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THE o*-PROCESS AND RELATED TOPICS

RicaarD R. TUCKER

This paper deals with (1) acceleration of the convergence
of a convergent complex series, (2) rapidity of convergence,
and (3) sufficient criteria for the divergence of a complex
series. Various results of Samuel Lubkin, Imanuel Marx and
J. P. King which concern or are closely related to Aitkin’s
o*-process are generalized. Some typical results are as follows:

(1) If a complex series and its ¢*transform converge,
their sums are equal.

(2) Suppose that Xa,, 2b, are complex series such that
h.ja,—0, and A, B exists such that |a,/a.- | < A <1/2,
|bafby—y| £ B< 1 for all sufficiently large n. Then b,
converges more rapidly than Ya,.

(3) If the sequence {l/a, — l/a,—,} is bounded, then the
complex series Xa, diverges.

Given a convergent complex series Ya, = S, quantities T, =
(@ + Qpiy + +++)a,_, are used to obtain results on accelerating the
convergence of Ya, and on rapidity of convergence. The convergence
of {T,} is treated and corresponding necessary and sufficient conditions
are established for the transform Xa,, = S to converge more rapidly
that Ya,, where a,, = a, + 0,@;, @, = @, + Ay Apyy — @, for =1,
and {«,} is any complex sequence. Divergence theorems are proven,
of which Theorem 2.8 furnishes a generalization of corrected results
of Marx [10] and King [7]. The appropriate corrections are indicated
in Tucker [16]. These divergence theorems are used to prove that
if Ya, and its é*-transform are convergent complex series, their sums
are equal. This fact was first published by Lubkin [9] for real series.
Theorem 2.9 gives a generalization of a theorem of Marx [10] and
King [7], corrected statements of which are given in Tucker [16].
Some related theorems on rapidity of convergence are then proven.
Before turning to the general analysis, we now present difinitions,
notations and certain elementary facts relevant to acceleration.

Given a complex series >, a,, we shall write Ya, for > a,, S, =
Sray, and, if Ya, converges, S = Ja,. Similarly, if Xa, converges,
then S’ = Ya!. Given two convergent series Ya, and Xa), the latter
is said to converge more rapidly than the former if and only if
S = SH/(S - 8S,)—0 as n— . If Ya, converges, “MR(Xa,)” will
denote the class of all series b, which converge more rapidly to S
than Xa,.

The concept of “acceleration” or “speed-up” can now be defined
as the problem of finding a series Xb, such that 3b,c MR(Za,). We
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will say that Ya, converges with the same rapidity as ZXa, if and
only if there are numbers 4 and B such 0<A<.|S'-S,|/|S— 8, |<.B.
The notation “<.” means that < holds for all sufficiently large =.
If “*” denotes any relation, “*.” will be used in the same manner,
while “*:” means that * holds for infinitely many positive integers n.

Various methods, found in the literature, for obtaining a series
Ya, e MR(Xa,) may be summarized as follows. A sequence {b,} is
proposed, and then the partial sums S, are specified by the equation
S, =8, + b,y for » = 0. Itis immediate that af = a, + b,, and a] =
a, + by — b, for n = 1.

It seems somewhat advantageous to set b, = a,a, for » =1, and
specify the “transform sequence” {«,}. In doing so, we set S,, =
Sp + Cpisyiy for m = 0, @ = Sp = @0 + a1y, and e, = Sey — Saiu-ry =
Wy + Qpirllpyy — ,x, for m =1, If Xa,, converges, its sum will be
denoted by S..

Suppose that Ya, converges and a, =0 for n = 0. Then with
Ay = (S = S,)/ap,n = 0, we have S,, =S, + e, =S, +
ap:(S — S,)/a,. = S for n = 0. Hence, if MR(Za,) is nonvoid, this
transform sequence is the most desirable solution to our problem of
speed-up. In general we must satisfy ourselves with an approximation
to this solution.

For each » such that a,_, # 0 we write r, = a,/a,_, and r = lim»,.
Similarly, », = al/a,_, and »' = lim 7.

Aitken’s 6%process can be obtained by defining its transform
sequence {9,} as follows:

(1.1) 0, =1/ — r,) if », # 1 exists; d, = 0 otherwise.

The notation in (1.1) will be adhered to throughout this paper. The
transform sequence {«,} where

(1.2) a, =1/1—7),

being closely related to (1.1), is also considered in §2 of this paper
and in §3.

Among publications in which (1.1) is found are the following:
Aitken [1, p. 301], Forsythe [3, p. 310], Hartree [4, p. 233], House-
holder [5, p. 117], Isakson [6, p. 443], Lubkin [9, p. 228], Marx [10],
Pflanz [11, p. 27], Samuelson [12, p. 131], Schmidt [13, p. 376],
Shanks [14, p. 3], Todd [15, pp. 5, 86, 115, 187, 197, 260], and Tucker
[16]. We find (1.2) in Lubkin [9, p. 232] and Shanks [14, p. 39].
Todd [15, p. 5] states that the o*process dates back at least to
Kummer [8].

Aitken’s ¢%-process can be formulated in various ways. In par-
ticular, assuming that division by zero is excluded, we have:
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Ssn = S + 110,00 = S, + @pia/(L — 7,5),n = 0.
Ssn = (S0aSuis — SD/(S,s — 28, + S,1),m =1,
48, 48, |4S... 4S,
S :| S,. S, T’ 11
Ssn = S,s — (LS, ) 4S, =1,
Ssn = S, — (48,.48,)[4S, ., m = 1.
Ssn = S — (4S,)/£S, 1ym =1,

n=1.

b

3

Returning to the most desirable solution for speed-up «, =
(S—S..)/a,, n =1, we have &, = (a, + (S — S,))/a, = 14+ (S—8,)/a, =
1+ T, if we set T,,,=(S — S,)/a, for n =1. Hence 1+ T,.,,
n =1, is the most desirable solution.

Suppose that Xa, converges and % is any integer =1 such that
a, . # 0. We then formally define T, = (S — S,_,)/@,_,. Similarly,
T!=(S"— 8))/a,. Some relations satisfied by the quantities T,,
assuming division by zero excluded, are:

T,=r,14+ T,).
Q1-r)A+T)=14+T,,—T,.

(X —r)a)(S—S,) =1+ Tpu — T, .

Toir =1/ — 1) + (Toss — T)/(L — 7).

T, =70+ TyPpsrt ooe F (Talus o s Tag) + o0

In treating slowly convergent series Ya,, Bickley and Miller |2]
saw fit to single out the quantities M(n) which in our notation is
T,.,, but their considerations were directed along somewhat different
lines from ours and were restricted to series with positive terms only,
with the additional restriction that a,/a,_, — 1.

2. Acceleration, convergence or divergence, and the é*-process.
All series are assumed to be complex unless explicitly stated to the

contrary.

THEOREM 2.1. The conditions (1) »,— 0, (2) T,—0, and (3)
T,/r,—1 are equivalent.

Proof. If T,— 0, then a, #.0 so that »,=.T,/1 + T,.,) — 0.
Conversely, assume that »,—0. Let 0 <e< 1., Then |7,|<.¢, so
that | T, [ =.|7, + 7P + oo | S + [ 70| [ Tona| + -+ =.¢/(1—8)
and thus T, — 0.

If T,—0, then T,/r, =.1 +.T,,,— 1. Conversely, if T,/r,—1,
then 7,,, =. T,/r, — 1— 0.
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THEOREM 2.2, If T,—1t for some complex number t, then:

Q) r=t/A+t),|r|£1, and r = 1.

2 t=7r/Q—-17r) and —1/2 < Re't.
If, in addition, {a,} is a sequence of complex numbers such that
«, — a, for some complex number o, then:

3) S.=S8.

4) 2a,,€ MR(Xa,) if and only of o, = 1/(1 — 7).

(5) 2a., converges with the same rapidity as Sa, tf and only
if a, = 1/(L — 7).

Proof. Since {T,} converges and T, =.7r,1 + T,;.), T, #.0 and
T,+.—1. Consequently t -+ —1, since otherwise |7,|=.|T,/A+ T,.,)|—
+ co, which is impossible since a,— 0. Thus, », =. T,/(1 + T,..) —
t/(1 +t), i.e.,, r=1¢t/(1 +t)=1. Clearly, || <1 so that (1) holds.
From (1), t=7»/1 —7) and [t]/|(=1) —¢t|=|¢t/A +O)| =]|r| 1.
Thus, |t| =< |(—1) — ¢|, which is equivalent to —1/2 < Re¢, so that
(2) holds. (3) holds since S,, =S, + a¢,n.&,,— S + 0, = S. Since
T, .0, we have (S —S,_) #.0. If t =0, then »,/T,—1=1— 7,
according to (1), (2) and Theorem 2.1. If ¢ 0, then »,/T,— 7/t =
(1 — 7) from (1) and (2). In either case,

(S - San)/(s - Sn) = [S - (Sn + an-i-lan-l—l)]/(s - Sn)
=.1-a,.au,/(S—8,)=.1-a. 7/Ti—1—al—r7).

Hence, (4) and (5) hold, since 1 — a,(1 — r) = 0 is equivalent to «, =
1/(L—7).

COROLLARY 2.3. If {T,} converges, then Xas, ¢ MR(Za,).

Proof. Suppose T,—t. From (1) of Theorem 2.2, r, — r where
r %1, Thus 4, =.1/1 —»,)—1/(1 —7), so that Za;,c MR(Za,
according to (4) of Theorem 2.2.

We inquire if the convergence of {7,} is also necessary for
Yas, € MR(Xa,). In Tucker [17], it is proven that Xas, € MR(Za,) if
and only if T,., — T,— 0.

THEOREM 2.4. If Xa, and Zas, are convergent real series, then
S=325;.

Proof. Assume that S # S;. Since a,0, =. Ssiuey — Stup —
Ss—S+#0,0,#.0and o,/ —7,) =.0,0,—S; — S %0. Thusa,—0
implies that 1 — », — 0, i.e., »,—* =1 so that 0 <.r, and 0 <. T,.
From1+ T,,,— T, =.[Q — r,)/a,](S — S,_)— 0, wehave 1 + T,., —
T,<.12 and 0<.T,,<.T, which implies that {T,} converges.
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From (1) of Theorem 2.2, » = 1, which contradicts » = 1. Thus our
assumption is false, and S = S;.

Lubkin [9, Th. 1] gave the first published proof of Theorem 2.4
for real series. The proof of this theorem for the complex case is

given in Theorem 2.6, after the following preliminary theorem is first
proved.

THEOREM 2.5. If 1 — r,)/a, — L # 0, then Za, diverges.

Proof. Assume that Ja, converges. We may suppose that L =1 —1;
since otherwise Ya, converges where a), = a,L/(1 — %) and (1 — 7})/a, =.
1—=7r)/[a,L/(1—1%)]—1—1. Accordingly, 1 —r,)/a,=. [(Rea,)/|a,|*—
(Rea,)/| @, '] + i[(Ima, )/ @, P — (Ima,)/| @, ] -1 —14.  Conse-
quently, (Rea,_))/|a,.|* <.(Rea,)/|a,* so that (Rea,)/|a, | — L,
for some L, < +co, If L, < +co, then Re[(1 — r,)/a,]— L, — L, = 0,
which is impossible since Re[(1 — 7,)/a,]— 1. Thus L, = + and
0 <.Rea,. Similarly, Ima,_)/|a,,*<.(Ima,)/a,|* and 0 <.Ima,.
Hence setting a, = |a, | ¢ we may chose 4, such that 0 <. 0, <. /2.
From

Tn = an/an—-l + a’n—(—l/an-—l + oo+ a/n+k/a'n-—1 +oee
=.|aufa, | €01 L Ja, fa, | €Ot 4.
= [| anl Cos (0n - 071—-1) + e + |a’n+k | Cos (0n+k - 0%-—1)
el + (Im T

and 0<.0,<.7/2, we have 0<.ReT,. Since 1+ T,.,— T, =.
[(@-ryeael(S—S,..)—0, we have 1 + ReT,,, — Re T, =. Re(1 +
T,.,— T,)—0. Thus ReT,,, — ReT, < —1/2 for n = N, where N
is some positive integer. It follows that

Re Ty.n =.Re Ty + S Re[Tyes — Tyesn] <.Re Ty — 1@2_@ — oo
1=1

as n— o, Hence, Re T, <.0 which contradicts 0 <.Re T,. Conse-
quently our initial assumption cannot hold, i.e., Xa, must diverge.

THEOREM 2.6. If Ya, and Xa,, both converge, then S = S;.

Proof. Assume that S =+ S;. Then a,0, =. Ssuyy — Sus — S5 —
S+#0 so that 6,+#.0 and a,/1-—17,) =.0,0,—8Ss— S #0. Thus
a-r,)/a,— 1/(Ss — S) # 0, which implies, in view of Theorem 2.5,
that Ya, diverges, a contradiction. Therefore our assumption cannot
hold, i.e., S = S;.



354 RICHARD R. TUCKER

After establishing the following lemma, we turn to a generalization
of Theorem 2.5, using a different approach in its proof.

LEMMA 2.7. Suppose that Xa, is a convergent series, @, =.0,
and ¢, =c+ S, — S for n=0 where ¢ is some complexr number.

Then,

1+c<1_ rn>+ Cu1 _C :.1— “(S~Sn_1).

n
a/n a’n—-l a’n an
Proof. We have

1+c<1“7'">+c”—‘—9”-=.1+c<l— 1 >+C+S"—’"S
a

n a’n—l a’n a’n an-l an—l
_e+8-8_;.,8-8 S-8._8-8._ S-8.,
an ’ I an Ay ) a/n a’n—l
_ (1 1 _ _ (11—, _
= (- o) =Sy = (S - S

THEOREM 2.8. If {(1 — r,)/a,} is bounded, then the complex series
Sa, diverges.

Proof. Assume that Ya, converges. Since {(1 — 7,)/a,} is bounded,
there is an ¢ > 0 such that |e(1 — 7,)/a, | <.1/4. Let ¢ be any complex
number satisfying |¢| = ¢ so that

(1) —Recl — r,)|a, <.1/4.

Setting ¢, = ¢ + S, — S, for n = 0, we have ¢, — ¢. From Lemma 2.7,

Re[l + c< 1 - “) g Lo ‘:'L] — Re L= (S— 8, )—0

n an~l a‘n n
and thus,
(2) 1+Rec(l——ﬁ>+Re-c”—"‘—Rec—”—<.l/4.
n Ay a,

Using (1) and (2),

12 + Re &=t < Re % — Rec(l—ﬁ> —1/4 <.Rec—”,

a’n—l an n n

from which it is easily seen that Rec,/a,— + < and Rec,/a, >.0.
Since Rec,/a, >.0 and ¢, — ¢, we conclude that

(3) a,¢.z:argc + 3w/4 < argz < arge + bw/4} .
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Choosing arg ¢ successively in (3) as 0, /2, 7, and 37/2, we conclude
that a, is not in the complex plane for large %, which is absurd.
Hence, our initial assumption cannot hold, i.e., Ya, must diverge.

A proof of Theorem 2.8 can be found in the proof of a lemma
by Marx [10], under the additional hypothesis that «a, is real and
A, > a, >0 for all n. His lemma is shown to contain a minor error
in Tucker [16] where appropriate changes are indicated and similar
comments are made on a paper by King [7].

For the series Xa, where a, = 1/logn) for n =2, we have
1 - r,)/a,— 0 so that, from Theorem 2.8, Ya, diverges. Similarly,
with a, = 1/(n + 1) for n = 0, we have 1/a, — 1ja,_, = (n+1)—n =1
for n = 1, and thus Ja, diverges. For the divergent series Ya, where
a, = 1/(nlog n) for n = 2, we have 1/a, — 1/a,_, — o, so that Theorem
2.8 is not applicable. As a final application, Theorem 2.8 manifests
the divergence of the series Ya, where a, = ¢'**/(n + 1),¢4, =1 + 1/2 +
<+« + 1/(n + 1), since it is easily seen that {l/a, — l/a,_,} is bounded.

The following theorem furnishes a generalization of Theorem 1(7),
given in Tucker [16].

THEOREM 2.9. If Xa, is a convergent series, then some subse-
quence of {S;,} converges to S.

Proof. Suppose Za, is convergent and assume that no sub-
sequence of {S;,} converges to S. Since S;, — S, = @,:10,.,, our
assumption holds if and only if no subsequence of {,0,} converges to
zero, and this is equivalent to |a,0,| >.B for some B > 0. Thus
|1 -r)a,| =.1/a,0,| <.1/B. From Theorem 2.8, Ya, diverges, a
contradiction. Therefore our assumption cannot be true, i.e., some
subsequence of {S;,} converges to S.

Theorem 2.9 clearly yields a second proof of Theorem 2.6.

ExAMPLE 2.10. It is not necessarily true that if Ya, converges,
Sas, will also converge. In particular, Lubkin [9, p. 240] considers
the series Sa, =1 +1/2—-1/3 -1/4 +1/56+1/6 —1/7T—1/8+1/9+ --.
which converges while Xa;, diverges. However, according to Theorem
2.9 some subsequence of {S;,} must converge to S. Here, of course,
this is evident since », <:0 and S;, =.S, + a,.,/(1 — 7,.,). This
particular series shows that the d*process is no: regular.

ExampLE 2.11. Lubkin [9, p. 240] also shows that the series
Ya, =1+ 1/Q +1)+1/2° +2%/2* + 1) + 1/3* + 3*(3* + 1) + --- con-
verges while Ya;, diverges. Again, according to Theorem 2.9, some
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subsequence of {S;,} must converge to S. This is not so obvious by
inspection as was the case in Example 2.10.

THEOREM 2.12. If Ya, is a series such that Sas, 8 properly
divergent, i.e., | Ss,| — oo, as m— oo, then Ya, diverges.

Proof. Assume that Ya, is convergent. From Theorem 2.9 some
subsequence of {S;,} converges to S, so that [S;,| 4 c as n— o,
i.e., 2as, is not properly divergent.

3. Acceleration and rapidity of convergence.

THEOREM 3.1. A mnecessary and sufficient condition that {T.,}
converge s that r, - r #1 and T,,, — T,— 0.

Proof. The necessity follows from (1) of Theorem 2.2 and the
fact that {7} converges implies that 7,,, — T, — 0.

For the sufficiency, » = 1 implies that »,(1 — »,) #%.0. Conse-
quently, T, =.7,/(1 — 7,) + (T — T/ — 7,)—7/(L — 7).

THEOREM 3.2. If r,— v where |r| <1, then T,— v/l — 7).

Proof. Since || < 1,7 # 1 and Fa, converges, so that T, exists
for large n. Let ¢ > 0 and p be any number such that || < o < 1.
There exists an integer N such that for » = N and m = N we have
[r,|< o and |7, —7,| <&l — p). Thus, for each » = N we have

| Toir — Tl = [P0 — 7] + [rasi®ure — 770 + + -
F P oo Pagpd) — (P )] e
S Pusr = T 1 Pud [ [ Prne — 70| + -
F P Pa [ P — 1| 4 oo
<e(l =)+ pe(l — ) + ++- + Pl —p)+ -+ =¢.

Hence, |T,,, — T.|—0, ie., Tys1 — T,— 0. From Theorem 3.1, {T,}
converges. Consequently, T, — »/(1—7) according to (2) of Theorem 2.2,

THEOREM 3.3. Suppose that r, — r where |r| <1, and let {a,}
be a complex sequence converging to some complex number o, Then
T,—t for some complex number t, and conditions (1) through (5) of
Theorem 2.2 hold.

Proof. From Theorem 3.2, {T,} converges. We now apply
Theorem 2.2.
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According to Theorem 3.3, Sa;, € MR(Za,) if » = 0. Nevertheless,
the reader should be forewarned in case r» = 0. In particular, let
Ja, = > (—1)"/n! =1/e. We have r, = —1/n for n =1, and J, =
/@1 —=mr) =11+ AM)] =n/(n+1) =1~-1/(n+1) =1+ 7, for
n = 2. Consequently, S5, = S, + Gpii0p01 = S, + @il + 7040) = Suze
for n = 1.

LEMMA 3.4. If |r| <1, then T,/r,— 1)1 — 7).

Proof. If r =0, then T,/r,— 1 = 1/(1 — r) according to Theorem
21, If r+0, then T,/r,—[r/1 — 7)]/r =1/ — r) according to
Theorem 3.2.

THEOREM 3.5. Suppose that Za, and Ja, are series such that
|| <1and || <1, Then:

1) Zal converges more rapidly than Xa, if and only if a,/a,— 0.

(2) ZXa! converges with the same rapidity as Xa, tf and only if
there are numbers a and b such that 0 < a <.|a,/a,| <.b.

Proof. From Lemma 3.4, T,/r,— 1/(1—7r) and T,/r,—1/1 —7').
If a)/a,— 0,
S —Swa _ a Tojry . 1/A =7

S - Sn__,1 ) a’n Tn//rn 1/(1 - 7a)

Conversely, if Ya/ converges more rapidly than Ya,,

a:; Tn//r'n S — an—-l — 1/(1 - T) 0=

a, Tir. S— 8. /@ —

This proves (1).

Assume that a and b are numbers such that 0 < a <.|a,/a,| <.D.
Since [(T./r)/(T.jr.)|— (1 — 7r)/(L — 7")| = 0, there are numbers ¢
and d such that 0 < ¢ <.|(T./*,)/(T,/r,)| <.d. Thus,

’_‘ T

bd .
T/ <

0 n——l
< ac <. S S”—l

Assume that A and B are numbers such that
0<A. (S -8D/(S—-8,)[<.B
As above, there are numbers ¢ and d such that
0<c<.[(T,/r)(Tajr)|<.d.
Thus,
— S

<.Bd.
S S

0 < Ac <.!a”
a'ﬂ

I/,’.
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LEmMMA 3.6. If |r,| =<.0 < 1/2 for some number o, then

0<1—-20/1—p)=.[Tur.| =.1/1 — p).

Proof. We have |T,| <. |7, |+ [7uPuis| + ooe + [P0 ooe Pusr| +

=071 - ) S. /1 — p) < 1. Thus, | Tu/r,| <. 1)1 — p) and
[ Tofral =11+ Tona | Z |1 = [ Tana || =.1 = [ Tou| =. 1= /1 — p) =
(1—=20)/(1 - p)>0.

THEOREM 3.7. Suppose that Ja,, Xa!, are series such that al/a,—0,
and |r,| <.0, < 1/2, |7, | <.0, <1 for some numbers p,, 0.. Then

Xa, converges more rapidly than Xa,.

Proof. From Lemma 3.6, 0 < (1 — 20)/(1 — o)) <. | T,/r,|. Also,

[ To/r | =11+ 7y + PP + oo | =. 11 - 02). Thus,
18" =S| _ dan] 1 Tajrn] - lan] A —0) g
|’S"_~ Sn—!| la’n| |T'n/’rnl - |an| (1 _2[01)/(1 _[01)

The following counterexample shows that the hypothesis of
Theorem 3.7 cannot be relaxed by replacing 1/2 by any larger number.

COUNTEREXAMPLE 3.8. Let ¢ be any number such that 0 < e < 1/4
and f(x,n)=2a""—-2x+1, n=12,.... Then f(1/2,n)>.0 and
f(@/2 +¢,n) <.0. We may thus assume that N is a positive integer
such that for some b, f(b, N) =0 and 1/2 < b < 1/2 + e. Thus, —1 +
b+ + -+ +0"=(0b—1)""0b N)=0. Define a, = —b" for n =
EN +1) and £=0,1,2,--., and a, = b" otherwise. Accordingly,
Ja, converges, |7,| =b<1/2+¢eand S— S, =:0. Hence the series
Ja,, where a, = a,/n!, a,/a,— 0 and |7, | — 0, does not converge more
rapidly than Xa,.

The author wishes to thank Professor A. T. Lonseth for his
guidance and encouragement which led to the completion of the authors
thesis.
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