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Let f(z) be a member of the family S of functions regular
and univalent in the open unit disk whose Taylor expansion
is of the form: f(z) = z + a2z

2 + . Let Dw be the image of
the unit disk under the mapping: w = f(z). An inequality for
the transfinite diameter of n compact sets in the plane {T;}i is
established, generalizing a result of Renngli:

d(T, n TO-ίCΓi u T2) ^ diTO-diTz).

This inequality is applied to derive covering theorems for Dw

relative to a class of curves issuing from w = 0, arcs on the
circle: \w\ = R as well as other point sets.

L Preliminary considerations*

DEFINITION (1.1). Let E be a compact set in the plane. Set:

V(zu . . . , s n ) = Π ( * * - « i ) n^2, z,eE,
k>l

Vn= Vn(E)= max \V(zu -. , z j |
zv...,zneE

and

The transfinite diameter of E is then defined by: d = d(E) = lim d%.

A full discussion of the transfinite diameter and related constants
can be found in [2, Chapter 7].

The following is a theorem of Hayman [3]:

THEOREM (1.2). Suppose f(z) is a function meromorphic in the
unit disk with a simple pole of residue k at the origin, i.e., the
expansion of f(z) about the origin is of the form:

f(z) = — + α0 + a& + .
z

Let Dw denote the image of \ z \ < 1 under the mapping w = f(z) and
let Ew denote the complement of Dw in the w-plane. Then: d(Ew) <̂  k
with equality if and only if f(z) is univalent.

Using Hayman's theorem is easy to prove the following:
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268 MELVYN KLEIN

THEOREM (1.3). Let w(z) = kz + a%z2 + azz
z + be a function

univalent in \ z | < 1 and Dw the image of | z | < 1 under w(z). Then
the complement of the image of Dw under the mapping: ζ = 1/w,
which we denote by Eζ, has transfinite diameter: 1/k. In particular,
if w(z) = z + a2z

2 + then d(Eζ) = 1.

We will need to know the transfinite diameter of several specific
sets.

LEMMA (1.4). Let E be the set union of:
(i) an arc of central angle θ, 0 :g θ ^ 2π lying on | w | — 1 m£/&

midpoint: w — 1.
(ii) α linear segment [α, δ], 0 ^ α ^ 1 ^ δ. T%e% ίΛ,6 transfinite

diameter of E expressed as a function of α, 6 cmcf (9 is

d(E) =

cos2 — Γ(l + δ)(l + a2 - 2a cos — Y'2

+ (1 + ά)(l + δ2 - 2δ cos—Y/ 2Ί

f(l + a) + ( l + α2 - 2a cos — Y'Ί

x Γ(l + δ) - (l + δ2 - 2δ cos —

where positive roots are taken throughout.

Proof. A univalent mapping, w — f{z), of | z | < l onto the
complement of E with a simple pole at z = 0 will be constructed.
According to Theorem (1.2) the residue of the mapping function is the
transfinite diameter of E. Define:

wλ{z) = (z + a)l(l + az)

where:

d — c + esc — Γ / d — c + esc —
, 2 1/2

c

(2 > 1 ,

Define:

= — ( Wi +
2 \ Wj

cot — + w4

cot— —
4
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The composition of these five mappings is given by:

w(z) =

cot-f + \U-f±^L + λ±^L + 2) - dl -
4 12 \1 + / J

1/2

. . . . , .4- 2 \ - d\ - U
4 I 2 \ 1 + as z + α

/y _L_ rv 1 I yv/-y \ Π2 ϊ 1/2

cot^ - l±c[Jί±°L + λ±«L + 2N Ί{U +
4 12 \1 + az z + a

dΐ
J

w(z) maps | 2 | < 1 onto the exterior of E (upon proper choice of the
parameters c and d, to be made presently); it has a simple pole at
the origin of residue:

esc — + 2(d - e) sec2 — + tan — sec —(d2 + 1 - 2cd)
4 4 4 4

This is the transfinite diameter of E. To express it in terms of α,δ
and θ we note that the point w = b is the image of w2 — 1, and the
point w = a is the image of w2 = — 1 . Using this to solve for c and
d we find:

[ /9 Ί 1 -
a2 + 1 - 2α cos —

(α + 1) sin —
4

Γα2 + 1 - 2α cos —T* ϊb2 + 1 - 26 cos —

2(α + 1) sin — 2(6 + 1) sin —
4 4

Substituting these values in the above expression for the residue we
arrive at the expression given in the statement of the lemma.

When a = 6 = 1 the set E is simply an arc of central angle θ on
the unit circle. Using the lemma we find: d(l, 1, θ) = sin 0/4.

LEMMA (1.5). Let E be the set union of two linear segments
issuing from the origin at an angle 2πa, 0 < a ^ 1/2, each of
length: 4αα(l - a)ι~a. Then: d(E) = 1.

Proof. The mapping of | z \ < 1 onto the exterior of E is given
by the Schwarz-Christoffel formula:

(z + l ) 1 - 2 * ^ - l)2a~ι(z - 1 + 2a - 2[a2 - a]1'2)

w = c.[
z x (̂  - 1 + 2α + 2[a2 - α Π ^

Jo Z2

_ (z + l)2-2"(g - I ) 2 "
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The residue of this function (the transfinite diameter of E) is c.
Noting that the map carries z = 1 — 2a + 2(α2 — a)112 onto w =
4 α α ( l - ay-aeiκa w e find t h a t d(E) = \c\ = \eiπa/(-l)a\ = 1.

Finally, we describe two types of symmetrization.
Steiner symmetrization of a plane set E with respect to a straight

line I in the plane transforms E into a set i?' characterized by the
following:

( i ) Er is symmetric with respect to I.
(ii) Any straight line orthogonal to I that intersects one of the

sets E or Ef also intersects the other. Both intersections have the
same linear measure, and

(iii) The intersection with Er consists of just one line segment,
and may degenerate to a point.

Circular symmetrization of a plane set E with respect to the
positive real axis transforms E into a set E1 characterized by the
following:

( i ) JE" is symmetric with respect to the real axis.
(ii) Any circle \z\ = r, 0 ^ r < o o that intersects one of the

sets E or E' also intersects the other. Both intersections have the
same linear measure, and

(iii) The intersection with E' consists of just one arc with its
midpoint on the positive real axis, and may degenerate to a point.

The following theorem describes the effect of these symmetrizations
on the transfinite diameter [5; p. 6 and Note A]:

THEOREM (1.6). Neither Steiner nor circular symmetrization
increase the transfinite diameter.

II* Estimates for the transfinite diameter* A recent result of
Renngli [6] is the following:

THEOREM (2.1). If Tx and T2 are compact sets in the plane, then

λ u T%)-d(Tx n τ2)

We will now generalize this to obtain an inequality for n compact
sets.

THEOREM (2.2). // Tl9 T2, •••, Tn are compact sets in the plane,
let Ck be the set of all points contained in at Least k of the T/s.
Then:

( 1 ) I



ESTIMATES FOR THE TRANSFINITE DIAMETER 271

Proof. For n = 1 this is a triviality. For n = 2 it is identical
with Renngli's result:

d(T, U Γ 2 ).d(Γ! n Γ2) ^ diTJ-diTz).

Suppose the theorem is already established for n — 1 sets. Let Bk be
the set of all points lying in at least k of the sets Tu T2, •••, Tn__λ.
Obviously: J5w_χ c Bn_2 c c £ 1 ( Also:

( 2 ) C, = B^nΓ., d^UT.,

( 3 ) C, - 5 , U {£*_! n Γ J (ft = 2, 3, • , * - 1) .

If d(Bn«i Π Tn) = d(Cn) = 0, (1) is certainly true.
If d(Bn^ Π Γ J ^ 0, then, α fortiori,

By (2), (3) and Renngli's inequality:

d(Ck)*d(Bk n r j = d(Ck).d(Bk n B W n r j ^ diB^-diB^ n

= 2 , . . . , τ ι -

Multiplying these inequalities and dividing both sides by Π/U d(J5ft Π
yields

and the theorem is proved, since by the induction hypothesis

DEFINITION (2.3). A point set T will be called a broken ray
provided

(i) for every r ^ 0 there is a point zeT such that: [g[ = r.
(ii) the set of numbers r Ξ> 0 for which there is more than one

point zeT such that: | z | = r is a set of measure zero.

DEFINITION (2.4). Let T be a subset of a broken ray. The point
sets: ηλT,rj^T, , ̂ W Γ where {̂ fc}? are the w-th roots of unity, will be
called symmetric images of T. The point set: {\jUιVk'T} will be
called the set of n-ίold symmetry generated by T and will be denoted
by T{n). Subsets of T(n) will be denoted by T ( % ).
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DEFINITION (2.5). Let T be a subset of a broken ray, T{n) the
set of n-ΐold symmetry generated by T and f{n) a subset of T{n). We
define the circular projection of T{n) as a subset, τ{n\ of the set of
n-ΐold symmetry, τin\ generated by the positive real axis, τ. A point
z = ηk r will belong to the projection τ{n) if and only if there is a
point: ζ e ^ Γ n f{n) such that \ζ\ = r.

DEFINITION (2.6). Let τ{n) be a set such as described in definition
(2.5). We will use the symbol lk to denote the measure of the set of
real numbers r, 0 ^ r < oo such that at least k of the symmetric
images of r lie in τ{n).

REMARK (2.7). Let L denote the linear measure of τ{n]; that is,
the sum of the linear measures of the n legs of τ{n). Then

The reason is that if I is a set of real numbers which have sym-
metric images on exactly k legs of τ{n) the measure of / is included
in: lu ϊ2, •• , Ϊ Λ ; that is, it is counted A times in: ΣJ=i iΛ.

The following theorem of Fekete is essential to our work [2;
page 259].

THEOREM (2.8). Let E be a compact set and p(z) a polynomial
of degree n:

p(z) = zn + cxz
n-1 + ... + cn.

Let Eo be the set of all points z such that p(z) lies in E; we will
call Eo a root set of E. Then: d(E0) = d(E)lln.

THEOREM (2.9). Suppose T{n) is a subset of a set of n-fold sym-
metry with: d(T{n)) = 1, and τ{n) its circular projection. If lk (k =
1,2, « ,w) represent the measures defined in (2.6), then:

Π h £ 4 .
fc=l

Equality occurs when T{n) is itself a set of n-fold symmetry, con-
sisting of a single component and identical with its circular projec-
tion: Tw = τ(%).

Proof. Let Tk = % T ( ί i ), (k = 1, 2, . . , n). Clearly:

( 4 ) d(Tk) = d(TM) = 1 (& = 1,2, . . . , n )

since the transfinite diameter is unaffected by rigid motions.
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Let Ck be the set of all points contained in at least k of the
Γ/s; that is, the set of all points z such that at least k of the sym-
metric images of z lie in f(n). Each of the sets Ck is a set of n-ΐolά
symmetry.

Let 7k be the circular projection of Ck. In view of our descrip-
tion of the sets Ck it is not difficult to see that the measure of a leg
of Ύk is lk.

Let Bk be the set of which Ck is the root set with respect to the
polynomial p(z) = zn. Since Ck is a set of n-fόld symmetry Bk is a
subset of a single broken ray. Let βk be the set of which yk is the
root set with respect to the polynomial p(z) = zn. As above, βk will
be a subset of a single broken ray; in this case the positive real axis.

Since 7k is the circular projection of Ck it follows that βk is the
circular projection of Bk. When n = 1 circular projection is the same
transformation as circular symmetrization. Therefore:

d(Ck) = by Theorem (2.8)

by Theorem (1.6)

since βk has linear measure no less than: (lk)
n. So finally we have:

by (4)

by Theorem (2.2)

by (5).

^ Π d(Ck)
k=l

1

4

This is the desired result: 4 ^ Π&=i h
This theorem contains as a special case a result of G. Szego [7]; in

our notation his result reads: Suppose that T{n) — τ{n) (i.e., it consists
of straight line segments) and that f{n) is a connected set. Then
Π ^ I ^ A ; ^ 4 where Lk is the linear measure of the k-th leg of T{n\
(k = 1,2, . . . ,w) .

Proof. In this case: L/c = iA.

The next theorem establishes bounds on the content of a set lying
on a circle as a function of the radius and the transfinite diameter of
the set.

THEOREM (2.10). Let A[, A!%, , A», Ak 2 AJ+1 6β α ^esίβd sequence
of arcs on the circle \ z \ = R where the central angle swept out by
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Ak is θk, 0 < θk ^ 2π/n. Let 7]lf η2, , ηn denote the n-th roots of

unity and let a(i) be a mapping of the set of integers {1,2, •••,%}

onto itself. Define:

Ak = ηa{k)A'k (k = 1, 2, •••, w)

and let: A = Ax U A2 U U 4 .

*=i 4

Proo/. d(A) = d ( ^ A) (A: = 1, 2, - , w). Therefore:

( 6 ) f

Let Cfc be the set of all points contained in at least k of the sets:
7}j-A. It follows from our hypothesis that the sets A'k are nested that:

Ck = ηx-Ak U η2Ak U U r}nAk

for each k, 1 ^ k ^ n. Thus Ck is the root set with respect to the
polynomial w(z) = zn of an arc on the circle \w\ — Rn oί central angle
n θk. The transfinite diameter of such an arc is, by virtue of the
equality: d(c E) = \c\ d(E) (c a constant) given by: Rn sm(n-θk/4).
Therefore by Theorem (2.8):

( 7 ) d(Ck) = (Rn si

Also, by virtue of Theorem (2.2) we have that:

( 8 ) Π d(τ)k A) ^ Π d(Ck) .
j f c = l k = l

Combining inequalities (6), (7) and (8) we conclude:

[d(A)]n ^ Π [Rn-$in(n<

or

as claimed.

Ill* Covering theorems* The class of functions regular and
univalent in | z | < 1 whose expansion is of the form: f(z) = z + a2z

2 + •
will be denoted by S. Let Dw be the image of the unit disk under
the mapping w = f(z) eS. A classical result of Koebe and Bieberbach
states that Dw contains the disk | w \ < 1/4 irrespective of the mapping
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function w = f(z) [2; page 41]. G. Szego later noted that [8]: If
a, β are two values lying in the complement of Dw and if the segment
connecting a and β passes through the origin, then: \a\ + \β\ Ξg 1.

Generalizing these results, Michael Fekete made the following con-
jecture: Given n rays issuing from the origin w = 0 at equal angles
2π/n, let L denote the linear measure of the intersection of these rays
with Dw. Then: L ^ n-ΐ/ϊ/ϊ. The theorems of Koebe-Bieberbach
and Szego are the cases n — 1 and n = 2. For arbitrary n the in-
equality was proved in 1964 by Marcus [4].

Our first theorem in this section further generalizes these results
by considering a more general class of curves issuing from the origin
in place of the n rays of Fekete's conjecture. The results of the
preceding section will be used to prove this as well as various other
covering theorems for the class S.

THEOREM (3.1). Let f(z)eS and let Dw be the image of the disk
\z\ < 1 under the mapping w = f(z). Let S(n) be a set of n-fold
symmetry generated by an arbitrary broken ray; S{n\ a subset of S{n)

defined by: S{n) = Dw Π S{n) and σ{n) the circular projection of S{n).
Denote by L the linear measure of σ{n). Then L ^ ^

Proof. Let Eζ represent the image of the complement of Dw

under the transformation: ζ = 1/w. Then by Theorem (1.3) it follows
that: d(Eζ) = 1. Let T{n) denote the set of %-fold symmetry that is
the image of S{n) under the transformation ζ = 1/w and let T{n) denote
the subset of T{n) defined by: T{n) = Eζ Π T{n). Denote by τ{n) the
circular projection of f{n). It is clear from the definition of the sets
involved that f{n) is the complement with respect to T{n) of the
image of S{n) under the transformation ζ = 1/w and consequently,
that τ{n) is the complement with respect to τ{n) = σ[n) of the image
of σ{n) under the transformation: ζ = 1/w.

Let lul2, , ZΛ be measures defined on τ{n) as in definition (2.6);
let hl9 h2, -* ,hn be measures defined on σ{n) in the same way. Since
d(Eζ) = 1 it follows by Theorem (2.9) that: Π*=i h ^ 4. The points
that contribute to the measure ln-k+1 are points in the complement of
the image of the set of points contributing to hk under ζ = 1/w. For
fixed hk, the measure ln^k+i is minimized when the set whose measure
is hk is the segment [0, hk] in which case: ln-k+i — l/hk. Thus:

n n 1

Π h ^ Π -j-

and so:

4^Π4" o r : ΠM ^
k=l hu \k=l J
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Since the arithmetic mean exceeds the geometric mean:

n

According to Remark (2.7): XJ^iA* = L, the linear measure of σ{n).
Thus: L ^ n {yT/ΐ as claimed.

THEOREM (3.2) Let w(z) e S and Dw the image of \ z \ < 1 under
w(z). Suppose Dw Π {| w \ = R} consists of n disjoint arcs {Bk}ι where

(i) The angle subtended by the arc separating Bk and Bk+ι is
no greater than: 2π/n.

(ii) If {Ai}1 are the n arcs in the complement of \J%=1 Bk with
respect to the circle \w\ = R the related set of arcs: {ηk M}i are
nested.
Let the endpoints of the arc Bk be given by: R e™^-1 and R*e%ί}t

(fc = l , 2 , . . . , ^ ) .
Then:

Π sin [n(θ2k+1 - Θ2k)/A] ̂  R^ , θ2n+1 = θl + 2π .
k=i

Proof. Let Ak be the arc lying between Bk and Bk+1. The central
angle subtended by Ak is: θ2k+1 — θ2k which by hypothesis is no greater
than 2π/n. Let Ak be the image of Ak under the transformation

ζ — 1/w. The arcs A* all lie in the complement of Dw. Hence: A =
Ufe=i AkSEζ and so d(A) ^ d(Eζ) = 1. The sets Ak lie on the circle:
I ζ I = 1/R. The central angle subtended by Ak is θ2k+1 — θ2k; the same
as that subtended by At. Finally, the arcs Ak have the nested prop-
erty hypothesized for the sets At. Since all this is so, Theorem (2.10)
is applicable; therefore:

JJ s i n * + r Λ ) ^ [d(A)/(l/R)]n* ^Rn2

kl 4

as claimed.
This past theorem takes no account of the fact that the comple-

ment of Dw is a continuum containing the point at infinity. A sharpened
version which takes this into account is the following:

d(0,1, #3 - 02) Π sinΠ
fc=2

where d(a, b, θ) is as defined in §1. Actually, both Theorems (3.1) and
(3.2) are generalized (in a sense, combined) in the following theorem,
which takes the above fact into account. The techniques used to
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prove the theorem are essentially the same as those of the foregoing
proofs and so just a statement of the result will be given.

THEOREM (3.3). Let f(z)eS and Dw be the image of | s | < l
under w = f(z). Let C be a circle of radius R, 0 < R < oo and n
an arbitrary natural number. Let {Bn}ΐ be a sequence of arcs on the
circle C satisfying the conditions of Theorem (3.2), S{n) a set of n-fold
symmetry generated by a broken ray and S{n) a subset of S{n) defined
by. S{n) = S{n) n Dw Π {| w I ^ R}. Let σ{n) denote the circular projec-
tion of S{n) and {hk}ΐ a sequence of measures on σ{n) such as defined in
definition (2.6).

Then:

d(°> Γ-Γ-T' nW* ~ flj)"Π d(l, Γ—^—T, n[θ2k+1 - θ2k]) £ R«2.
V L hn J / k=2 V L hn_k+1 J /

One final application will be given.

THEOREM (3.4). Let f(z) e S and Dw the image of the disk | z | < 1
under w = f(z). Let Lu L2 denote straight lines intersecting at w — 0
at an angle of πa, 0 < a < 1. Let L = L(DW Π {Lγ Π L2} denote the
linear measure of Dw Π {Lλ U L2}. Then:

Proof. There is no loss in generality in assuming Lλ and L2 are
symmetric images of one-another with respect to the real axis.

A set of four points on the four legs determined by Lλ U L21 each
lying at a distance r0 from the origin, will be called a "radially
symmetric set"; the points themselves will be called radially symmetric
images of one-another and of the point w = r0.

We define hk (k = 1, 2, 3, 4) as the measure of the set of real
numbers r, 0 rgj r < oo such that at least k of the radially symmetric
images of r (in L1 U L2) lie in Dw. Then:

( 9 ) L(DW n {Lx U L2}) = Σ U Λ *

Map by ζ = 1/w and let Eζ represent the complement of the image
of Dw under this map. Then d(Eζ) = 1. Notice that Lλ U L2 is mappped
onto itself. Let lk be the measure of the set of real numbers r such
that at least k of the radially symmetric images of r (in Lx U L2) lie
in Eζ. Then:

(10) Π h ^ Π 4~
fci ki h
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Let T, = EζΠ {Li U L2}; let T2 be the reflection of Tλ in the
imaginary axis; let T3 be the reflection of T2 in the real axis; let T4

be the reflection of Γ3 in the imaginary axis. Clearly:

- dm
Let Ck be the set of all points contained in at least k of the T/s.

The set Ck is a radially symmetric set; that is, it consists of all
radially symmetric images of those points ζ such that at least k of
radially symmetric images of ζ lie in Tu Thus the measure of a leg
of Ck is lk. Let Bk be the set consisting of four segments lying on
the four rays determined by Lλ U L2, each of length lk, the intersection
of the four being the point ζ = 0. Since the shift of segments that
transforms Ck into Bk can only bring extremal points closer together,
it follows that: d(Ck) ^ d(Bk). Using the mapping lemma (1.5) and
Fekete's theorem (2.8) the transfinite diameter of Bk can be calculated:

d(Bk) =
2aal2(l - a){1-a)l2

We have

1 = d(Eζ) ^ dm since: T^Eζ

= \U d(Tk)T ^ Γπ d(Ck)T by Theorem (2.2)

[ 4 Πl/4 Γ 4 7 -11/4

Π d(Bfc) = Π
*=i J Lk~i 2aal2(l - a){1~a)l2 J

^___JL___Γπ-L1

since the arithmetic mean exceeds the geometric mean;

= [2/(aal2(l - α) ( 1 - ) / a )].( l/L).

This sequence of inequalities means:

L ^ [2/(aal2(l - α) ( 1 - α ) / 2 )].

REMARK. When a — 1/2 that is, when Lx U L2 is a set of 4-fold
symmetry, the result of the theorem reads: L ^ 2/(l/4)1/4 = 4(1/4)1/4 in
agreement with Theorem (3.1).

I am grateful to the referee for supplying an abbreviated proof
for Theorem (2.2).
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