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The following results are proved:

If A and B are abelian p-groups and the length of A is
greater than the length of B, then Tor (4, B) is a direct sum
of countable groups if and only if (i) B is a direct sum of
countable groups and (ii) if the §-th Ulm invariant of B is not
zero, then every pPA-high subgroup of A is a direct sum of
countable groups.

If B is an ordinal, A is a p-group, and if one p%A-high
subgroup of A is a direct sum of countable groups then every
pBA-high subgroup of A is a direct sum of countable groups.

If A and B are p-groups of cardinality <Y, without
elements of infinite height, then Tor (A, B) is a direct sum of
cyclic groups.

For each n with 1 = #n < w, there is a p-group G without
elements of infinite height such that G is not itself a direct
sum of cyclic groups but every subgroup of G having cardinality
= W, is a direct sum of cyclic groups.

If A and B are (abelian) p-groups, when is Tor (4, B) a direct
sum of countable groups (d.s.c. group)? This paper contains a complete
answer for this question when A and B have different lengths.

If A and B have the same length the situation is much more
complicated. The simplest case occurs when 4 and B have no elements
of infinite height. Then Tor (A, B) has no elements of infinite height
and it is a d.s.c. group if and only if it is a direct sum of cyeclic
groups (X-cyclic). Here, although there is no satisfactory answer to
the question, some partial results are obtained. For example it is
shown that if A4 and B are p-groups without elements of infinite
height having cardinalities <¥,, then Tor (4, B) is Y-cyclic.

Finally some examples of strange groups are constructed. Let a
p-group be called »-cyclic, where ) is a cardinal number, if every
subgroup with cardinality <x» is X-cyclic. Every p-group without
elements of infinite height is W,-cyclic. For each » with 1 < »n < w,
a group is constructed which is W, -cyclic but not Y-cyclic.

These results are obtained by homological methods together with
the concept of N-high subgroup due to John Irwin [2].

In diagrams >— denotes a monomorphism and -—> an epimor-
phism. An extension C>— K —> A is p*“pure where p is a prime
and « an ordinal number if it belongs to »* Ext (A, C). A monomor-
phism f: C >— F is p*-pure if the extension C >— E —> Coker f is.
Similarly C < E is a p%pure subgroup of E if the extension

453



454 R. J. NUNKE

C>— E—>FE/C is p*~pure. If E is a p-group, then p“-purity
coincides with the ordinary concept of purity. More generally, if
C>— E—> A is p*pure then:

(1°) (@*A)p] = (C + (p’E)[p])/C for all B < a, and

(2°) C N pPE = pC for all B < «a.
An easy transfinite induction shows that (1°) = (2°). If a < w, then
(2°) = p*-purity. If A is a divisible p-group then (1°) = p*-purity for
all ordinals «. This last implication holds in certain other situations
but not in general. These facts are proved in |8].

If N is a subgroup of the group G, a subgroup H of G is called
N-high tn G if H is maximal with respect to the property H N N = 0.

ProposITION 1. If G is a p-group, N < p°G, and H is N-high in
G, then H is p**'-pure in G. If N < p°G, then G/H is divisible.

Proof. We prove first that if G is a p-group, then H is N-high
in G if and only if HNN =0 and (G/H)[p] = (H + N]|p))/H. To
see this suppose H is N-high in G. Clearly HNN =0 and
(H + N[p))/H = (G/H)[p]. Let 0+ xe(G/H)[p] and let ge G map
onto * mod H. Then g¢ H, pgc H, and by the maximality of H there
is a nonzero ac H N (H + {g}). Thus @« = h + kg with k an integer.
Moreover p does not divide k& for otherwise ac H NN = 0. Hence
1 = rk + sp for suitable integers » and s and ¢ = rkg + spg = ra +
(spg-rh). Now spg — rhe H and prac GH NN = 0 so that xe(H +
N|[p])/H as desired.

Conversely suppose (G/H)[p] = (H + N|p])/JHand HN N = 0. To
show the maximality of H it is enough to show that (H + {9} N N # 0
whenever g¢ H but pge H. If ¢ has these properties then the
hypothesis gives g = @ + h with ae N and h ¢ H. Then a = 0 because
gée Hand a =g —he(H + {g}) N N.

Now suppose H is N-high in G and N = p*G. Then by the result
just proved we have (G/H)|p] S (H + (p*G)|p])/H for all 8 < a. Since
(»*(G/H))p] < (G/H)[p] and (H + (p°G)[p])/H < (p°G/H))[p] we have

(p*(G/H))[p] = (H + (p*G)[p])/H for all B = a.

If o < w the discussion preceeding the statement of this proposition
shows that H is p**’-pure in G. The same discussion shows p**'-purity
for &« = w once we know that G/H is divisible.

If N = p“G, then (G/H)[p] S (H + p°G)/H < p*(G/H) which implis
that G/H is divisible.

ProrosiTiON 2, If C>— E—> A is p*pure with « = ®w and B
is any p-group, then

1 The first statement of this proposition and the first statement of [3] Theorem 2
read the same, however the term p2-purity has different meanings in the two places.
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Tor (C, B) >— Tor (E, B)—> Tor (4, B)

is exact and p*-pure.

Proof. The condition «a = ® is needed only to show that
Tor (E, B) — Tor (A, B) is epic. We use the description of Tor (A4, B)
in terms of generators and relations given in [6, p. 150]. The
generators are triples {a,#,b> with neZ (the group if integers),
a € Aln] and be B|n]. The relations require <a, n, b> to be bilinear as
a function of @ and b and also require <ka,n,b> =<a, kn,b> for
k,nmez,aec Alkn], be B[n], and <a,n,kby =<a,kn,by for k,nez,
a € A[n], be Blkn].

If «a =20, then C>— E—> A is p“-pure and it follows that each
a € A[p"] can be lifted to an element ¢ e K with the same order. Since
B is a p-group, Tor (4, B) is generated by the elements <a, p", b> with
p"a =0 =p"b, Letting ¢ € E[p"] map onto a we have {e, p",b> € Tor(E, B)
mapping onto <{a, p*, b> as required to show that Tor (¥, B) — Tor(A4, B)
is epic.

The sequence with Tor is now exact because Tor is left-exact.

For a given «, the functor p* is represented by an exact sequence
Z >— G —> H (See [7] or [8] for the definitions and details). For
a group A let d,:Tor(H, A)— A be the connecting homomorphism
induced by this sequence. We then have

oLz, n, @y = (nY)a

where ¥y is any element of G mapping onto x. Since nx =0, nyecZ
so that the term (ny)a makes sense.
The extension

CoBE- A

is p*-pure if and only if there is a map ¢: Tor (H, A) — E such that
Ap = 0,.

MacLane shows in [5] that, for groups A, B,C, the group
Tor (Tor (4, B), C) is generated by the elements <la,n, b, n, ¢> with
neZ ne = nb = ne = 0. Similarly Tor (4, Tor (B, C)) is generated by
the elements {a, %, <b, n, ¢y>. Moreover there is a natual isomorphism

0: Tor (Tor (A, B), C) = Tor (4, Tor (B, C))
such that
8a, n, by, n, ¢y =<a, n,<b, n, cy) .

For groups A, B we have a diagram
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Tor (Tor (H, A), B) —— Tor (H, Tor (A, B))

Tor (0.4, B)l /aé)r(A,B'
Tor (A, B)

This diagram commutes for we have

Tor (04, B) K&, n, ay, n, by = {0, x, n, ay, n, by
= {(ny)a, n, by
= (nyXa, n, by
= aTor(A,B)<my n, <ay ", b>>
- aTor(A,B)6<<x7 n, a>: n, b> .

Now suppose C>— E—> A is p*pure with A: F— A. Hence
0, = Mp. Applying Tor we get Tor (d,, B) = Tor (», B) Tor (p, B) and
therefore 0y..4,5 = Tor (A, B) Tor (¢, B)d~'. Thus the sequence

Tor (C, B) >— Tor (E, B)—> Tor (A, B)

is p*-pure.

For the purposes of this paper we define the length M\(A) of the
p-group A to be the least ordinal « such that p*4A = 0 and < if there is no
such ordinal. The symbol « is assumed to be larger than any ordinal.
According to [7] »* Tor (A, B) = Tor (p*A4, p*B) so that the length of
Tor (4, B) is the minimum of the lengths of A and of B. The group
A is p*-projective if each p*-pure extension C>— E —> A splits. A
d.s.c. group is p*-projective if and only if it has length <« (|7] or |8]).

In the proofs of the next few theorems we shall refer repeatedly
to the following situation. Let 8 be an infinite ordinal and let M be
a pfA-high subgroup of A. Then by Proposition 1 the sequence

M>— A—>A/M

is p*t'-pure and A/M is divisible. If B is a p-group, then by Proposition
2 the sequence
(*) Tor (M, B) >— Tor (A, B) —> Tor (4/M, B)

is also p?*-pure. Moreover if A/M = 0, then A/M = 3Z(p=) and
hence Tor (A/M, B) = X Tor (Z(p~), B) = XB.

In the remainder of the paper we shall use without further
reference Kaplansky’s theorem [4] that a direct summand of a d.s.c.
group is itself one.

ProprosiTION 3. If B is an infinite countable ordinal, A has a
pPA-high subgroup which is a d.s.c. group, and B is a countable
p-group of length < 8 + 1, then Tor (4, B) is a d.s.c. group.
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Proof. Let M be the pPA-high subgroup called for and refer to
the p’*-pure sequence (*) above. Since B is countable of length
< B + 1 it is pf*-projective. Hence Tor (A/M, B) = ¥B is also p?+*'-
projective and the sequence (*) splits. But then Tor (4, B) is a direct
sum of the d.s.c. groups Tor (M, B) and Tor (A/M, B) and is therefore
a d.s.c. group. Tor (M, B) is a d.s.c. group because M is a d.s.c.
group, Tor commutes with direct sums and Tor (G, B) is countable
whenever G and B are.

ProprosiTiON 4. Let Tor (4, B) be a d.s.c. group.

(i) If M(A) > MB), then B is a d.s.c. group.

(i) If MA) = MB) = B + 1 with B an infinite countable ordinal,
and B is a d.s.c. group, then every p’A-high subgroup of A is a
d.s.c. group.

Proof. To show (i) let 8 = MB). If 8 < w then B has bounded
order and is clearly a d.s.c. group. Hence suppose 8 = w. Let M
be a p’A-high subgroup of A and consider the p°+'-pure sequence (*).
Since Tor (A4, B) is a d.s.c. group of length £ it is p’-projective.
According to [8, Proposition 3.1} the pf*'-purity of (*) then implies
that the sequence (*) splits. Hence Tor (4/M, B) is a d.s.c. group.
Since MA) > B, A/M # 0 so that B is a direct summand of Tor (A/M, B)
and therefore a d.s.c. group.

To prove (ii) we again let M be p’A-high and refer to (*). Now
B is p°tl-projective so that Tor (A4, B) is p’*l-projective. Hence the
sequence (*) splits. Therefore Tor (M, B) is a d.s.c. group. Since
MM) = B < MB), M is a d.s.c. group by (i) and the commutativity
of Tor.

COROLLARY 5. If £ 1s an infinite ordinal and the p-group A
has one p°A-high subgroup which is a d.s.c. group, then every
pPA-high subgroup of A is a d.s.c. group.

Proof. If MA) £ B, then A is the only p?A-high subgroup so
the result is trivial. Therefore assume A(A) > B. Next observe that
if 8> 0, then a p’A-high subgroup cannot be a d.s.c. group because
it has length B and the length of a d.s.c. group is either < Q or is co.

If =0 and M is pfA-high, then M>— A—>A/M is in
p? Ext (A/M, M). If M is a d.s.c. group, then p?Ext(Z(p~), M) =0
by [8] Lemma 3.10. Since A/M = ¥Z(p~),

Ext (A/M, M) = I1 Ext (Z(p~), M)

so that p? Ext (A/M, M) =0. Thus M is a direct summand of A.
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Since M is p“A-high in A we have (4/M)[p] = (p*A)[p] and it follows
easgily that p?A is the maximal divisible subgroup of A. Hence M =
A/p°A in this case. Since A/p°A is independent of M it follows that
all p?A-high subgroups are isomorphic (if one is a d.s.c. group) and
hence all are d.s.c. groups.

Finally if 8 is infinite and countable, let B be a countable p-group
of length 8 + 1. By Proposition 3 Tor (4, B) is a d.s.c. group because
A has a p?A-high subgroup which is a d.s.c. group. By Proposition 4
(i) every p?A-high subgroup of A is a d.s.c. group.

THEOREM 6. If MA) > MB) = w, then Tor (A, B) is a d.s.c. group
if and only +f

(i) B is a d.s.c. group, and

(ii) if B s an infinite ordinal such that the B-th Ulm invariant
of B is # 0, then every p’A-high subgroun of A is a d.s.c. group.

Proof. We need two easy consequences of Ulm’s theorem and
Zippin’s theorem (cf. [1] p. 135):

(1) If B is a d.s.c. group whose B8-th Ulm invariant is not zero,
then B has a countable direct summand B’ of length A + 1.

(2) If Bis a d.s.c. group, then B = YB, where ¢ ranges over
some index set and B; is countable of length 58, + 1.

Suppose Tor (4, B) is a d.s.c. group. We get (i) by proposition
4(i). Suppose further that £ is infinite and the A-th Ulm invariant
of B is not zero. Let B’ be a countable direct summand of B with
length B + 1 as provided by (1) above. Then Tor (4, B’) is a direct
summand of Tor (4, B), hence a d.s.c. group and (ii) follows from
Proposition 4(ii).

Suppose M(A) > AMB) = w and (i) (ii) are satisfied. Using (2) above
we write B = 3B, with B, countable of length B; + 1. Then
Tor (A, B) = ¥ Tor (4, B)). If B, < w®, then B; is a direct sum of
eyclic groups so Tor(A4, B;) is a d.s.c. group. If B, = ®, then
Tor (A, B;) is a d.s.c. group by Proposition 3. Hence Tor (4, B) is a
d.s.c. group.

In order to continue we must derive further properties of Tor.
The inclusions 4’ & A, B’ & B induce a monemorphism Tor (4’, B’) >—
Tor (4, B). We shall identify Tor (4’, B’) with its image in Tor (4, B).

LEmMmA 7.
(i) IfA A" S A, then Tor(A'NA",B) = Tor(4’,B)NnTor (4", B).
(ii) If A’S A and B’ S B, then

Tor (A’, B’y = Tor (A’, BynTor (4, B') .
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(iiiy If A’ A" S A and B',B"” 2 B, then
Tor (A’ N A", B'n B") = Tor (4", B’) N Tor (A", B") .

Proof. If A’, A” = A, then there is a commutative diagram
AN A s— 5 A — 5> AI/AI n A"
Vv \

I 1 l

AII S—— A — > A/AI’
with exact rows and monic vertical maps. Applying Tor we get

Tor (A’ N A", B) >— Tor (A’, B)— Tor (A'/A’ N A", B)

\%

| ! !

Tor (A", B) >— Tor (A, B) —— Tor (A/A"”, B)

with exact rows and monic vertical maps. Conclugion (i) follows from
this diagram.
To prove (ii) we note the existence of the commutative diagram

Tor (4’, B') >~ Tor (4, B') — Tor (4/A’, B’)
\2 \ \4

l l !

Tor (A’, B) >— Tor (4, B) — Tor (4/A’, B)

with exact rows and monic vertical maps and proceed as before.
For (iii) we have

Tor (A’ N A”, B’ B")
= Tor (A’ N A”, B)n Tor (4, B’ N B")
= Tor (4’, B) N Tor (A", B) N Tor (A, B') N Tor (A, B")
= Tor (4’, B’) N Tor (A", B")

using in order (ii), (i), (ii).
Lemma 7 holds for any left exact covariant functor of two
variables.

ProposITION 8. For « € Tor(A, B), there are unique finite subgroups
A, A and B, & B such that

(i) zeTor(A4,, B,) and

(i) if xeTor(4’, B’) with A’ S A and B’ < B, then A, & A’
and B, & B'.

Proof. There exist finite subgroups G < A, H = B such that
xeTor (G, H). Let G, H;; G, Hy; ---; G,, H, enumerate the pairs of



460 R. J. NUNKE

subgroups of G and H respectively such that z e Tor (G;, H;) for i =

1,..-,n. By Lemma 7 (iii) we have « € Tor (G,n---NG,, H,N---NH,).

Put A,=G,n---NG, and B,e H N --- N H, Thus (i) is satisfied.
If xeTor (A’, B’) we have by Lemma 7 (iii) that

xeTor(GNA', HNB).

Then GNA =G, and HN B’ = H, for some 1 so that 4, & A’ and
B, < B’ proving (ii).

COROLLARY 9. If ac A, be B have the same order and
Tor ({a}, {8}) < Tor (4’, B')
with A’ < A and B’ S B, then ac A’ and be B'.

Proof. If the common order of ¢ and & is =, then Tor ({a}, {b})
is cyclic of order n. Let « be a generator. Then « € Tor ({a} U 4’, {b} " B’)
by hypothesis and Lemma 7 (iii). If either {a}nA’ or {b}N B’ had
order <n, then Tor ({a} N A’, {b} N B’) being cyclic would have order
<n. Thus © would have order <n contradicting the fact that its
order is n. It follows that {a} N A’ = {a} and {b} N B’ = {b} so that
acA’ and be B’.

ProposiTioN 10. If A =S A and B’ & B with A, Bp-groups, B’
has unbounded order, and Tor (4’, B’) is pure in Tor (4, B), then A’
is pure in A.

Proof. Let ae A’ N p"A. Since B’ has unbounded order there ig
a bep"B’ having the same order as a. In [7] it was shown that
p~ Tor (A, B) = Tor (p~A, p"B). Hence

Tor ({a}, {b}) < Tor (A’ N p"A, B’ Np"B)
S Tor (A’, B’y N p” Tor (4, B)
= p" Tor (4, B’) = Tor (p"4’, p"B’) .

By Corollary 9 acp”4’. Since a and n were arbitrary we have
A NprA = prA’ for all n and A’ is pure in A.

An indexed family {A4.},., of subgroups of A will be called a
sequence of subgroups if « ranges over the set of ordinals less then
some ordinal o and A, & A; whenever a« < 8 < p. If {A.}.c, is a
sequence of subgroups of A, then |J 4, (the set theoretical union) is
the subgroup generated by the A.,.

ProposiTiON 11. If {A4,},., and {B,}.., are sequences of subgroups
of A and B respectively, then {Tor (4., B.)}.<, is a sequence of
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subgroups of Tor (4, B) and
U Tor (A., B,) = Tor (U 4., U B.) .

Proof. It is clear that {Tor (A., B.)}.<, is a sequence of subgroups
of Tor (A, B). Since A, & |J 4. and B, & U B, for all « < p we have

U Tor (4., B.) & Tor (U 4., U B.) -

Suppose € Tor (U A,, U B.) and let A,, B, be the subgroups defined
by Proposition 8. Then 4, =S |J A, and B, & |y B,. Since 4, and B,
are finite, there is a 8 < p such that A, & A; and B, & B;. Hence
x € Tor (44, Bs) & U Tor (A, B.).

By the term X-cyclic we shall mean a direct sum of cyclic groups.
A p-group is 2-cyclic if and only if it is a d.s.c. group without
elements of infinite height. In view of Proposition 4 if Tor (4, B) is
Y-cyclic and A has elements of infinite height, then B is X-cyclic.

The following theorem gives a necessary condition for Tor (A, B)
to be Y-cyclic. The symbol | A| denotes the cardinality of A.

THEOREM 12. If Tor (A, B) is X-cyclic and B 1s mnot X-cyclic,
then

(i) p°A =0, and

(i) of A’S A with |A'| = |B]|, then A’ is contained in a pure
subgroup A" of the same cardinality, such that p“(AJ/A") =0 and
Tor (A/A”, B) is X-cyclic.

Proof. As stated above conclusion (i) follows from Proposition 4.

Recall that if A and B are infinite p-groups, then |Tor (4, B)| =
|A||B|. Now let A’< A with |A’| = | B| and let Tor (4, B) = 2C,
with the sum direct and each C, cyclic.

If G is an infinite subgroup of Tor (4, B), then, since each element
has nonzero component in but a finite number of the summands C;, G
is contained in a subgroup G’ = Y,e,C; where J is a subset of the
index set and |G'| = |G|. Moreover there are subgroups 4, S A4,
B, S B such that |A,| = |B,| = |G| and G & Tor (4,, B,). This is so
because each «c Tor (A, B) is a finite sum of elements of the form
La, n, b).

We define recursively a sequence
Tor (A’y B) g G1 g TOI‘ (Ala B) g Gz g e
C::' Gn ;TOI‘(A%,B) g Gn+1 g te
of subgroups all having the same cardinality such that G, is the sum

of a set of the C; appearing in the chosen direct sum decomposition
of Tor (4, B).
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Let A” = U A,. Then by Proposition 11,
Tor (A",B) =TorU(4,,B)=UG., .

Hence Tor (A", B) is the sum of a set of the C; and is therefore a
direct summand of Tor (4, B). Hence Tor (4”, B) is pure in Tor (4, B).
Since B is not XY-cyclic, it is unbounded and A" is pure in A by
Proposition 10. Hence the sequence

Tor (A", B) >— Tor (A, B) —>> Tor (4/A”, B)

is exact and splits. Thus Tor (4/A4”, B) is Y-cyclic and p“(4/A") = 0
by part (i).

COROLLARY 13. If A and B are p-groups without elements of
mfinite height, B is not X-cyclic, |A| > |B|, and A has greater
cardinality than a basic subgroup, then Tor (A, B) is not XY-cyclic.

Proof. Suppose Tor (A4, B) is 2X-cyclic and let C be a basic
subgroup of A such that |[C| < |A|. There is a subgroup A’ with
CS A S Aand |A| > |A| = |B|. By Theorem 12 there is a subgroup
A" with A/ S A" S A, |A" | =]4"|, and p°(4/A”") = 0. Now A/A" is
divisible because C =S 4” and A/C is divisible. Moreover A/A” = 0
because | A” | < | A|. Hence p“(A/A”) = 0 contradicting the construction
of A”. Therefore Tor (A, B) is not X-cyclic.

LEMMA 14. Let A be a p-group and let o be the least ordinal
having the same cardinality as |A|. Then there is a sequence
{Auco Of subgroups of A such that Usc, A = A and

(i) each A, ts pure in A,

(i) A, = Us<a 45 of B is a limit ordinal <p,

(i) |4l =% of a < 0, and

(iv) A, =]alif o = a < p.

Proof. Well order A as {a,}aco. Let A, be a countable pure
subgroup of A containing a,. Suppose A; has been defined for all
B < a satisfying (i)-(iv) above and also (v) a,€ 4, if v < 8 and B is
a singular ordinal <a«. If « is a limit ordinal (ii) forces the definition
A, = Upca As. Then (i)-(v) follow eagily. If @ =~ + 1, then A4, +
{a,} has the same cardinality as A, and there is a pure subgroup A4,
of A having the same cardinality as A, + {a,}. Then (i)-(v) are still
satisfied. If a < p, then |A,| = |a| < |A]| so that the construction
can be continued as long as « < p. Since a,€ A,., it follows that
Ua<P Alx = A'
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THEOREM 15. If A and B are p-groups with the same cardinality
such that every subgroup of either with smaller cardinality is a
2-group, then Tor (A, B) is X-cyclic.

Proof. Let {A.}aco, {Balaco, be sequences of subgroups of A and
of B satisfying the conditions of Lemma 14, Since |A,| = |B,| < | 4|
we have A, and B, 3-cyclic for all a« < p. Set G, = Tor (4,, B.).
Since A, is pure in A and B, pure in B, G, is pure in Tor (4, B).
Moreover by Proposition 11 and Lemma 14 (ii), G, = Us<. G5 Whenever
« is a limit ordinal <p.

Since Tor is left exact, there is an exat sequence

Ga >—> Ga—;l R TOI' (ALH-I/Aay Ba-!'l) @ TOI' (Azx"rly Ba+1/Ba) .

The term on the right is X-cyclic because A,., and B,,, are Y-cyclic.
Thus G,.,/G. is 2-cyclic and therefore G.,, = G, @ C, with C, 3-cyclic
because G, is pure in G,.,. Hence we have a sequence {G, .., of
subgroups of Tor (4, B) such that

(1°) Go S Goyy for a < p and G, = Use G if « is a limit ordinal
<05

(2°) Guy =G, D C, with C, a X-group for all a < p;

(iii) Tor (4, B) = Uucp Ga-
It follows that Tor (A, B) = XYC, and is therefore a X-group.

COROLLARY 16. If A and B are p-groups without elements of
infinite height whose cardinality is at most W, thenm Tor (A, B) s
2-cyclic.

If o is a cardinal number, call a p-group A p-cyclic if every
subgroup of cardinal <p is Y-cyclic. Every p-group without elements

of infinite height is W,-cyclic. Let o* be the cardinal next larger
than p.

COROLLARY 17. If A and B are p-cyclic, then Tor (A, B) is a
oF-cyclic.

Proof. Let G & Tor (A, B) with |G| = p. Since, for x € Tor(4, B),
there are finite subgroups A', B’ of A and B respectively with
x € Tor (A’, B’), there are subgroups 4, & A, B, & B such that | 4,]| =
|B,| = |G| = p and G < Tor (4,, B,). Since every subgroup of a direct
sum of cyclic groups is one, A4, and B, satisfy the hypotheses of
Theorem 15. Hence Tor (4,, B,) and therefore GG is Y-cyclic. However
G was arbitrary with |G| = p so the corollary follows.

For groups A, ---, A,, define Tor(4, ---, 4, inductively as
Tor (Tor (A4,, -+, A,_), A,).
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LEmmA 18. If A, ---, Ay are p-grrups without elements of
infinite height, then Tor (A, ---, Aw) s W.s-cyclic.

Proof. The proof is by induction. We use the associativity of
Tor to show that

Tor (Alv tt A2”) = Tor (TOI‘ (Ah M} Am)y Tor (Am}ly Y Az”))

where m = 2! and then use Theorem 15 to complete the inductive
step.

ProprosiTION 19. For each » with 1 £ n < w, there is a p-group
G, without elements of infinite height such that G, is W,-cyclic but
not X-cyclic.

Proof. If C is the direct sum of p copies of YZ(»") and p = W,
then the torsion completion of C has cardinality o®. Hence if o® > o,
there is a p-group without elements of infinite height which has
greater cardinality than a basic subgroup. Since there are arbitrarily
large cardinals with this property there exists a sequence
A, 4, --- A, -+ of p-groups of increasing cardinality, all without
elements of infinite height, and all with greater cardinality than a
basic subgroup.

Set G, = Tor(4,, --+, A1) and G, = A,. Then G, is W, -cyclic
by Lemma 18. If A and B are infinite torsion groups |Tor (4, B)
max {|A|,|B|} so that |Tor (4, ---,A)| =14,,. Thus G, is not
Y-cyclic by Theorem 15,
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