MULTIPLIERS AND H^* ALGEBRAS

WAI-MEE CHING AND JAMES SAI-WING WONG
MULTIPLIERS AND H^* ALGEBRAS

WAI-MEE CHING AND JAMES S. W. WONG

Let A be a normed algebra and $B(A)$ the algebra of all bounded linear operators from A into itself, with operator norm. An element $T \in B(A)$ is called a multiplier of A if $(Tx)y = x(Ty)$ for all $x, y \in A$. The set of all multipliers of A is denoted by $M(A)$. In the present paper, it is first shown that $M(A)$ is a maximal commutative subalgebra of $B(A)$ if and only if A is commutative. Next, $M(A)$ in case A is an H^*-algebra will be represented as the algebra of all complex-valued functions on certain discrete space. Finally, as an application of the representation theorem of $M(A)$, the set of all compact multipliers of compact H^*-algebras is characterized.

In case A is commutative, the general notion of multipliers was first studied by Helgason [7], followed by Wang [12] and Birtel [2], [3], [4]. In the special case when $A = L_1(G)$, the group algebra over an arbitrary locally compact abelian group, the problem of multipliers has also been studied by Helson [8] and Edwards [5]. (Cf. also Rudin [11].) Helgason [7] called a function g on the maximal ideal space \hat{A} of A a multiplier if $gA \subseteq \hat{A}$ where \hat{A} is the Gelfand transform of A. Later Wang [12] and Birtel [2] carried out more systematic studies on multipliers. In case A is semi-simple, Wang [12] proved that there exists a norm-decreasing isomorphism between $M(A)$ and $C_0(\hat{A})$, the algebra of bounded continuous functions of \hat{A}. In particular if $A = L_1(G)$, then $M(A) = M(G)$, the algebra of all bounded regular Borel measures on G. In the noncommutative case, Wendel [13] first studied multipliers for noncommutative group algebras, followed by Kellogg [9] for H^*-algebras. However, since Kellogg’s proofs rely heavily on the representation theorem of Wang [12] for multipliers on general commutative semi-simple Banach algebras, relevant results on multipliers of H^*-algebras were obtained only for the commutative case.

2. Multiplier algebras. Let A be a normed algebra. A is said to without order if either $xA = \{0\}$ or $Ax = \{0\}$ implies $x = 0$. Clearly, if A is semi-simple or A has a unit, then A is without order. In the sequel, we assume all normed algebras under consideration are without order. An element $T \in B(A)$ is called a right (left) multiplier

\[1\] Both Kellogg [9] and Wendel [13] used the terminology “centralizers” instead of “multipliers".
of A if $T(xy) = (Tx)y(T(xy) = x(Ty))$. We denote the set of all right (left) multipliers of A by $R(A)(L(A))$. We first observe the following:

Proposition 1. $R(A) \cap L(A) = M(A)$.

Proof. Clearly, we have $R(A) \cap L(A) \subseteq M(A)$. Let $T \in M(A)$. Note that $(T(xy))z = (xy)Tz = x(y(Tz)) = x((Ty)z)$ for all $x, y, z \in A$. Since A is without order, $T(xy) = x(Ty)$, i.e. $T \in R(A)$. Similarly, one easily shows that $T \in L(A)$, completing the proof.

A commutative subalgebra Y of an algebra X is called *maximal commutative subalgebra* of X if Y is not properly contained in any proper commutative subalgebra of X. If X has an identity element e, e belongs to any maximal commutative subalgebra of X. Using an argument based upon Zorn's lemma, one easily shows that $M(A)$ is contained in some maximal commutative subalgebra of $B(A)$, say $MC(A)$.

For an arbitrary normed algebra X, we denote its centre by $Z(X)$. One can easily verify the following inclusions:

$$Z(B(A)) \subseteq Z(M(A)) \subseteq M(A) \subseteq MC(A) \subseteq B(A).$$

Kellogg [9] proved that $M(A)$ is a closed commutative subalgebra of $B(A)$, consequently we always have $M(A) = Z(M(A))$. More precisely, we can prove the following:

Proposition 2. Let A be a normed algebra. Then the algebra $M(A)$ of all multipliers of A is a closed commutative subalgebra of $B(A)$, the algebra of all bounded linear operators in A with operator norm.

Proof. Let $T_n \in M(A)$ and $\| T_n - T \| \to 0$, for $n = 1, 2, 3, \ldots$. We note that for any $x, y \in A$,

$$\| x(Ty) - (Tx)y \| \leq \| x(Ty) - x(T_n y) \| + \| (T_n x)y - (Tx)y \| \leq 2 \| x \| \| y \| \| T_n - T \|. $$

Letting n tend to infinity, we have $x(Ty) = (Tx)y$. Thus $T \in M(A)$, and $M(A)$ is closed. These remarks together with the result of Kellogg complete the proof of the assertion.

From Proposition 2, we may easily deduce that all subalgebras of $B(A)$ occurring (*) are closed in $B(A)$.

Proposition 3. Let S^A_x denote the spectrum of an element $x \in A$. Then $S^B(A)(T) = S^M(A)(T)$.
Proof. Since both $B(A)$ and $M(A)$ contain the identity, we need only to prove that for $T \in M(A)$ if T^{-1} exists and is in $B(A)$, then $T^{-1} \in M(A)$. For any $x, y \in A$, we observe that

$$(T^{-1}x)y = (T^{-1}x)(TT^{-1}y) = (TT^{-1}x)(T^{-1}y) = x(T^{-1}y) ,$$

Theorem 1. $M(A)$ is maximal commutative subalgebra of $B(A)$ if and only if A is commutative.

Proof. Let A be commutative, and for each $x \in A$, we write T_x the left and right regular representations of x in $B(A)$. Since A is commutative, $[A] = \{T_x: x \in A\} = \{xT: x \in A\} \subseteq M(A)$. Suppose A is not maximal, and let $MC(A)$ be some maximal commutative subalgebra containing A. Since A is not maximal, we may pick $T \in MC(A) \setminus M(A)$. On the other hand, $T \in MC(A)$ implies that T commutes with all elements of $[A]$, i.e., for all $x, y \in A$ $(Tx)y = (TT_y)y = (T_yT)y = x(Ty)$, proving that $T \in M(A)$. This contradiction establishes that A is maximal. Conversely let $M(A)$ be a maximal commutative algebra. Thus $T \in B(A)$, and $ST = TS$ for all $S \in M(A)$ imply $T \in M(A)$. In particular, $(T_x S)y = x(Sy) = (SX)y = (ST_x)y$ and hence $T_x \in M(A)$ for all $x \in A$. Thus $(xy)z = T_x(yz) = y(T_xz) = (yx)z$ for all $x, y, z \in A$. Since A is without order, $xy = yx$ for all $x, y \in A$, i.e., A is commutative.

We will see from §3 and §4 that in case A is a simple H^*-algebra, then $M(A) = Z(B(A))$.

Remark 1. If A is in addition complete, then $M(A)$ is also a Banach algebra. In this case, we may define $T \in M(A)$ as any mapping of A into itself satisfying the condition that $(Tx)y = x(Ty)$ for all $x, y \in A$. From the fact that A is without order, it is easily seen that T is linear. As a consequence of closed graph theorem, we may also show that T is bounded (see Wang [12]). The way we choose to define multipliers is just a matter of convenience. Note that throughout all of our discussion, we do not assume A to be complete.

3. Lemmata on matrix algebras. Let X_s be the algebra of all matrices $(x_{a\beta})$, $\alpha, \beta \in S$, where S is a fixed set of indices and $x_{a\beta}$'s are complex numbers satisfying the condition $\sum_{a, \beta} |x_{a\beta}|^2 < \infty$. The multiplication is defined by

$$z = (z_{a\beta}) = x \cdot y = (x_{a\beta})(y_{\gamma\delta}) ,$$

where

$$z_{a\beta} = \sum_{\gamma \in S} x_{a\gamma} y_{\gamma\beta} .$$
This multiplication is well defined since
\[\sum_{\alpha, \beta} |Z_{\alpha\beta}|^2 = \sum_{\alpha, \beta} \left| \sum_{\ell} x_{\alpha\ell} y_{\gamma\ell} \right|^2 \leq \left(\sum_{\alpha, \beta} |x_{\alpha\beta}|^2 \right) \left(\sum_{\ell, \gamma} |y_{\gamma\ell}|^2 \right) < \infty. \]

We define an inner product on \(X_s \) by
\[(x, y) = \sum_{\alpha, \beta} x_{\alpha\beta} y_{\gamma\delta}, \]
where \(w \) is a fixed constant \(\geq 1 \). \(X_s \) becomes a Banach algebra if the norm is induced by the inner product in the usual manner, i.e. \(||x||^2 = (x, x) \).

In this cases, \(B(X_s) \) can be identified with a subalgebra of all matrices \(T = (t_{\alpha\beta}) \) over \(S \times S \) such that \(Tx = y \) is defined by
\[y_{\alpha\beta} = \sum_{(i, \delta)} t_{\alpha\beta i\delta} y_{i\delta} \]
with \(\sum_{\alpha, \beta} |y_{\alpha\beta}|^2 < \infty \). (We refer to Naimark [10] for more detailed discussion of \(X_s \).)

Lemma 1. \(T \in M(X_s) \) if and only if \(T \) is a scalar multiple of the identity operator.

Proof. Let \(T = (t_{\alpha\beta}) \in M(X_s) \), so \((Tx)y = T(xy) \) for all \(x, y \in X_s \).

For any fixed pair of indices \((\sigma, \tau) \in S \times S \), let \(x_{\sigma\tau} = 1, x_{\alpha\beta} = 0 \) if \((\alpha, \beta) \neq (\sigma, \tau) \) and \(y_{\sigma\tau} = 1, y_{\alpha\beta} = 0 \) otherwise. Denote \(z = (z_{\alpha\beta}) = (Tx)y = T(xy) \). Observe from \(z = (Tx)y \) that
\[\sum_{\xi} \left(\sum_{(i, \delta)} t_{\alpha\xi i\delta} \right) (y_{\xi\delta}) = \sum_{\xi} t_{\alpha\xi\xi\delta} y_{\xi\delta}, \]
and hence \(z_{\sigma\tau} = t_{\alpha\sigma\tau}, z_{\alpha\beta} = -t_{\alpha\sigma\tau}, z_{\alpha\beta} = 0 \) otherwise. On the other hand, from \(z = T(xy) \) we have
\[\sum_{(i, \delta)} t_{\alpha\beta i\delta} \left(\sum_{\xi} x_{\xi\ell} y_{\gamma\ell} \right) = \sum_{\sigma} t_{\alpha\beta\sigma\delta} y_{\gamma\delta} = -t_{\alpha\beta\sigma\tau}. \]

From these computation, we obtain that \(t_{\alpha\beta\sigma\tau} = 0 \) if \(\beta \neq \sigma \) and \(\beta \neq \tau \). In case \(\beta = \sigma \), we have \(t_{\alpha\beta\sigma\tau} = -t_{\alpha\sigma\tau} \) and so again \(z_{\alpha\beta} = 0 \). Hence we conclude that \(t_{\alpha\beta\sigma\tau} = 0 \) unless \(\beta = \tau \). Similarly, from \(x(Ty) = T(xy) \) we obtain \(t_{\alpha\beta\sigma\tau} = 0 \) unless \(\alpha = \sigma \). Since \(\sigma, \tau \) are arbitrary, we have \(t_{\alpha\beta\sigma\tau} = 0 \) only if \((\alpha, \beta) = (\sigma, \tau) \). Next we choose \(x_{\sigma\tau} = 1, x_{\alpha\beta} = 0 \) if \((\alpha, \beta) \neq (\sigma, \tau) \) and \(y_{\rho\nu} = 1, y_{\alpha\beta} = 0 \) if \((\alpha, \beta) \neq (\mu, \nu) \) in the equation \((Tx)y = x(Ty) \). It is readily seen from a similar computation that \(t_{\alpha\beta\gamma\delta} = t_{\gamma\delta\beta} \) for all \(\alpha, \beta, \gamma, \delta \in S \). Thus if \(T \in M(X_s) \), then \(T \) must be a scalar multiple of the identity operator.

Lemma 2. \(M(X_s) = Z(B(X_s)) \).

Proof. In view of the inclusion relation \((*)\), we need only to show that if \(T \in Z(B(X_s)) \), then \(T \in M(X_s) \). Let \(T = (t_{ij}), i, j \in S \times S, \)
such that for two fixed distinct indices $k, h \in S \times S$, $t_{kk} = a \neq t_{hh} = b$ and $t_{ij} = 0$ otherwise. From Lemma 1, we clearly have $T \in M(A)$. Define $T_1 \in B(A)$, $T_1 = (t''_{ij})$, by $t''_{kk} = 1$, and $t''_{ij} = 0$ otherwise. It is readily seen by a direct computation that $TT_1 \neq T_1 T$, hence $T \not\in Z(B(X_S))$, proving the assertion.

4. H^*-algebras. An H^*-algebra A is a Banach $*$-algebra (a Banach algebra with involution) and a Hilbert space, where the Banach algebra norm coincides with the Hilbert space norm, with the crucial connecting property $(xy, z) = (y, x^*y)$. It is assumed that for each $x \in A$, $\|x^*\| = \|x\|$ and $x^*x \neq 0$ if $x \neq 0$. A simple example of an H^*-algebra is the matrix algebra X_S introduced in §3. In fact, X_S is a simple H^*-algebra, and indeed every simple H^*-algebra is isometric and $*$-isomorphic to some matrix algebra X_S. In general, Ambrose [1] proved that every H^*-algebra is the direct, and at the same time orthogonal, sum of its closed minimal two-sided ideals which are simple H^*-algebras. (Naimark [10], p. 331).

Lemma 3. Let A be a normed algebra which is the direct sum of closed two-sided ideals $\{I_\alpha; \alpha \in \mathcal{E}\}$ in A. If $T \in M(A)$, then T maps each I_α into itself.

Proof. Let $x \in I_\alpha$ for some fixed $\alpha \in \mathcal{E}$. Suppose that $(Tx)_\beta \neq 0$, i.e. The projection of Tx into I_β, for some $\beta \neq \alpha, \beta \in \mathcal{E}$. We may choose $y \in I_\beta, y \neq 0$, such that $(Tx)y = (Tx)_\beta y = 0$. (For otherwise, if $(Tx)_\beta I_\beta = 0$, then

$$(Tx)_\beta A = (Tx)_\beta \left(\bigoplus_{\alpha \in \mathcal{E}} I_\alpha \right) = (Tx)_\beta I_\beta = 0,$$

contradicting the fact that A is without order.) But on the other hand, $T(xy) = T \cdot 0 = 0$, violating the multiplier condition. Thus, $(Tx)_\beta = 0$, i.e. T maps each I_α into itself.

Denote by T_α the restriction of T to I_α. It is clear that if $T \in M(A)$, then $T_\alpha \in M(I_\alpha)$ for each $\alpha \in \mathcal{E}$. Hence we may write

$$TA = T\left(\bigoplus_{\alpha \in \mathcal{E}} I_\alpha \right) = \bigoplus_{\alpha \in \mathcal{E}} TI_\alpha = \bigoplus_{\alpha \in \mathcal{E}} T_\alpha I_\alpha.$$

We note that for each $T \in M(A)$, there corresponds a unique set $\{T_\alpha\}$ where $T_\alpha \in M(I_\alpha)$.

Theorem 2. Let A be an H^*-algebra, and $\{I_\alpha; \alpha \in \mathcal{E}\}$ the set of all minimal closed two-sided ideals in A. Denote by E the topological space of the set of all minimal closed two-sided ideals in A with the
discrete topology. Then there exists a \(\ast\)-isomorphism which is at the same time an isometry of \(M(A)\) onto \(C^\infty(E)\), the space of all bounded continuous complex functions on \(E\).

Proof. From the structure theorem of \(H^\ast\)-algebras, we know that \(A = \bigoplus \sum_a I_a\) of all its closed minimal ideals which are simple \(H^\ast\)-algebras, \(\ast\)-isomorphic and isometric to some matrix algebras \(X_{s_a}\). For each \(T \in M(A)\), let \(\{T_\alpha : \alpha \in \mathcal{E}\}\) be the corresponding set of multipliers of \(I_a\). By Lemma 1, \(T_\alpha\) must be a scalar multiple of the identity operator \(P_a\), say \(T_\alpha = t(\alpha)P_a\), for some complex number \(t(\alpha)\) depending on \(T\). Define \(\Phi : M(A) \to C(E)\), the space of all complex-valued functions on \(E\) by \(\Phi(T)(\alpha) = t(\alpha)\) for each \(\alpha \in E\). Clearly \(\Phi\) is linear, multiplicative and preserves involution, (i.e., \(*\) operations for elements in \(A\), complex conjugation for elements in \(C^\infty(E)\) and operator adjoint for elements in \(M(A)\).) To show that \(\Phi\) is isometric, we observe

\[
\|Tx\|^2 = \left\|\sum_{\alpha} T_\alpha x_\alpha\right\|^2 = \left\|\sum_{\alpha} T_\alpha x_\alpha\right\|^2 = \sum_{\alpha} \|T_\alpha x_\alpha\|^2 = \sum_{\alpha} \|t(\alpha)x_\alpha\|^2 \leq \|\Phi(T)\|^2 \|x\|^2
\]

and hence \(\|T\| \leq \|\Phi(T)\|\). Conversely, we have for some \(x_\alpha \neq 0\),

\[
\|\Phi(T)(\alpha)\| = |t(\alpha)| = \frac{\|T_\alpha x_\alpha\|}{\|x_\alpha\|} \leq \|T_\alpha\| \leq \|T\|
\]

proving \(\|\Phi(T)\| \leq \|T\|\). Thus, \(\Phi\) is indeed an isometry, and being linear, it is one-to-one. On the other hand for each \(f \in C^\infty(E) \subseteq C(E)\), let \(T_\alpha = f(\alpha)P_a\). It is readily seen that the mapping \(T\) determined by \(\{T_\alpha\}\) belongs to \(M(A)\) and satisfies \(\Phi(T) = f\). Thus, we conclude that \(\Phi\) is an isometric \(\ast\)-isomorphism from \(M(A)\) onto \(C^\infty(E)\).

We note that the present proof differs from its commutative counterpart [9] in the use of Ambrose's structure theorem [1] for \(H^\ast\)-algebras instead of Gelfand's representation for general commutative Banach Algebras.

Remark 2. We note that the orthogonal complement of each minimal closed two-sided ideal is a maximal closed two-sided ideal, and vice versa. Hence the space of all minimal closed two-sided ideals is homeomorphic to the space of all maximal closed two-sided ideals. Thus, in case \(A\) is commutative, the above representation theorem reduces to that of Kellogg's (Theorem (4.1), [9]).

Remark 3. From Lemma 2 and the above theorem, it is easily seen that if \(A\) is a \(H^\ast\)-algebra then \(M(A) = Z(B(A))\) if and only if \(A\) is simple.
Remark 4. The result of Theorem 2 remains valid for any algebra which is the direct sum of ideals \(\{ I_a \} \) such that each ideal is isomorphic and isometric to some matrix algebra. The isometry of \(M(A) \) and \(C^\omega(E) \) can be proved without using the orthogonality of the direct sum in an \(H^* \)-algebra.

Remark 5. Since \(M(A) \) is a commutative involutory algebra, it is also contained in the set of all normal operators on \(A \).

Remark 6. Since \(M(A) \) is \(*\)-isomorphic and isometric to \(C^\omega(E) \), its maximal ideal space is homeomorphic to the Stone-Cech compactification of the discrete space \(E \). (See [6], Chapter 6).

Remark 7. A Banach \(*\)-algebra \(A \) with identity \(e \) is called completely symmetric if for each \(x \in A, (e + x^*x)^{-1} \in A \). (See Naimark [10], p. 299.) It is clear that \(C^\omega(E) \) and hence \(M(A) \) is completely symmetric. In particular, the Shilov boundary of \(M(A) \) coincides with its maximal ideal space. (Cf. Naimark [10], p. 218.)

Another interesting example of \(H^* \)-algebras is the group algebra \(L^2(G) \), where \(G \) is an arbitrary compact group. In this case, all the minimal closed two-sided ideals of \(L^2(G) \) are isomorphic and isometric to finite dimensional simple \(H^* \)-algebras, or equivalently \(X_{S_\alpha} \), with \(S_\alpha \) finite for each \(\alpha \in \Sigma \) (see [1].). In the following, we will prove a result for the set of all multipliers which are at the same time compact operators in case \(A \) is a \(H^* \)-algebra whose minimal closed two-sided ideals are finite-dimensional. (Such an algebra will be called compact \(H^* \)-algebra. Clearly, every commutative \(H^* \) algebra is a compact \(H^* \)-algebra.)

Theorem 3. Let \(A \) be a \(H^* \)-algebra whose minimal closed two-sided ideals are finite dimensional, and \(M_0(A) \) the set of all compact operators in \(M(A) \). Then \(\Phi(M_0(A)) = C_0(E) \), the algebra of all continuous functions on \(E \) which vanish at infinity.

Proof. Since every \(I_\alpha \) is finite dimensional, each \(T_\alpha \in M(I_\alpha) \) is a scalar multiple of the identity operator \(P_\alpha \), and hence compact. For any finite set \(F \subseteq E \), if we define

\[
T = \sum_{\alpha \in F} T_\alpha = \sum_{\alpha \in F} c_\alpha P_\alpha,
\]

where \(c_\alpha \) are complex constants, \(T \) is the finite sum of compact operators and thus again compact. Let \(C_\kappa(E) \) be the algebra of all continuous functions on \(E \) with compact support. We have just seen
that $\Phi^{-1}(C_K(E)) \subseteq M_0(A)$. Since $C_K(E) = C_0(E)$, thus $\Phi^{-1}(C_K(E)) = \Phi^{-1}(C_K(E))$. However, $M_0(A)$ is the intersection of the closed sub-algebra $M(A)$ and the closed ideal of all compact operators in $B(A)$, and is thus closed. As a consequence, we have $\Phi^{-1}(C_K(E)) \subseteq M_0(A)$.

On the other hand, suppose that there exists a $T \in M_0(A)$ such that $\Phi(T) = f \in C_0(E)$, i.e., there exists $\varepsilon > 0$ such that the set $G = \{\alpha \in E : |f(\alpha)| \geq \varepsilon\}$ is infinite. For each $\alpha \in G$, choose $x_\alpha \in I_\alpha$ with $\|x_\alpha\| = 1$. Note that $\{x_\alpha\}$ is a bounded sequence, but $\{Tx_\alpha\} = \{f(\alpha)x_\alpha\}$ is an orthogonal sequence with $\|Tx_\alpha\| \geq \varepsilon$ which cannot have any convergent subsequence. This contradicts the fact that T is compact. Thus, $M_0(A) \subseteq \Phi^{-1}(C_0(E))$, completing the proof.

Remark 8. We note that for every compact multiplier T of a compact H^*-algebra, there exists a net $T_n \in B(A)$ with finite ranks, such that T_n converges to T in operator norm.

Remark 9. For each $T \in M(A)$, let $\{T_n\}$ be the collection of all restrictions of T to I_α. Clearly $\{T_n\}$ is a family of mutually orthogonal projections, since $\{I_\alpha\}$ is an orthogonal family of subspaces. For each $T \in M_0(A)$, we observe that there are only countably many T_n different from zero. (Observe that the set $\{\alpha : f(\alpha) \neq 0, f = \Phi(T)\} = \bigcup_{n=1}^{\infty} S_n$, where $S_n = \{\alpha : |f(\alpha)| \geq 1/n\}$, is countable since for each n, S_n is finite.) Hence, we may write

$$T = \sum_{i=1}^{\infty} f(\alpha_i)P_{I_\alpha}, \quad \text{with} \quad \lim_{i \to \infty} |f(\alpha_i)| = 0.$$

This decomposition of T into a sequence of orthogonal projections can be considered as an extension of the well-known spectral decomposition of a self-adjoint compact operators of H^*-algebras. In this case, T is not assumed to be self-adjoint.

Remark 10. By a similar consideration as given in Remark 2, Theorem 3 may be considered as a generalization of Theorem (4.3) of [9]. Furthermore, the maximal ideal space of the algebra $M_0(A)$ of all compact multipliers of a compact H^*-algebra A is homeomorphic to E, the set of all minimal two-sided ideals in A with discrete topology.

Remark 11. We remark that the specialization of general H^*-algebras to compact H^*-algebras is necessary since in case of X_s, the identity operator in $B(X_s)$ is compact if and only if X_s is finite-dimensional.
REFERENCES

Received June 7, 1966. The research of the first-named author was supported by the Summer Supplement of a National Research Council Studentship held at the University of Toronto. The research of the second-named author was supported by a Summer Research Fellowship from the Canadian Mathematical Congress, at Edmonton 1966, and also by NRC Grant A-3125.

UNIVERSITY OF TORONTO
TORONTO, CANADA

UNIVERSITY OF ALBERTA
EDMONTON, CANADA
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California

J. DUGUNDJI
University of Southern California
Los Angeles, California 90007

J. P. JANS
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Wai-Mee Ching and James Sai-Wing Wong, *Multipliers and H^* algebras* .. 387
P. H. Doyle, III and John Gilbert Hocking, *A generalization of the Wilder arcs* .. 397
E. M. Horadam, *A sum of a certain divisor function for arithmetical semi-groups* .. 407
V. Istrătescu, *On some hyponormal operators* 413
Harold H. Johnson, *The non-invariance of hyperbolicity in partial differential equations* ... 419
Daniel Paul Maki, *On constructing distribution functions: A bounded denumerable spectrum with n limit points* 431
Ronald John Nunke, *On the structure of Tor. II* 453
T. V. Panchapagesan, *Unitary operators in Banach spaces* 465
Gerald H. Ryder, *Boundary value problems for a class of nonlinear differential equations* .. 477
Stephen Simons, *The iterated limit condition and sequential convergence* .. 505
Larry Eugene Snyder, *Stolz angle convergence in metric spaces* 515
Sherman K. Stein, *Factoring by subsets* 523
Ponnaluri Suryanarayana, *The higher order differentiability of solutions of abstract evolution equations* 543
Leroy J. Warren and Henry Gilbert Bray, *On the square-freeness of Fermat and Mersenne numbers* 563
Tudor Zamfirescu, *On l-simplicial convexity in vector spaces* 565
Eduardo H. Zarantonello, *The closure of the numerical range contains the spectrum* .. 575