — Fy(x)}de — p, as n— co ,
0 j=1
It is an easy exercise to show that (B) implies (A); all we can infer
from (A), concerning (B), is that the upper and lower limits, as
n — oo, of
1 ne n
L1751 - Fids
n Jo j=t
are independent of the small ¢ > 0.

It is known from the work of Bobrov (1939), described by Gnedenko
and Kolmogorov (1954; see especially page 141), that condition (B) is
necessary and sufficient for the WLLN (1.3) to hold. Thus the WLLN
implies (A) and (B). It is interesting, therefore, that we are able to
prove (in §2):

THEOREM 1. A sufficient condition for the Generalized FEle-
mentary Renewal Theorem (1.2) is that (B) shall hold. Thus the
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WLLN ¢mplies the GERT.®

The question naturally arises, dces the holding of a GERT (1.2)
imply the truth of the WLLN? After some efforts we have discovered
that the answer to this question is in the negative. In §5 we shall
present the necessary counter-example for which (1.2) is true and (1.3)
false. However, it transpires that the validity of a GERT does imply
the WLLN if a weak supplemental condition is given to be satisfied.
The situation is perhaps comparable to that arising with Abelian and
Tauberian theorems in analysis; the Abelian theorem usually holds
“in general,” the converse Tauberian theorem usually requires the
satisfaction of an extra “Tauberian Condition.” We shall prove, in
§3 and §4 the following two theorems relevant to this paragraph.

THEOREM 2. If the GERT (1.2) holds, if all the means p, =
& X, are finite, and if

limsup Lt et e )
neoo n

thern the WLLN (1.3) holds and

ottt pt
n

L as n— oo,

THEOREM 3. Suppose the GERT (1.2) holds together with con-
ditions (A) and the following:
(C) For some ¢ >0,

lim sup - S Sl — Fy@)de < o .
n—oo n Jo

Then the WLLN (1.8) holds. Condition (C) must be satisfied if
there exists mo sequence {n,} such that w;' >k X, tends to imfinity
in probability.

As we have said, this paper leans heavily on S; one result buried
in S turns out to be especially important. The argument of §5 of S
(pp. 689-698) essentially (if not ostensibly) proves the following:

FUNDAMENTAL LEMMA. Suppose condition (C) holds and there
exists a 6 > 0, such that, for every e > 0,

lim inf 1 S Sl — Fyo)de =6 .
n—00 n Jo

2 Consequently it is impossible to have (1.2) and (1.3) holding simultaneously,
but for different values of p.



174 WALTER L. SMITH

Then for any small n > 0 we can find o large C(n) such that
”gzanGn(m) < na’ L(x)

for all large x.

One further comment is called for. If v =0 in (1.2) the constant
o disappears from the right-hand said and we have a simpler relation

(1.4) S 0,G,(@) ~ aL(@), as @ — oo .

It seems that this special case needs special treatment, and that (1.4)
will hold under considerably more general conditions than Theorem 1
suggests; we hope to study (1.4) elsewhere, and throughout this
present paper take v > 0.

2. Proof of Theorem 1. To begin with we shall establish
(leaning heavily on arguments in S) the following.

LEmMMA 2.1, Under conditions (A) and (B) there is an unbounded
nondecreasing function l(n) such that

/
r=1J0

lim L S - Fua)de = g
oo 1,

Proof. From (A) and (B) we can evidently find an unbounded
nondecreasing Mn) such that, as n— oo ,

S rial-e.
2.2) "M s - Feyds— g

Lemma 9 of S then shows that we can find another unbounded
nondecreasing w(n) < Mn) and such that w(n)/n decreases to zero as
n— oo, But

memu—MMM§ﬁgﬂﬁ‘ﬂ<n»'

n Jnizm M)

Since the right member tends to zero as n— -, we can infer from
(2.1) and (2.2) that, as #— oo,

2.3) }f;{l—Fj( " )}-»o,

i=t w(n)




GENERALIZED ELEMENTARY RENEWAL THEOREM 175

2.4) LS”’”’“‘)
n

S {1 - Fj(x)}d:v —p.
0

Let I(n) increase much more slowly than w(n); we make the
function I(n) more precise later. Support ¢(n) is the least integer
such that »/l(r) = n/w(n) for all » = t(n). Then, for any ¢ > 0,

(2.5) n__ o1 ¢
w(n)t(n) l(t(n))

A

for all large n.
Since w(n) ] we have, for large =,

wn) = @0(M> .

w(n)
Thus, if
s(n) = n log w(n) .
w(n)
we have
s(nm) n

= .
log w(s(n)) — w(n)

But we may assume »/w(n) | with =, and hence n/log w(n)) 1 also.
Thus, if I(n) = log w(n) we have »/l(r) = n/w(n) for all r = s(n).
Hence t(n) < s(n). But s(n)/n — 0; thus t(n)/n— 0.

If we set

t(m) nlw
T =+ 5|7 - P
/}’L 1 0
then, by (2.5),

Tyn) < (-@>{% S0 - Fonas)

n n)

Thus Ty(n)— 0 as n— .
If we set
1 & (e
T == 5 " - P
N j=t(n)+1 Jo
then it is clear that (¢ — ¢) < Ty(n) + Ty(n) for large », and hence
that Ty(n) > p — 2¢ for large n. Therefore

lim inf L 3, S’” L — Fya)de = p.
n =1

n—oo
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But

1 i Smm{l _ Fio)de < _1_i Sn/lm){l — Fy(x)}de
n " '

j=1Jo Jj=1

since j/l(7) 1, and this, in turn, is smaller than
1 n £n
L3 - Fiends,
n i=1do

for large n, since l(n) — «. Thus

lim sup = 3 S“’”’{l _ Fya)ds < p

n—oo n j=1Jo

and the lemma is proved.
To prove the theorem we begin by setting
Y, =X, if X, < r/l(r)
= r/l{r) otherwise.

For ¢ > 0 we write
L(e) = LS“ S PLY; > o)de
n Jo
But if » < n, for all large n, r/l(r) < n/l(n) < en, so that
1 /i(r)
L) = = 52" - Fde
and hence, by Lemma 2.1, L,(¢) — ¢t as n— oo,

The sequence {Y,} satisfies the conditions of Theorem 1 of S.
Thus

(2.6) S a.P(Y, £ 1) ~ %—‘@% ,

as & — oo,
Furthermore both {Y,} and {X,} satisfy conditions (A) and (B).
Thus, by the result of Bobrov already quoted, as n— oo,

K+"'+Yn__)
n

X + o0+ X,
n

Hence, if Z, =X, - Y,,

/, in probability,

— ¢, in probability.

i+ oo + 7,
n

— 0, in probability.



GENERALIZED ELEMENTARY RENEWAL THEOREM 177

Plainly G () = P{ X, + «-- + X, Ea2} S P{Y, + «-+ + Y, < a}.
In all that follows let us write

¥(2) = 217 a,G.(2) .

Thus to prove our theorem we need only show

2.7) lim inf —2(&)_ > a ,
sow 27 L() L+ )

It is not hard to show that {Y, + ¢} also satisfies Theorem 1 of
S, with g increased to p + ¢. Thus

1 < «
—_— > e, PlY,+ Y, + e+ Y, FrES O~ .
' L(x) »=1 { : } (/l +eyl'd + )

Also, by the “fundamental lemma” of §1, given any n > 0 we
can find C = C(») such that

1 O_Q‘ L) <
x’ll@v) ngiﬂ anlj{)q + + I:L_F ne = x} < v

for all large . Therefore

. . 1 Cx
lim inf a,P{Y,+ «++ +Y, +ne=a}
(2.8) R I * 1

> &« —
T (e eyl + )

n.

Now

PX,+ -+ X, =}
2PY,+ o+ Y, +nesa & Z,+ -0 + Z, < ne}
=ZP{Y,+ -+ Y, +nesa}
—PZ + -+ Z, > ne},

and so

Cz z
S0 PX + oo + X, S0} =50, P{Y, + oo + Y, + ne < 1}
n=1 n=1

2.9) .
— S\ @, P{Z + e+ Z, > ne)

But P{Z, + +++- + Z, > ne}— 0 as m— o, so that one can establish
easily that

Cli @ PiZ, + o+ + Z, > ne} = 0@ L(@)) .
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Hence, from (2.8) and (2.9) and the arbitrariness of 5 we finally deduce
the desired (2.7).

3. Proof of Theorem 2. For this theorem we shall make
considerable use of Laplace-Stieltjes transforms., If A(x), say, is a
function of bounded variation in every interval we write

A%(s) = S‘: = A(x) ,

for this transform, for those values of s which make the integral
exist. We shall restrict s to real values.
To begin we need:

LEMMA 3.1. As k— oo, for fixed s >0, 0 > 0,

os ak”L(k)S
k o)

4
exp (—sx)x™ ' dx .
0

ﬁ a, exp — 2
r=1
Proof. (Recall v > 0) Let D,(x) be the distribution function
associated with atoms of probability

.
k

> a,

r=1

at the points pr/k, for » = 1,2, ..., k. Then it is easy to see that

[xk]o
lim D, () = lim 24 & _ (ﬁ)T ,
k00 Kk—oco Z; a, 1Y

from (1.1) and the familiar properties of functions of slow growth.
Thus, by the continuity theorem for the Laplace transform, we find
that, as k— 0,

Spe—”dD,,(ac) X Spe—”acf”ldx .
0 p" 0
The lemma is an immediate consequence of this limit.

LEMMA 3.2, As k— oo, for fixed s >0, 0 >0,

w05 oL (k
k I'(v) \p

i @, exXp — >Trexp (—sx)x'de .
k1 3

Proof. We have that

o o k
> a,exp — TOS > — >la.exp — ros
k41 k r=1 r=1 k
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Lemma 4 of S (p. 682) shows that

g}larexp — T—zi ~a—er<k>

ors’ ]

as k— co. This relation and Lemma 3.1 now establish Lemma 3.2,

if we use the relation
r I'(7)

e~ dy =
0 s’

, v > 0.

Let us now turn to the proof of the theorem. Note that G,(x) is
the d.f. of X, + X, + --- + X, and thus is the d.f. of a nonnegative
random variable with mean ¢4 + p, + -+ + p,. Thus, by Jensen’s
inequality, for real s > 0,

Gi(s) = e-mr e
Further, if we set

N = limsup £t
00 n

it follows that, for an arbitrary ¢ > 0,
3.1) Gi(s) = e tr+ers

for all s > 0 and all sufficiently large #.
Now, from Lemma 3.1 and (3.1) we can conclude that

liminf — L __ wr(g)
k—eo er(k) r=1 k
(3.2)
g LS ()\+£)e——sxx;‘_1dx .
(N + &) (7) Jo
Evidently,

Gii(s) = FY(s)F5(s) -+« Fi(s) .

If r >k, Fiji(s). - - F¥(s) is the generating function of X,y + -+ X,.
Thus, for all large k, all s > 0,

e (8) < s B (s) Z e

Let us set

Then the last inequality and Lemma 3.2 show that, as &k — o,
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iminf £k < AT TR
lim inf T L(k) - YN arF“‘*”(E) F( )

>_ % r e~ dx .
TN ey (y) e

Let

Auls) = er(k) % 0.6:(1 ok

B0 = o il ) ()

Then (3.2) and the last inequality prove, in view of the arbitrariness
of ¢,

(3-3) Hm inf Ak(S) g @ Sze~smxr—1dx
e NI () Jo
(3.4) lim inf B,(s) = 4 Swe‘”:cf"ldx .
NI(7) Ja

But, if we recall that

U@) = 3 a,6.() ,
then
(%) :
i = A+ e”ksG,’f<%>Bk(s) :
However, our assumption that the GERT holds implies (see S):

pe(s) ~ DAL

= as s|0,
ns
so that
2
(3.5) (lc> . SN S
EL(k) s’ )
Thus

2
S e

im su ””G’f<i>} 2 Swe‘” =1q
{ k_mpe p T M[’(’y) ; X X
«

b

mr(

A

#TST
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which implies
lim sup e"ksG,T<i>
ko0 ]C
(M — y'f) ()
p?’ ST

re—”xT“ldx
s

refoey —11

g e~ “u " du
s

A

1+

=1+

But e»*Gj(s/k) =z 1. Thus we must have (A/u)’ — 1= 0. Since we
are given that M < ¢ we are forced to conclude that » = g and that

(3.6) w@ﬂéyﬂLash»m.

From (3.6) we can infer that

(3.7) S v,—0, as k— co |
I

in probability. Thus, given any small ¢ > 0, we have, for all large n,

P{S, £ np,+e)}>1—¢.

Therefore
Y(ny, +¢) = 57; a.P{S, < ny, + ¢
(3.8) = {}3 aT}P{Sn < ny, + &

v

a-offia}.
r=1
If we set x, = n(v, -+ ¢) then 2, —  as n— o and

T(x,) a
2l L(x,) wrad+v)

Thus, from (3.8),

(1 — &) limsup 2y Oy = d .
v @LL(w,) DL T )

From this inequality and well-known properties of functions of slow
growth (plus the fact that (v, + ¢) lies in a bounded interval not
containing the origin) we infer
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A

. 1
GOy S

Since ¢ is arbitrary we may deduce that

liminfy, = ¢
and that v, — ¢ as n— <o (since we are given limsupy, < g¢). This
proves part of the theorem. However, from (3.7) we deduce the
W.L.L.N.:

S.,
n

'—>[,C, as n— oo ,

in probability. This completes the proof.

4. Proof of Theorem 3. The Laplace transform argument of
the last section does not seem to carry over to the case when means
are infinite. We are forced to the following quite different approach.

Let us choose ¢ > 0 and set

n

va(e) = = 3| — Fuade .

j=1

LEmmA 4.1, If v.(¢) ts bounded, then for any n > 0,
P{S, = a[v.(e) — 7]} = 0(n, €)

uniformly in n, where p(n, ¢) can be made arbitrarily small by
choosing ¢ small enough.

Proof. Suppose v,(¢) < A for all » (and note, by the way, that
this inequality is preserved if ¢ is reduced). By a much used argument
of S (see p. 679 of that paper), we get, for every ¢ > 0,

P{S, = n[v,(e) — 9]} = e», say,
where
Q.(t) = ntv,(e)|1 — e™™*] — niy .
Thus
Q.13 < A 11— exp -7 — L
1'e Ve
and the right-hand side of this last inequality can be made as large

and negative as we wish by choosing ¢ small enough. This establishes
the lemma.
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LEvmMma 4.2. If a G.E.R.T. holds, together with condition (A),
then

liminfy,(e) = .

n—oo

Proof. Suppose there is a number g, < p such that v,(¢) < g, for
infinitely many n. These inequalities are not upset if ¢ is reduced.
Define a truncation scheme as follows:

X,.,= X, if X, < ne,
= ne if X, > ne,
for r,n=1,2,8,.... Set |
T, =X+ Xon+ o0 + X, .
The argument of Lemma 4.1 applies to 7, and shows
P{T, < nlv.(e) — 7} = o(n, €) .

But & T, = ny,(¢); thus we can employ an argument already used in
S, as follows.
Let %, 7, be two small positive numbers.

V,(€) = {Pu(e) — I PAT, = n[v.() + 7.1} — P{T, = n[v.(e) — n.l}]
+ pue) + 1 — P{T. = n[v.(e) + 7.1}] .
Let us suppose 7, > 7. Then

[7. = pIP{T. = n[v.u(e) + 7al}
= 7. — [Vu(e) — mIP{T, = nfv.(e) —nl},

and so

P{T, = nfv,(6) + 7}] = —L— — [v,(e) — nlo(ns, ©)

2 1

Suppose we choose 7, =%} and assume n is such that v,(¢e) = p.
Then we have

P{T, = n[v.(e) + .} =2 1 — 0(ps, €)

where we can make d(1,, ¢) as small as we like by first choosing 7,
and then e.
Put

1) = 3 PLX; > ns} .

By condition (A) we know y,.(e)— 0 as n-— o
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Put
@y = nY.E) + 7]
Then it is not hard to see that
P{S, = w.} = P{T, < @,} — %a.(e) .

Now we have, as in the previous section,
¥(2,) = P{S, = @} S
iz
= [1 - 5(772’ 8) - Xn(s)] j%aj ’

if n is such that v,(e) = p..
Thus

liminf D@ T2V > 1 50 ¢y
n—00 #l

ie.
.
12l 21— oo
Since 7, and ¢ can be chosen arbitrarily small we conclude £, = .
This proves the lemma.

LemMmA 4.3. If v,(¢) ts unbounded for some >0 then there
exists a sequence of integers {n,} such that S,,k/n,c tends, in probability,
to infinity as k increases.

Proof. Suppose that for an arbitrarily large A we can always
find n such that v,(¢) > A. This implies that Q,.(¢) > A, if we set

Q@) = 5|1 — Fnupan

But, since Q,(x) is the indefinite integral of a nonincreasing integrand,
we must therefore have Q,(x) > (z/¢)A for all x < ¢; plainly Q,.(x) > A
for all x > . Thus, if we denote the ordinary Laplace transform of
Q.(x) by Q%s), then
0 A ¢ —ST “ —82
Qa(s) > —eg we—*=dy + AS e—**dx
A

-,

But computation shows that
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Qis) = s S {L — Fi(s/m)}
= s*R,(s), say .

Hence we have shown that

R.(s) < As(l—s—:““> :

If we observe that
Gr(s/n) < e Fnl®

then it follows that

Gx(s/n) < exp {— As(l—_eii>} .

&s

If we restrict s to the interval (0,¢™), since we can choose A
arbitrarily large, there will be a sequence of integers {n,} such that
Gr.(s/n;) tends to zero as k increases, at every s-point in (0,e™).
This proves the lemma.,

We are now fully prepared for our proof of the theorem. Since
a G.E.R.T. is assumed to hold, we have

- N al(x) [(x
%‘larGr(a/) 1+ (g) ’

Let us fix £ and for reasons to emerge later suppose & > p. Then,
as n - <o,

F(l + ’7) o ~ ag)’
it S BL A G, —
n L(n) ;};1 @, (n5) ©

Under the hypotheses of the theorem the fundamental lemma applies.
Thus, if we choose a small 7 > 0 we can find C = C(y) such that

I'r+v & .
WI(m) e ) < @B

for all large n (since L{({n)/L{(n)—1). Thus

. N ["(1 + ,-Y) Cné N 1 _
(1) tim int LEA 51 0,609 = a{ - — ).

At this point we are led to consider

S a.6.md) =S, say.
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Suppose @ < . Set 2p* = ¢ — w. By Lemma 4.2 we see that
(whatever fixed ¢ we choose) v,(¢) — n* > w for all large n. Thus,
by Lemma 4.1, P{S, < nw} =< o(p*,¢) for all large n. Since ¢ is
arbitrary in this result, and since o(y*, ) —0 as ¢— 0, we infer

(4.2) P{S, = nw}— 0 ag n— <

for any fixed @ < p.
Let n, be the least integer such that n,w = né.

oné Cné
> a,G.(né) = G, (né) X a,

Cnt
g Gnl(nlw) ZA ar .
Kt
But we have just seen that G,(n®w)— 0 for a fixed w < . Thus we
can conclude that
cné

> a.G.(nE) = o(n’ L(n)) .

™

Thus
1 i a,.
1' Z.n(n) < l n+1
fm sup Gy = lmsu 28

- __C_“__{_S_T _ 1} .
'+ twr
But Xy(n) does not depend on ®, so we may allow ® | ¢ and obtain

: Zl(n) a _EL .
hr?iup n' L(n) = 1+ ) {/ﬂ 1} )

From (4.1) we then deduce that

e LA ¢
p LA+ o wl
hrffbl—vlon znTL(n) %aTGT(/nE) = a(l 77)

However, 7 is arbitrarily small, so we must have

(44

.. 1 "
f—— > = .
lim in W L) TZ:Ia,GT(nS) = Ta

n—oo

But since G.(n&) < 1 necessarily, this inequality implies

1 3 «
Wi AT Ty

as n— co; this limit holding for any fixed & > p.
Take a constant ¢, 1 < ¢ < &/p. Then, as n — oo,
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e St $)) = gty -

Thus
. 1 e G.nf) o a
lim inf {—__— , = } =z -
G L 2 T Ty Lemy = % = Ta 1)

which implies
1 (1 _ L) lim inf G,(n€) = 1
c?’

¢’ n—sco

and thus that
G.(n&) —1 as n— oo,

whenever & > p. But (4.2) states that G,(nw)— 0 as n— < whenever
® < p. Thus we have established that S,/n tends to g in probability
as n— oo, i.e. the W.L.L.N. holds, and the theorem is proved.

5. A counter-example. For simplicity we shall deal with the

ERT and the renewal function

H@) = 3, G,(@) ,

rather than with the more complicated GERT.
Let =, have a d.f. F, (x) such that, for some v > 1,

F(s) = exp [—7&1%_1(—1—36—62)6{%] .

2

The right-hand side of this equation is recognizably the Laplace-Stieltjes
transform of a nonnegative infinitely divisible random variable,

Then

H*(s) = 5’2 exp [“’YSn 1-— e-us>du:| ,

S

Thus, as s | 0+,
(5.1) sH*(s) — rexp [~A/Sx(1 — e~”>dv]dm .
[ 0 v

Let us write J for the integral on the right. Then J will be finite
since v > 1. Plainly by varying v we can give J any real positive
value. However, by a well-known Tauberian theorem we have from

(5.1) the ERT result
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H(x) ~ Jx, as ©— oo,

Now
Gi(s) = exp :—“/Sm<ﬂ>dv]

and so

6:(2) = e (1o
= F¥(s).

Thus (X, + X, + -+ + X,)/n has the same d.f. as has X,. This
completes our demonstration of a sequence {X,} which satisfies the
ERT by not the WLLN.
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