A NONIMBEDDING THEOREM OF NILPOTENT LIE ALGEBRAS

CHONG-YUN CHAO
A NONIMBEDDING THEOREM OF NILPOTENT LIE ALGEBRAS

CHONG-YUN CHAO

There are many similarities between groups of prime power order and nilpotent Lie algebras. Here we present a non-imbedding theorem in nilpotent Lie algebras which is an analogue of a nonimbedding theorem of Burnside in groups of prime power order.

Burnside in [2] proved the following two theorems:

**Theorem B1.** A nonabelian group whose center is cyclic cannot be the derived group of a $p$-group.

**Theorem B2.** A nonabelian group, the index of whose derived group is $p^2$, cannot be the derived group of a $p$-group.

Hobby in [3] proved the following analogues of the theorems of Burnside:

**Theorem H1.** If $H$ is a nonabelian group whose center is cyclic, then $H$ cannot be the Frattini subgroup of any $p$-group.

**Theorem H2.** A nonabelian group, the index of whose derived group is $p^2$, cannot be the Frattini subgroup of any $p$-group.

The purpose of this note is to establish the analogues of the theorems of Burnside in Lie algebras. The main result is the following Theorem 1. The Lie algebras which we consider here are finite dimensional over an arbitrary field $F$. The Frattini subalgebra $\phi(M)$ of a Lie algebra $M$ is defined as the intersection of all maximal subalgebras of $M$. We also show that in a nilpotent Lie algebra $N$, $\phi(N)$ coincides with the derived algebra of $N$. Hence, the analogues of Hobby’s theorems in Lie algebras are the same as the analogues of Burnside’s theorems in Lie algebras.

**Theorem 1.** A nonabelian Lie algebra $L$ whose center is one dimensional cannot be any $N_i$, $i \geq 1$, of a nilpotent Lie algebra $N$ where $N = N_0 \supset N_1 \supset N_2 \supset \cdots \supset N_i \supset 0$ is the lower central series of $N$.

**Proof.** Suppose the contrary, i.e., $L = N_i$ for some $i$, $1 \leq i < t$,
in \( N \). Since \( L \) is nonabelian, \( L \neq N_t \). Let \( z \) be a basis of the center of \( L \), denoted by \( Z(L) \). The following Jacobi identity
\[
[[u, z], x] + [[z, x], u] + [[x, u], z] = 0
\]
holds for every \( u \in N \) and every \( x \in L \). Since \( z \in Z(L) \), the second term of the identity zero. The third term of the identity is also zero since \( L \) is \( \mathcal{N}^* \) and \( N_t \) is an ideal in \( N \). Hence, we have \([u, z], x] = 0 \) for every \( x \in L \) and every \( u \in N \), i.e., \([u, z] \in Z(L) \) and \([u, z] = a_u z \) where \( a_u \in F \).

There are two cases: (1) If \( a_u \neq 0 \) for some \( u \in N \), then the lower central series of \( N \) never reaches zero, that is a contradiction to \( N \) being nilpotent. (2) The case \([u, z] = 0 \) for every \( u \in N \). Then \( z \in Z(N) \), i.e., \( Z(L) \subseteq Z(N) \). Since \( N/Z(L) \) is nilpotent, we have \((N/Z(L)) \supset (N_i/Z(L)) \supset \cdots \supset (N_1/Z(L)) = (L/Z(L)) \supset \cdots \supset (N_t/Z(L)) \supset 0 \) where we have \( N_t = Z(L) \) since \( N_i \subseteq Z(N) \) and \( L = N_t \) and the dimension of \( Z(L) \) is one. There is a nonzero \( \bar{y} \in Z(N/Z(L)) \cap (L/Z(L)), \) i.e., \( \bar{y} \in (N_{t-1}/Z(L)) \). Then \([\bar{y}, \bar{v}] = 0 \) for every \( \bar{v} \in N/Z(L), \) i.e., \([y, v] = a_{uv} z \) where \( a_{uv} \in F \), \( \bar{y} = y + Z(L) \) and \( \bar{v} = v + Z(L) \). Let \( w \) be any element in \( N \), by using Jacobi identity, we have
\[
[y, [v, w]] = [a_{uv} z, w] + [v, a_{uv} z] = 0 ,
\]
i.e., \( y \) commutes with every element in \( N_t \). In particular, \( y \) commutes with every element in \( L \). That contradicts the dimension of \( Z(L) \) being one. Hence, the proof is completed.

**Theorem 2.** A nonabelian Lie algebra \( L \), the dimension of \((L/L_1)\) is 2, cannot be any \( N_t, \) \( t \geq 1 \), of a nilpotent Lie algebra \( N \) where \( N = N_0 \supset N_1 \supset N_2 \supset \cdots \supset N_t \supset 0 \) is the lower central series of \( N \).

**Proof.** Suppose the contrary, i.e., \( L \) is some \( N_t, \) \( t < i \leq 1 \). Then \( L \) is nilpotent. We claim that the dimension of \( L/L_i \), denoted by \( \dim (L/L_i) \), is 2 implying that \( \dim (L/L_i) = 1 \). Suppose \( \dim (L/L_i) > 1 \), then there exist linearly independent vectors \( \bar{x} \) and \( \bar{y} \) in \( L_i = L_{i-1}/L_2 \), and there also exist linearly independent vectors \( \bar{u} \) and \( \bar{v} \) in a complement \( \bar{C} \) of \( L_i \) in \( L \) such that \([\bar{u}, \bar{v}] = \bar{x} \). Similarly, there exist \( \bar{u}', \bar{v}' \in \bar{C} \) such that \([\bar{u}', \bar{v}'] = \bar{y} \). Since \( \dim \bar{C} = 2 \), \([\bar{u}', \bar{v}'] = a[\bar{u}, \bar{v}] \) where \( a \in F \). This contradicts the linear independence of \( \bar{x} \) and \( \bar{y} \).

Hence, \( \dim (L/L_i) = 1 \).

Since \( L_2 \) is a characteristic ideal of \( L \), \( L_2 \) is an ideal in \( N \). Then, the Lie algebra \( N/L_2 \) contains \( L/L_2 \) as a term in its lower central series. Since the center of \( L/L_2 \) is one dimensional and \( L/L_2 \) is nonabelian, this is impossible by Theorem 1.
THEOREM 3. If $N$ is a nilpotent Lie algebra, then $\phi(N) = N_1$.

Proof. If $N$ is abelian then $\phi(N) = N_1 = 0$. Consider that $N$ is nilpotent and nonabelian: Let $u_1, u_2, \ldots, u_k$ be a basis a complementary subspace $U$ of $N_1$ in $N$, it is easy to verify that $k$ must be $\geq 2$, and let $U_i = ((u_i)) + \cdots + ((u_{i-1})) + ((u_{i+1})) + \cdots + ((u_k)) + N_1$, $i = 1, 2, \ldots, k$, where the sums are direct sums of vector spaces. Clearly, each $U_i$ is a maximal subalgebra of $N$. Then $\phi(N) \subseteq \bigcap_{i=1}^k U_i = N_1$.

Now, we show that $\phi(N) \cong N_1$. Let $M_a$ be a maximal subalgebra of $N$. It follows from Proposition 3 on p. 56 in [1] that every maximal subalgebra in a nilpotent Lie algebra is an ideal. Hence, $M_a$ is an indeal in $N$. Let $x$ be a nonzero vector in $N$ and $x \notin M_a$, then the direct sum of the vector spaces $(x)$ and $M_a$ constitutes a subalgebra. Since $M_a$ is maximal, $(x) + M_a = N$. Since $M_a$ is an ideal of $N$ and since $N/M_a$ is of dimension one and since $N/M_a$ is nilpotent, we have

$$N/M_a \cong N_1 M_a = 0,$$

i.e., $M_a \cong N_1$ for any maximal subalgebra $M_a$. Consequently, $\phi(N) = \bigcap_a N_a \cong N_1$, and $\phi(N) = N_1$.

COROLLARY 1. If $L$ is a nonabelian Lie algebra whose center is one dimensional, then $L$ cannot be the Frattini subalgebra of any nilpotent Lie algebra.

It follows from Theorem 3 and Theorem 1.

COROLLARY 2. A nonabelian Lie algebra $L$, dim \((L/L_1) = 2\), cannot be the Frattini subalgebra of any nilpotent Lie algebra.

It follows from Theorem 3 and Theorem 2.

Our Theorem 1 and Theorem 2 contain the analogues of Theorem B1 and Theorem B2 respectively. Corollary 1 and Corollary 2 of Theorem 3 are the analogues of Theorem H1 and Theorem H2 respectively.

REMARK. The following example shows that for each integer $n \geq 3$ there is a nonabelian nilpotent Lie algebra $L$ of dimension $n$ whose center is one dimensional (also, the dimension of $L/L_1$ is 2): Let $L = ((x_1, x_2, \ldots, x_n))$ with a bilinear anti-symmetric bracket multiplication such that $[x_i, x_i] = x_{i+1}$ for $i = 2, 3, \ldots, n - 1$, and all other products are zero.
REFERENCES


Received July 19, 1966, and in revised form August 1, 1966.

UNIVERSITY OF PITTSBURGH
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Frank Baum</td>
<td>Local isomorphism of compact connected Lie groups</td>
<td>197</td>
</tr>
<tr>
<td>Lowell Wayne Beineke, Frank Harary and Michael David Plummer</td>
<td>On the critical lines of a graph</td>
<td>205</td>
</tr>
<tr>
<td>Larry Eugene Bobisud</td>
<td>On the behavior of the solution of the telegraphist's equation for large velocities</td>
<td>213</td>
</tr>
<tr>
<td>Richard Thomas Bumby</td>
<td>Irreducible integers in Galois extensions</td>
<td>221</td>
</tr>
<tr>
<td>Chong-Yun Chao</td>
<td>A nonimbedding theorem of nilpotent Lie algebras</td>
<td>231</td>
</tr>
<tr>
<td>Peter Crawley</td>
<td>Abelian p-groups determined by their Ulm sequences</td>
<td>235</td>
</tr>
<tr>
<td>Bernard Russel Gelbaum</td>
<td>Tensor products of group algebras</td>
<td>241</td>
</tr>
<tr>
<td>Newton Seymour Hawley</td>
<td>Weierstrass points of plane domains</td>
<td>251</td>
</tr>
<tr>
<td>Paul Daniel Hill</td>
<td>On quasi-isomorphic invariants of primary groups</td>
<td>257</td>
</tr>
<tr>
<td>Melvyn Klein</td>
<td>Estimates for the transfinite diameter with applications to conformal mapping</td>
<td>267</td>
</tr>
<tr>
<td>Frederick M. Lister</td>
<td>Simplifying intersections of disks in Bing’s side approximation theorem</td>
<td>281</td>
</tr>
<tr>
<td>Charles Wisson McArthur</td>
<td>On a theorem of Orlicz and Pettis</td>
<td>297</td>
</tr>
<tr>
<td>Harry Wright McLaughlin and Frederic Thomas Metcalf</td>
<td>An inequality for generalized means</td>
<td>303</td>
</tr>
<tr>
<td>Daniel Russell McMillan, Jr.</td>
<td>Some topological properties of piercing points</td>
<td>313</td>
</tr>
<tr>
<td>Peter Don Morris and Daniel Eliot Wulbert</td>
<td>Functional representation of topological algebras</td>
<td>323</td>
</tr>
<tr>
<td>Roger Wolcott Richardson, Jr.</td>
<td>On the rigidity of semi-direct products of Lie algebras</td>
<td>339</td>
</tr>
<tr>
<td>Jack Segal and Edward Sandusky Thomas, Jr.</td>
<td>Isomorphic cone-complexes</td>
<td>345</td>
</tr>
<tr>
<td>Richard R. Tucker</td>
<td>The δ²-process and related topics</td>
<td>349</td>
</tr>
<tr>
<td>David Vere-Jones</td>
<td>Ergodic properties of nonnegative matrices. I</td>
<td>361</td>
</tr>
</tbody>
</table>