THE δ^2-PROCESS AND RELATED TOPICS

Richard R. Tucker
THE δ^2-PROCESS AND RELATED TOPICS

RICHARD R. TUCKER

This paper deals with (1) acceleration of the convergence of a convergent complex series, (2) rapidity of convergence, and (3) sufficient criteria for the divergence of a complex series. Various results of Samuel Lubkin, Imanuel Marx and J. P. King which concern or are closely related to Aitkin's δ^2-process are generalized. Some typical results are as follows:

1. If a complex series and its δ^2-transform converge, their sums are equal.

2. Suppose that $\sum a_n, \sum b_n$ are complex series such that $b_n/a_n \to 0$, and A, B exists such that $|a_n/a_{n-1}| \leq A < 1/2$, $|b_n/b_{n-1}| \leq B < 1$ for all sufficiently large n. Then $\sum b_n$ converges more rapidly than $\sum a_n$.

3. If the sequence $\{1/a_n - 1/a_{n-1}\}$ is bounded, then the complex series $\sum a_n$ diverges.

Given a convergent complex series $\sum a_n = S$, quantities $T_n = (a_n + a_{n+1} + \cdots)/a_{n-1}$ are used to obtain results on accelerating the convergence of $\sum a_n$ and on rapidity of convergence. The convergence of $\{T_n\}$ is treated and corresponding necessary and sufficient conditions are established for the transform $\sum a_n = S$ to converge more rapidly that $\sum a_n$, where $a_0 = a_0 + a_1\alpha_1$, $a_n = a_n + a_{n+1}\alpha_{n+1} - a_{n}\alpha_n$ for $n \geq 1$, and $\{\alpha_n\}$ is any complex sequence. Divergence theorems are proven, of which Theorem 2.8 furnishes a generalization of corrected results of Marx [10] and King [7]. The appropriate corrections are indicated in Tucker [16]. These divergence theorems are used to prove that if $\sum a_n$ and its δ^2-transform are convergent complex series, their sums are equal. This fact was first published by Lubkin [9] for real series. Theorem 2.9 gives a generalization of a theorem of Marx [10] and King [7], corrected statements of which are given in Tucker [16]. Some related theorems on rapidity of convergence are then proven. Before turning to the general analysis, we now present definitions, notations and certain elementary facts relevant to acceleration.

Given a complex series $\sum a_n$, we shall write Σa_n for $\sum a_n$, $S_n = \sum a_k$, and, if Σa_n converges, $S = \Sigma a_n$. Similarly, if $\Sigma a'_n$ converges, then $S' = \Sigma a'_n$. Given two convergent series Σa_n and $\Sigma a'_n$, the latter is said to converge more rapidly than the former if and only if $(S' - S_n)/(S - S_n) \to 0$ as $n \to \infty$. If Σa_n converges, "MR(Σa_n)" will denote the class of all series Σb_n which converge more rapidly to S than Σa_n.

The concept of "acceleration" or "speed-up" can now be defined as the problem of finding a series Σb_n such that $\Sigma b_n \in MR(\Sigma a_n)$. We
will say that $\Sigma a'_n$ converges with the same rapidity as Σa_n if and only if there are numbers A and B such $0 < A < 1$, $|S' - S'_n|/|S - S_n| < B$. The notation "<." means that $<$ holds for all sufficiently large n. If "*" denotes any relation, "*:" will be used in the same manner, while "*:" means that * holds for infinitely many positive integers n.

Various methods, found in the literature, for obtaining a series $\Sigma a'_n \in MR(\Sigma a_n)$ may be summarized as follows. A sequence $\{b_n\}$ is proposed, and then the partial sums S'_n are specified by the equation $S'_n = S_n + b_{n+1}$ for $n \geq 0$. It is immediate that $a'_0 = a_0 + b_1$, and $a'_n = a_n + b_{n+1} - b_n$ for $n \geq 1$.

It seems somewhat advantageous to set $b_n = a_n a_n$ for $n \geq 1$, and specify the "transform sequence" $\{a_n\}$. In doing so, we set $S_{an} = S_n + a_{n+1} a_{n+1}$ for $n \geq 0$, $a_{an} = S_{an} = a_n + a_n a_n$, and $a_{am} = S_{am} - S_{a(n-1)} = a_n + a_{n+1} a_{n+1} - a_n a_n$ for $n \geq 1$. If Σa_{an} converges, its sum will be denoted by $S_{a\Sigma}$.

Suppose that Σa_n converges and $a_n \neq 0$ for $n \geq 0$. Then with $a_{n+1} = (S - S_n)/a_{n+1}, n \geq 0$, we have $S_{an} = S_n + a_{n+1} a_{n+1} = S_n + a_{n+1} (S - S_n)/a_{n+1} = S$ for $n \geq 0$. Hence, if $MR(2a_n)$ is nonvoid, this transform sequence is the most desirable solution to our problem of speed-up. In general we must satisfy ourselves with an approximation to this solution.

For each n such that $a_{n-1} \neq 0$ we write $r_n = a_n/a_{n-1}$ and $r = \lim r_n$. Similarly, $r'_n = a'_n/a'_{n-1}$ and $r' = \lim r'_n$.

Aitken's δ^2-process can be obtained by defining its transform sequence $\{\delta_n\}$ as follows:

\begin{equation}
\delta_n = 1/(1 - r_n) \text{ if } r_n \neq 1 \text{ exists; } \delta_n = 0 \text{ otherwise.}
\end{equation}

The notation in (1.1) will be adhered to throughout this paper. The transform sequence $\{\alpha_n\}$ where

\begin{equation}
\alpha_n = 1/(1 - r)
\end{equation}

being closely related to (1.1), is also considered in § 2 of this paper and in § 3.

Among publications in which (1.1) is found are the following: Aitken [1, p. 301], Forsythe [3, p. 310], Hartree [4, p. 233], Householder [5, p. 117], Isakson [6, p. 443], Lubkin [9, p. 228], Marx [10], Pflanz [11, p. 27], Samuelson [12, p. 131], Schmidt [13, p. 376], Shanks [14, p. 3], Todd [15, pp. 5, 86, 115, 187, 197, 260], and Tucker [16]. We find (1.2) in Lubkin [9, p. 232] and Shanks [14, p. 39]. Todd [15, p. 5] states that the δ^2-process dates back at least to Kummer [8].

Aitken's δ^2-process can be formulated in various ways. In particular, assuming that division by zero is excluded, we have:
Returning to the most desirable solution for speed-up \(\alpha_n = (S - S_n)/a_n, n \geq 1 \), we have \(\alpha_n = (a_n + (S - S_n))/a_n = 1 + T_{n+1} \), if we set \(T_{n+1} = (S - S_n)/a_n \) for \(n \geq 1 \). Hence \(1 + T_{n+1}, n \geq 1 \), is the most desirable solution.

Suppose that \(\Sigma a_n \) converges and \(n \) is any integer \(\geq 1 \) such that \(a_{n-1} \neq 0 \). We then formally define \(T_n = (S - S_{n-1})/a_{n-1} \). Similarly, \(T'_n = (S' - S_n)/a'_n \). Some relations satisfied by the quantities \(T_n \), assuming division by zero excluded, are:

\[
T_n = r_n(1 + T_{n+1}) .
\]
\[
(1 - r_n)(1 + T_{n+1}) = 1 + T_{n+1} - T_n .
\]
\[
[(1 - r_n)/a_n](S - S_{n-1}) = 1 + T_{n+1} - T_n .
\]
\[
T_{n+1} = r_n/(1 - r_n) + (T_{n+1} - T_n)/(1 - r_n) .
\]
\[
T_n = r_n + r_n r_{n+1} + \cdots + (r_n r_{n+1} \cdots r_{n+k}) + \cdots .
\]

In treating slowly convergent series \(\Sigma a_n \), Bickley and Miller [2] saw fit to single out the quantities \(M(n) \) which in our notation is \(T_{n+1} \), but their considerations were directed along somewhat different lines from ours and were restricted to series with positive terms only, with the additional restriction that \(a_n/a_{n-1} \to 1 \).

2. Acceleration, convergence or divergence, and the \(\delta^2 \)-process.

All series are assumed to be complex unless explicitly stated to the contrary.

THEOREM 2.1. The conditions (1) \(r_n \to 0 \), (2) \(T_n \to 0 \), and (3) \(T_n/r_n \to 1 \) are equivalent.

Proof. If \(T_n \to 0 \), then \(a_n \neq 0 \) so that \(r_n = . T_n/(1 + T_{n+1}) \to 0 \). Conversely, assume that \(r_n \to 0 \). Let \(0 < \varepsilon < 1 \). Then \(|r_n| \leq \varepsilon \), so that \(|T_n| = . |r_n + r_n r_{n+1} + \cdots| \leq . |r_n| + |r_n| |r_{n+1}| + \cdots \leq . \varepsilon/(1 - \varepsilon) \) and thus \(T_n \to 0 \).

If \(T_n \to 0 \), then \(T_n/r_n = . 1 + \varepsilon T_{n+1} \to 1 \). Conversely, if \(T_n/r_n \to 1 \), then \(T_{n+1} = . T_n/r_n - 1 \to 0 \).

\[
S_{n+1} = S_n + a_{n+1} \delta_{n+1} = S_n + a_{n+1}/(1 - r_{n+1}), n \geq 0 .
\]
\[
S_{\delta n} = (S_{n-1} - S_{n+1})/(S_{n-1} - 2S_n + S_{n+1}), n \geq 1 .
\]
\[
S_{\delta n} = \left| \begin{array}{cc} \delta S_{n-1} & \delta S_n \\ S_{n-1} & S_n \end{array} \right| = \left| \begin{array}{cc} \delta S_{n-1} & \delta S_n \\ 1 & 1 \end{array} \right|, n \geq 1 .
\]
\[
S_{\delta n} = S_{n-1} - (\delta S_{n-1})^2/\delta^2 S_{n-1}, n \geq 1 .
\]
\[
S_{\delta n} = S_n - (\delta S_{n-1})^2/\delta^2 S_{n-1}, n \geq 1 .
\]
\[
S_{\delta n} = S_{n+1} - (\delta S_n)^2/\delta^2 S_{n-1}, n \geq 1 .
\]
THEOREM 2.2. If \(T_n \rightarrow t \) for some complex number \(t \), then:

1. \(r = t/(1 + t), |r| \leq 1, \) and \(r \neq 1 \).
2. \(t = r/(1 - r) \) and \(-1/2 \leq \text{Re } r\).

If, in addition, \(\{a_n\} \) is a sequence of complex numbers such that \(a_n \rightarrow a_0 \) for some complex number \(a_0 \), then:

3. \(S_a = S \).
4. \(\sum a_n \in \text{MR}(\sum a_n) \) if and only if \(a_0 = 1/(1 - r) \).
5. \(\sum a_n \) converges with the same rapidity as \(\sum a_n \) if and only if \(a_0 \neq 1/(1 - r) \).

Proof. Since \(\{T_n\} \) converges and \(T_n = r/(1 + T_{n+1}) \), \(T_n \neq 0 \) and \(T_n \neq -1 \). Consequently \(t \neq -1 \), since otherwise \(|r_n| = |T_n/(1 + T_{n+1})| \rightarrow +\infty \), which is impossible since \(a_n \rightarrow 0 \). Thus, \(r_n = T_n/(1 + T_{n+1}) \rightarrow t/(1 + t) \), i.e., \(r = t/(1 + t) \neq 1 \). Clearly, \(|r| \leq 1 \) so that (1) holds. From (1), \(t = r/(1 - r) \) and \(|t| = |t/(1 + t)| = |r| \leq 1 \). Thus, \(|t| \leq |(1 - t)/t| \), which is equivalent to \(-1/2 \leq \text{Re } t\), so that (2) holds. (3) holds since \(S_a = S + a_{n+1}/r_{n+1} \rightarrow S + 0a_0 = S \). Since \(T_n \neq 0 \), we have \((S - S_{n-1}) \neq 0 \). If \(t = 0 \), then \(r_n/T_n \rightarrow 1 = 1 - r \), according to (1), (2) and Theorem 2.1. If \(t \neq 0 \), then \(r_n/T_n \rightarrow r/t = (1 - r) \) from (1) and (2). In either case,

\[
(S - S_a)/(S - S_n) = (S - (S_a + a_{n+1}/r_{n+1}))/S - S_n
\]

\[
= 1 - a_{n+1}/r_{n+1} - S - S_n
\]

Hence, (4) and (5) hold, since \(1 - a_0(1 - r) = 0 \) is equivalent to \(a_0 = 1/(1 - r) \).

COROLLARY 2.3. If \(\{T_n\} \) converges, then \(\sum a_n \in \text{MR}(\sum a_n) \).

Proof. Suppose \(T_n \rightarrow t \). From (1) of Theorem 2.2, \(r_n \rightarrow r \) where \(r \neq 1 \). Thus \(\delta_n = 1/(1 - r_n) \rightarrow 1/(1 - r) \), so that \(\sum a_n \in \text{MR}(\sum a_n) \) according to (4) of Theorem 2.2.

We inquire if the convergence of \(\{T_n\} \) is also necessary for \(\sum a_n \in \text{MR}(\sum a_n) \). In Tucker [17], it is proven that \(\sum a_n \in \text{MR}(\sum a_n) \) if and only if \(T_{n+1} - T_n \rightarrow 0 \).

THEOREM 2.4. If \(\sum a_n \) and \(\sum a_n \) are convergent real series, then \(S = S_a \).

Proof. Assume that \(S \neq S_a \). Since \(a_n\delta_n = a_{n-1}/(1 - r_n) \rightarrow S_{n+1} - S \neq 0 \), \(\delta_n \neq 0 \) and \(a_n/(1 - r_0) = a_{n-1}/r_{n-1} \rightarrow S_0 - S \neq 0 \). Thus \(a_n \rightarrow 0 \) implies that \(1 - r_n \rightarrow 0 \), i.e., \(r_n \rightarrow r = 1 \) so that \(0 < r_n \) and \(0 < T_n \). From \(1 + T_{n+1} - T_n = (1 - r_n)/a_n(S - S_{n-1}) \rightarrow 0 \), we have \(1 + T_{n+1} - T_n \ll 1/2 \) and \(0 < T_{n+1} < T_n \), which implies that \(\{T_n\} \) converges,
From (1) of Theorem 2.2, \(r \neq 1 \), which contradicts \(r = 1 \). Thus our assumption is false, and \(S = S_s \).

Lubkin [9, Th. 1] gave the first published proof of Theorem 2.4 for real series. The proof of this theorem for the complex case is given in Theorem 2.6, after the following preliminary theorem is first proved.

Theorem 2.5. If \((1 - r_n)/a_n \to L \neq 0 \), then \(\sum a_n \) diverges.

Proof. Assume that \(\sum a_n \) converges. We may suppose that \(L = l - i \); since otherwise \(\sum a'_n \) converges where \(a'_n = a_n L/(1 - i) \) and \((1 - r_n)/a'_n = (1 - r_n)/a_n = l - i \). Accordingly, \(|a_n| \to L_i \) for some \(L_i \leq +\infty \). If \(L_i < +\infty \), then \((1 - r_n)/a_n \to L_i - L_1 = 0 \), which is impossible since \(\text{Re} [(1 - r_n)/a_n] \to 1 \). Thus \(L_i = +\infty \) and \(0 < \text{Re} a_n \). Similarly, \(|a_n| \to l_i \) and \(0 < \text{Im} a_n \). Hence setting \(a_n = |a_n| e^{i\theta_n} \) we may chose \(\theta_n \) such that \(0 < \theta_n < \pi/2 \).

From

\[
T_n = a_n/a_{n-1} + a_{n+1}/a_{n-1} + \cdots + a_{n+k}/a_{n-1} + \cdots = |a_n/a_{n-1}| e^{i(\theta_n - \theta_{n-1})} + |a_{n+1}/a_{n-1}| e^{i(\theta_{n+1} - \theta_{n-1})} + \cdots
\]

and \(0 < \theta_n < \pi/2 \), we have \(0 < \text{Re} T_n \). Since \(1 + T_{n+1} - T_n = [(1 - r_n)/a_n] (S - S_{n-1}) \to 0 \), we have \(1 + \text{Re} T_{n+1} - \text{Re} T_n = \text{Re} (1 + T_{n+1} - T_n) \to 0 \). Thus \(\text{Re} T_{n+1} - \text{Re} T_n < -1/2 \) for \(n \geq N \), where \(N \) is some positive integer. It follows that

\[
\text{Re} T_{N+n} = \text{Re} T_N + \sum_{i=1}^{n} \text{Re} [T_{N+i} - T_{N+i-1}] < \text{Re} T_N - \frac{n}{2} \to -\infty
\]
as \(n \to \infty \). Hence, \(\text{Re} T_n < 0 \) which contradicts \(0 < \text{Re} T_n \). Consequently our initial assumption cannot hold, i.e., \(\Sigma a_n \) must diverge.

Theorem 2.6. If \(\Sigma a_n \) and \(\Sigma a_{3n} \) both converge, then \(S = S_3 \).

Proof. Assume that \(S \neq S_3 \). Then \(a_n/\delta_n = S_{3(n-1)} - S_{n-1} \to S_3 - S \neq 0 \) so that \(\delta_n \neq 0 \) and \(a_n/(1 - r_n) = a_n/\delta_n \to S_3 - S \neq 0 \). Thus \((1 - r_n)/a_n \to 1/(S_3 - S) \neq 0 \), which implies, in view of Theorem 2.5, that \(\Sigma a_n \) diverges, a contradiction. Therefore our assumption cannot hold, i.e., \(S = S_3 \).
After establishing the following lemma, we turn to a generalization of Theorem 2.5, using a different approach in its proof.

Lemma 2.7. Suppose that $\sum a_n$ is a convergent series, $a_n \neq 0$, and $c_n = c + S_n - S$ for $n \geq 0$ where c is some complex number. Then,

$$1 + c\left(\frac{1 - r_n}{a_n}\right) + \frac{c_{n-1}}{a_{n-1}} - \frac{c_n}{a_n} = \frac{1}{a_n}(S - S_{n-1}).$$

Proof. We have

$$1 + c\left(\frac{1 - r_n}{a_n}\right) + \frac{c_{n-1}}{a_{n-1}} - \frac{c_n}{a_n} = 1 + \frac{1}{a_n} - \frac{1}{a_{n-1}} + \frac{c + S_{n-1} - S}{a_n} - \frac{c + S_n - S}{a_{n-1}} = \left(\frac{1}{a_n} - \frac{1}{a_{n-1}}\right)(S - S_{n-1}) = \left(\frac{1 - r_n}{a_n}\right)(S - S_{n-1}).$$

Theorem 2.8. If $\{(1 - r_n)/a_n\}$ is bounded, then the complex series $\sum a_n$ diverges.

Proof. Assume that $\sum a_n$ converges. Since $\{(1 - r_n)/a_n\}$ is bounded, there is an $\varepsilon > 0$ such that $|\varepsilon(1 - r_n)/a_n| < 1/4$. Let c be any complex number satisfying $|c| = \varepsilon$ so that

$$-\text{Re} \ c(1 - r_n)/a_n < 1/4. \ (1)$$

Setting $c_n = c + S_n - S$, for $n \geq 0$, we have $c_n \rightarrow c$. From Lemma 2.7,

$$\text{Re}\left[1 + c\left(\frac{1 - r_n}{a_n}\right) + \frac{c_{n-1}}{a_{n-1}} - \frac{c_n}{a_n}\right] = \text{Re} \left\{\frac{1 - r_n}{a_n}(S - S_{n-1})\right\} \rightarrow 0$$

and thus,

$$1 + \text{Re} \ c\left(\frac{1 - r_n}{a_n}\right) + \frac{c_{n-1}}{a_{n-1}} - \frac{c_n}{a_n} < 1/4. \ (2)$$

Using (1) and (2),

$$1/2 + \text{Re} \ \frac{c_{n-1}}{a_{n-1}} < \text{Re} \ \frac{c_n}{a_n} - \text{Re} \ c\left(\frac{1 - r_n}{a_n}\right) - 1/4 < \text{Re} \ \frac{c_n}{a_n},$$

from which it is easily seen that $\text{Re} \ c_n/a_n \rightarrow +\infty$ and $\text{Re} \ c_n/a_n > 0$. Since $\text{Re} \ c_n/a_n > 0$ and $c_n \rightarrow c$, we conclude that

$$a_n \in \{z: \arg c + 3\pi/4 \leq \arg z \leq \arg c + 5\pi/4\}. \ (3)$$
Choosing arg \(c \) successively in (3) as 0, \(\pi/2, \pi, \) and \(3\pi/2 \), we conclude that \(a_n \) is not in the complex plane for large \(n \), which is absurd. Hence, our initial assumption cannot hold, i.e., \(\Sigma a_n \) must diverge.

A proof of Theorem 2.8 can be found in the proof of a lemma by Marx [10], under the additional hypothesis that \(a_n \) is real and \(a_{n-1} > a_n > 0 \) for all \(n \). His lemma is shown to contain a minor error in Tucker [16] where appropriate changes are indicated and similar comments are made on a paper by King [7].

For the series \(\Sigma a_n \) where \(a_n = 1/(\log n) \) for \(n \geq 2 \), we have \((1 - r_n)/a_n \to 0 \) so that, from Theorem 2.8, \(\Sigma a_n \) diverges. Similarly, with \(a_n = 1/(n + 1) \) for \(n \geq 0 \), we have \(1/a_n - 1/a_{n-1} = (n + 1) - n = 1 \) for \(n \geq 1 \), and thus \(\Sigma a_n \) diverges. For the divergent series \(\Sigma a_n \) where \(a_n = 1/(n \log n) \) for \(n \geq 2 \), we have \(1/a_n - 1/a_{n-1} \to \infty \), so that Theorem 2.8 is not applicable. As a final application, Theorem 2.8 manifests the divergence of the series \(\Sigma a_n \) where \(a_n = e^{i\phi n}/(n + 1) \), \(\phi_n = 1 + 1/2 + \cdots + 1/(n + 1) \), since it is easily seen that \((1/a_n - 1/a_{n-1}) \) is bounded.

The following theorem furnishes a generalization of Theorem 1(\(i \)), given in Tucker [16].

Theorem 2.9. If \(\Sigma a_n \) is a convergent series, then some subsequence of \(\{S_{8n}\} \) converges to \(S \).

Proof. Suppose \(\Sigma a_n \) is convergent and assume that no subsequence of \(\{S_{8n}\} \) converges to \(S \). Since \(S_{8n} - S_n = a_{n+1}S_{8n+1} \), our assumption holds if and only if no subsequence of \(\{a_nS_{8n}\} \) converges to zero, and this is equivalent to \(|a_nS_{8n}| > B \) for some \(B > 0 \). Thus \(|(1 - r_n)/a_n | = 1/|a_nS_{8n}| < 1/B \). From Theorem 2.8, \(\Sigma a_n \) diverges, a contradiction. Therefore our assumption cannot be true, i.e., some subsequence of \(\{S_{8n}\} \) converges to \(S \).

Theorem 2.9 clearly yields a second proof of Theorem 2.6.

Example 2.10. It is not necessarily true that if \(\Sigma a_n \) converges, \(\Sigma a_{5n} \) will also converge. In particular, Lubkin [9, p. 240] considers the series \(\Sigma a_n = 1 + 1/2 - 1/3 + 1/4 + 1/5 + 1/6 - 1/7 - 1/8 + 1/9 + \cdots \) which converges while \(\Sigma a_{5n} \) diverges. However, according to Theorem 2.9 some subsequence of \(\{S_{8n}\} \) must converge to \(S \). Here, of course, this is evident since \(r_{n} < 0 \) and \(S_{8n} = S_n + a_{n+1}/(1 - r_{n+1}) \). This particular series shows that the \(\delta^2 \)-process is not regular.

Example 2.11. Lubkin [9, p. 240] also shows that the series \(\Sigma a_n = 1 + 1/(1 + 1) + 1/2^2 + 2^2(2^2 + 1) + 1/3^2 + 3^2/(3^2 + 1) + \cdots \) converges while \(\Sigma a_{5n} \) diverges. Again, according to Theorem 2.9, some
subsequence of \(\{S_{\delta n}\} \) must converge to \(S \). This is not so obvious by inspection as was the case in Example 2.10.

Theorem 2.12. If \(\Sigma a_n \) is a series such that \(\Sigma a_{\delta n} \) is properly divergent, i.e., \(|S_{\delta n}| \to \infty \) as \(n \to \infty \), then \(\Sigma a_n \) diverges.

Proof. Assume that \(\Sigma a_n \) is convergent. From Theorem 2.9 some subsequence of \(\{S_{\delta n}\} \) converges to \(S \), so that \(|S_{\delta n}| \not\to \infty \) as \(n \to \infty \), i.e., \(\Sigma a_{\delta n} \) is not properly divergent.

3. Acceleration and rapidity of convergence.

Theorem 3.1. A necessary and sufficient condition that \(\{T_n\} \) converge is that \(r_n \to r \neq 1 \) and \(T_{n+1} - T_n \to 0 \).

Proof. The necessity follows from (1) of Theorem 2.2 and the fact that \(\{T_n\} \) converges implies that \(T_{n+1} - T_n \to 0 \).

For the sufficiency, \(r \neq 1 \) implies that \(r_n(1 - r_n) \neq 0 \). Consequently, \(T_{n+1} = r_n/(1 - r_n) + (T_{n+1} - T_n)/(1 - r_n) \to r/(1 - r) \).

Theorem 3.2. If \(r_n \to r \) where \(|r| < 1 \), then \(T_n \to r/(1 - r) \).

Proof. Since \(|r| < 1 \), \(r \neq 1 \) and \(\Sigma a_n \) converges, so that \(T_n \) exists for large \(n \). Let \(\varepsilon > 0 \) and \(\rho \) be any number such that \(|r| < \rho < 1 \). There exists an integer \(N \) such that for \(n \geq N \) and \(m \geq N \) we have \(|r_n| < \rho \) and \(|r_m - r_n| < \varepsilon (1 - \rho) \). Thus, for each \(n \geq N \) we have

\[
|T_{n+1} - T_n| = |r_{n+1} - r_n| + |r_{n+1}r_{n+2} - r_nr_{n+1}| + \cdots \\
+ |r_{n+1} \cdots r_{n+k+1} - (r_n \cdots r_{n+k})| + \cdots \\
\leq |r_{n+1} - r_n| + |r_{n+1}| |r_{n+2} - r_n| + \cdots \\
+ |r_{n+1} \cdots r_{n+k}| |r_{n+k+1} - r_n| + \cdots \\
< \varepsilon (1 - \rho) + \rho \varepsilon (1 - \rho) + \cdots + \rho^k \varepsilon (1 - \rho) + \cdots = \varepsilon.
\]

Hence, \(|T_{n+1} - T_n| \to 0 \), i.e., \(T_{n+1} - T_n \to 0 \). From Theorem 3.1, \(\{T_n\} \) converges. Consequently, \(T_n \to r/(1 - r) \) according to (2) of Theorem 2.2.

Theorem 3.3. Suppose that \(r_n \to r \) where \(|r| < 1 \), and let \(\{\alpha_n\} \) be a complex sequence converging to some complex number \(\alpha \). Then \(T_n \to t \) for some complex number \(t \), and conditions (1) through (5) of Theorem 2.2 hold.

Proof. From Theorem 3.2, \(\{T_n\} \) converges. We now apply Theorem 2.2.
According to Theorem 3.3, $\Sigma a_n \in MR(\Sigma a_n)$ if $r = 0$. Nevertheless, the reader should be forewarned in case $r = 0$. In particular, let $\Sigma a_n = \sum_{n=0}^{\infty} (-1)^n/n! = 1/e$. We have $r_n = -1/n$ for $n \geq 1$, and $\delta_n = 1/(1 - r_n) = 1/[1 + (1/n)] = n/(n + 1) = 1 - 1/(n + 1) = 1 + r_{n+1}$ for $n \geq 2$. Consequently, $S_\delta_n = S_n + a_n \delta_{n+1} = S_n + a_n(1 + r_{n+1}) = S_{n+2}$ for $n \geq 1$.

Lemma 3.4. If $|r| < 1$, then $T_n/r_n \rightarrow 1/(1 - r)$.

Proof. If $r = 0$, then $T_n/r_n \rightarrow 1 = 1/(1 - r)$ according to Theorem 2.1. If $r \neq 0$, then $T_n/r_n \rightarrow [r/(1 - r)]/r = 1/(1 - r)$ according to Theorem 3.2.

Theorem 3.5. Suppose that Σa_n and $\Sigma a'_n$ are series such that $|r| < 1$ and $|r'| < 1$. Then:

1. $\Sigma a'_n$ converges more rapidly than Σa_n if and only if $a'_n/a_n \rightarrow 0$.
2. $\Sigma a'_n$ converges with the same rapidity as Σa_n if and only if there are numbers a and b such that $0 < a < |a'_n/a_n| < b$.

Proof. From Lemma 3.4, $T_n/r_n \rightarrow 1/(1 - r)$ and $T'_n/r'_n \rightarrow 1/(1 - r')$.

If $a'_n/a_n \rightarrow 0$,

\[
\frac{S' - S'_{n-1}}{S - S_{n-1}} = \frac{a'_n}{a_n} \frac{T'_n/r'_n}{T_n/r_n} \rightarrow 0, \quad \frac{1/(1 - r')}{1/(1 - r)} = 0.
\]

Conversely, if $\Sigma a'_n$ converges more rapidly than Σa_n,

\[
\frac{a'_n}{a_n} \cdot \frac{T_n/r_n}{T'_n/r'_n} \frac{S' - S'_{n-1}}{S - S_{n-1}} \rightarrow \frac{1/(1 - r)}{1/(1 - r')} \cdot 0 = 0.
\]

This proves (1).

Assume that a and b are numbers such that $0 < a < |a'_n/a_n| < b$. Since $|(T'_n/r'_n)/(T'_n/r_n)| \rightarrow |(1 - r)/(1 - r')| \neq 0$, there are numbers c and d such that $0 < c < |(T'_n/r'_n)/(T'_n/r_n)| < d$. Thus,

\[
0 < ac < \left| \frac{S' - S'_{n-1}}{S - S_{n-1}} \right| = \left| \frac{a'_n}{a_n} \frac{T'_n/r'_n}{T_n/r_n} \right| < bd.
\]

Assume that A and B are numbers such that

\[
0 < A < (S' - S'_{n-1})/(S - S_{n-1}) < B
\]

As above, there are numbers c and d such that

\[
0 < c < (T_n/r_n)/(T'_n/r_n) < d.
\]

Thus,

\[
0 < Ac < \frac{a'_n}{a_n} = \left| \frac{T_n/r_n}{T'_n/r'_n} \right| \left| \frac{S' - S'_{n-1}}{S - S_{n-1}} \right| < Bd.
\]
LEMMA 3.6. If \(|r_n| \leq \rho < 1/2 \) for some number \(\rho \), then
\[
0 < (1 - 2\rho)/(1 - \rho) \leq |T_n/r_n| \leq 1/(1 - \rho).
\]

Proof. We have \(|T_n| \leq |r_n| + |r_n r_{n+1}| + \cdots + |r_n \cdots r_{n+k}| + \cdots \leq |r_n|/(1 - \rho) \leq \rho/(1 - \rho) < 1 \). Thus, \(|T_n/r_n| \leq 1/(1 - \rho) \) and \(|T_n/r_n| = 1 + T_{n+1} \geq 1 - |T_{n+1}| = 1 - |T_{n+1}| \geq 1 - \rho/(1 - \rho) = (1 - 2\rho)/(1 - \rho) > 0 \).

THEOREM 3.7. Suppose that \(\sum a_n, \sum a'_n \) are series such that \(a'_n/a_n \to 0 \), and \(|r_n| \leq \rho_1 < 1/2, |r'_n| \leq \rho_2 < 1 \) for some numbers \(\rho_1, \rho_2 \). Then \(\sum a'_n \) converges more rapidly than \(\sum a_n \).

Proof. From Lemma 3.6, \(0 < (1 - 2\rho_1)/(1 - \rho_1) \leq |T_n/r_n| \). Also, \(|T_n/r_n| = 1 + r_{n+1} + r_{n+1} r_{n+2} + \cdots \leq 1/(1 - \rho_1) \). Thus,
\[
\frac{|S' - S_{n-1}|}{|S - S_{n-1}|} = \frac{|a'_n|}{|a_n|} \frac{|T'_n/r'_n|}{|T_n/r_n|} \leq \frac{|a'_n|}{|a_n|} \frac{1/(1 - \rho_1)}{(1 - 2\rho_1)/(1 - \rho_1)} \to 0.
\]

The following counterexample shows that the hypothesis of Theorem 3.7 cannot be relaxed by replacing \(1/2 \) by any larger number.

COUNTEREXAMPLE 3.8. Let \(\varepsilon \) be any number such that \(0 < \varepsilon < 1/4 \) and \(f(x, n) = x^{n+1} - 2x + 1, \, n = 1, 2, \cdots \). Then \(f(1/2, n) > 0 \) and \(f(1/2 + \varepsilon, n) < 0 \). We may thus assume that \(N \) is a positive integer such that for some \(b, f(b, N) = 0 \) and \(1/2 < b < 1/2 + \varepsilon \). Thus, \(-1 + b + b^2 + \cdots + b^n = (b - 1)^{-1} f(b, N) = 0 \). Define \(a_n = -b^n \) for \(n = k(N + 1) \) and \(k = 0, 1, 2, \cdots \), and \(a_n = b^n \) otherwise. Accordingly, \(\sum a_n \) converges, \(|r_n| = b < 1/2 + \varepsilon \) and \(S - S_n = 0 \). Hence the series \(\sum a'_n \), where \(a'_n = a_n/n! \), \(a'_n/a_n \to 0 \) and \(|r'_n| \to 0 \), does not converge more rapidly than \(\sum a_n \).

The author wishes to thank Professor A. T. Lonseth for his guidance and encouragement which led to the completion of the authors thesis.

REFERENCES
17. ———, (to appear)

Received April 25, 1966. Except for Counterexample 3.8, the material in this paper was taken from the author’s Doctorial Dissertation, submitted to Oregon State University, Corvallis, Oregon, under the guidance of Professor A. T. Lonseth.

THE BOEING COMPANY
SEATTLE, WASHINGTON
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Paul Frank Baum, *Local isomorphism of compact connected Lie groups*. . . . 197
Lowell Wayne Beineke, Frank Harary and Michael David Plummer, *On the critical lines of a graph* .. 205
Larry Eugene Bobisud, *On the behavior of the solution of the telegraphist’s equation for large velocities* .. 213
Richard Thomas Bumby, *Irreducible integers in Galois extensions* 221
Chong-Yun Chao, *A nonimbedding theorem of nilpotent Lie algebras* 231
Peter Crawley, *Abelian p-groups determined by their Ulm sequences* 235
Bernard Russel Gelbaum, *Tensor products of group algebras* 241
Newton Seymour Hawley, *Weierstrass points of plane domains* 251
Paul Daniel Hill, *On quasi-isomorphic invariants of primary groups* 257
Melvyn Klein, *Estimates for the transfinite diameter with applications to conformal mapping*. .. 267
Frederick M. Lister, *Simplifying intersections of disks in Bing’s side approximation theorem* ... 281
Charles Wisson McArthur, *On a theorem of Orlicz and Pettis* 297
Harry Wright McLaughlin and Frederic Thomas Metcalf, *An inequality for generalized means* .. 303
Daniel Russell McMillan, Jr., *Some topological properties of piercing points* .. 313
Peter Don Morris and Daniel Eliot Wulbert, *Functional representation of topological algebras* .. 323
Roger Wolcott Richardson, Jr., *On the rigidity of semi-direct products of Lie algebras* .. 339
Jack Segal and Edward Sandusky Thomas, Jr., *Isomorphic cone-complexes* .. 345
Richard R. Tucker, *The δ^2-process and related topics* 349
David Vere-Jones, *Ergodic properties of nonnegative matrices. I* 361