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For certain functions f, positive in (0, o) and continuous
in [0, ), the partial differential equation Jx = x — xf(x?) has
spherically symmetric solutions x.(f), » = 1, 2, - - -, which vanish
at zero, infinity and » — 1 distinct values in (0, o). This and
similar existence theorems for the ordinary differential equation
Y —y+yFy? t) =0 are proved by way of variational problems
and the solutions are thus characterized by associated ‘‘eigen-
values’”’, The asymptotic behavior of these eigenvalues is
studied and some numerical data on the solutions is furnished
for special cases of the above equations which are of interest
in nuclear physics,

We begin by considering differential equations of the form
were F(n, t) satisfies the following conditions:
(Ia) F'(n,t) is continuous in y and ¢ for 0 < ¢t < o0 and 0 < 5 < oo;
(Ib)y F(n,t) >0 for >0, t > 0;
(Ie) there exists a 6 > 0 such that, for every fixed positive ¢ and
0=7 <7< oo, 73°F (0, t) > 70°F(1,, 0).
In the special case in which F( ¢) = f(¥*/t*), the substitution
(1.2) x(t) = t7'y(t)

transforms equation (1.1) into the form

(1.3) B+ zt—” = o — af@?),

which is satisfied by spherically symmetric solutions of the partial
differential equation

1.4) dx = x — xf(&?),

where 4 is the three-dimensional Laplace operator and t denotes dis-
tance from the origin.

To simplify our statements concerning solutions of (1.1) and (1.3),
we shall employ the following terminology.

DeFINITION I. A solution y(¢) of equation (1.1) which is continu-
ous in [0, «), positive in (0, =), and satisfies y(0) = 0, lim y(¢) =0,
shall be called a fundamental solution of (1.1) for the interval [0, ).

477
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DEFINITION II. A solution «(¢) of equation (1.8) which is continu-
ous in [0, o), positive in (0, ), and satisfies lim x(¢) = 0 shall be
called a fundamental solution of (1.3) for the @'mtfe;val [0, o).

Special cases of equations (1.1) and (1.3) have been studies by a
number of authors {1, 3, 7, 9] in connection with problems in nuclear
physics, and the existence of fundamental solutions for the interval
[0, ) was suggested by physical considerations when (1.1) is of the
type

k—1
(1.5) i+l —o
and k£ = 2,3. Nehari [4] has shown that such solutions do in fact
exist whenever 1 < k£ < 5. In addition, lim {~'y(t) exists as ¢ — 0 for
1 <k <£4. This shows that, in view of (1.2), the equation

(1.6) R ALl

has fundamental solutions whenever 1 < k < 4, Synge [8] also studied
equations (1.5) and (1.6) for £ = 2 and set up a numerical procedure
for the calculation of (i) and x(¢f). Although no proof was given
that the procedure converges to a solution, Synge’s numerical results
were accurate, as we shall see in §8.

Our purpose is to prove the existence of not only fundamental
solutions to equations (1.1) and (1.3), but also solutions y,(¢) and x,(¢)
possessing (n — 1) distincet zeros ¢, ¢y, + -+, t,, in (0, o) and which are
such that y,(f) and x,(¢) do not vanish in (¢,,¢,,,), v=0,1,--+-,n — 1
(t, = 0, t, = «). Such solutions which change sign as ¢t — o> are again
suggested by physical considerations for the case f(z°) = 2* in (1.3) [3].

We shall establish the following result.

THEOREM 1. If F(y,t) satisfies conditions (la)—(Ic) and, in
addition,

(Id) lim F'(¢* t) = 0 for all finite c,

(Ie) Sat“/”*sF(c%,t)dt < 4o for all finite ¢, 0 < a < o, and
0
some ¢ = 0,
then equation (1.1) has a discrete infinity of solutions {y,(t)}, n =
1,2,-.-, whose derivatives are continuous throughout [0, ) and are

such that y,(t) has exactly (n — 1) zeros in (0, «). Moreover, y,(0) = 0,
lim ¢y, (t) exists as t — 0 and y,(t) — 0 as t — <, for each n.

Since condition (Ie) is not satisfied for F(y%, t) = (Jy|*")/t** when
4 < k < 5, the known existence of fundamental solutions to equation
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(1.5) for 1 < k <5 suggests that, when it is not required that

lim ¢~y (¢) exist as ¢ — 0, condition (Ie) may be relaxed to assume the
form

(If) Sat”EF(c“’t, tydt < o for some ¢ > 0 and all finite ¢, 0 < a < o,

Indeed, such is the case at least when F(4*, t) = p(f)y**, and we can
prove a result similar to Theorem I for the equation

(1.7 ¥—y+p)y" =0

when the following conditions (equivalent to (Ia)-(Id) and (If) are
satisfied.

(Ia’) p(t) is continuous in (0, oo);

(Ib) p() >0 for all ¢t > 0;

de) a>0;

1) lim p(t) = 0

(Ie" gatl””“]o(t)dt < + oo for some ¢ >0 and 0 < a < oo.

It is easy to verify that conditions (Ia’)—(Ie') are satisfied for
pt)y*® = (|y | )/t** and 1 < k < 5. (l.e., for a=(k —1)/2, p(t) =
1/¢%-Y) if we let e = (5 — k)/4. This is in agreement with the results
stated for equation (1.5). Moreover, it was shown in [4] that no
fundamental solution to (1.5) can exist for k& = 5.

Finally, in the special case in which (1.1) reduces to (1.3), Theo-
rem I takes the following form.

THEOREM II. If f(n) satisfies the conditions:

(ITa) f(n) is continuous for 0 < 9 < oo,

() f(y) >0 for 7> 0,

(Ile) 778 f(m) > ntf(gy) for 0 <, < 7, < oo and some positive d,

(11d) Sjv““”f(n)dﬁ < +co for some a >0 and ¢ = 0.

then equation (1.3) has solutions x,(t), n = 1,2, -+, whose derivatives
are continuous tn (0, ), are such that limz,(f) exists as t— 0,
xz,(t)— 0 as t — o, and x,(t) has exactly n — 1 zeros in (0, o).

This result is merely a corollary to Theorem I where the condition
corresponding to (Id) is automatically satisfied whenever (Ile) is true.
Indeed, by (Ilc),

2 28 2
f(c ) < b (;—) for finite o, ¢ > ¢,

ey 25 2
t t B

and thus, for fixed ¢, > 0, we have
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2
(1.8) f<%> = K%za— for fixed positive K, t > t,.

In addition to proving the above existence theorems, we shall show
that the solutions to (1.1) and (1.7) are characterized by a minimum
problem and associated characteristic values ),. For a =1, p(¢) =
1/¢* in (1.7), i.e., when y(t) satisfies

3
v _

(1.9) ¥—y+ -

we shall calculate A, and find bounds for the asymptotic values of the
n" “eigenvalues” A, which are defined by

1

o
2

@+ vpar.

0

By converting the existence proof into a numerical procedure for
computing the fundamental solutions of (1.5), we abtain additional
numerical information concerning the solutions to (1.9) and the corre-
sponding equation

(1.10) o‘@+%:x~x3.

Both (1.9) and (1.10) were studied by Mitskevich [3].

2. A minimum problem. As a first step in the proof of Theo-
rem I, we show that equation (1.1) has a fundamental solution for
which lim ¢—'y(t) exists when F'(y,t) satisfies the stated conditions.

To do tffi;, we shall set up a variational problem as in [5] and show
that this problem has a solution which must satisfy (1.1) and the
boundary conditions for a fundamental solution. We consider the
problem

(2.1) J(y) = S:’[y'2 + 9 — G, 7)ldr = min.
where y(t) is subject to the admissibility conditions y(0) = 0, y(¢t) = 0

in (0, o), () =2 0 in [0, =), y(t)e D’ [0, =), and the normalization
condition

2.2) S“’(y +oyyde = g‘”yF(y oyde |
The function G(y*, v) appearing in (2.2) is defined by

(2.3) G, 7) = Sy F(n,t)dp, for each 7 in (0, o).
0
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Because of conditions (Ib) and (Ic), it can be shown that any
function y(¢t) satisfying the admissibility conditions, and for which

(¥* + y¥)dr exists, can be multiplied by a positive constant a such
tflat ay(t) satisfies (2.2). We first show that the existence of
S (¥ + y9)dr implies that of Sw *F(y?, T)dz.

Setting S @* + ¥)dr = ¢* and noting that y(0) = 0, we have

(2.4) y(t) = [S:ydzT < tg:grdr < to?

(2.5) wwzﬂbwrgﬁw+ywrgw.
0 0

Hence, taking some ¢, in (0, ), T >t, =0, and using (2.4) in
[0, t,] and (2.5) in [, T], we have

S VR, t)de < oZtsS c-tF (0%, 7)dr + max [F(d", t)]g v .

tyst<os

This shows that

(2.6) gTyzF(yz, T)dt £ M(0%)o® + M,y(o%)a*,

where M,(0%) = tsg Tt F(0%r, T)dtr and M,(c%) = max [F(a% t)] are both

finite for all finite 6> when F satisfies (Id) and elther (If) or (Ie).
To complete the proof that y(f) may be normalized as in equation
(2.2), we define

@ + e

2.7) B(a) = — :
SyTW%ﬂM

If a>1, [F(a'y, t)]/(e®y®)® > [F(y, t)l/y* by (Ic), and thus
| @ -+ v

(2.8) B(a) < -
azg Yy F(y?, 7)dt

, a>1.

If « <1, [F(y, )l/y* > [F(a@'y’, 9)]/(e’y?), and

@ + e

2.9) B(a) = —
azg Y F(y?, T)dt

A
—

y «

Because of conditions (Ia), (Ic) and the fact B(a) — 0 as o — o by
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(2.8) and B(a) — « as a— 0 by (2.9), the continuous function (of «)
B(a) assumes all values in (0, ) as « varies in this same range. In
particular B(a) = 1 for some « in (0, ) and (2.7) shows that o(t) =
ay(t) consequently satisfies

SW(QB2 + v)dt = Swsz(vz, )z .
0 0

Finally, we see that
T
0

(2.10) STG(yz, )dr gg VR, oyde for Te (0, )

by definition of G(¢?, 7) and thus, in view of (2.6) and (2.10), the exist-

ence of the integral in (2.1) is also assured whenever g ¥ + yhdr
0

exists.

3. Associated comparison functions. To show that our varia-
tional problem has a nontrivial solution we employ some of the
techniques of Nehari [5], where such functions F'(,t) satisfying
(Ia)—(Ic) were considered, and [4], where the differential equation (1.5)
with singularities at zero and infinity was studied.

By (Ie) and (2.3) we have

[ b —s 7 7
Gy, t) = gox[x F(x, t)|de < 7~ °F(n, t) K de = le5F(77, t).

Hence,
nF(n,t) — G, t) = o(1 + 0)"nF(n, t),

and, if y(¢) is an admissible function satisfying (2.2), this inequality
shows that
(3.1) J(y) = 5(1 + 5)~1r<yﬂ + gz

Furthermore, if for all admissible y(t),
(3.2) N = g.Lb. J(y),

there will exist a sequence of functions y,(t), ¥.(t), ---, which satisfy
the conditions of the minimum problem (2.1), (2.2), and for which
(3.3) limJ(y,) =x=0.

n—oo

The fact that A = 0 follows from (3.1).
It also follows from (3.1) that such a sequence {y,(¢)} is uniformly
bounded and equicontinuous in every finite interval [0, T']. Indeed,
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(3.4) @+ vde = 0 < e

for some positive constant o and, by (2.5), this shows that
(3.5) yi(t) £ 0° for all ¢t in [0, ), n=1,2, ...,

Moreover, using (3.4), we have

| Yults) — Ualt) P = [Sydt] < (t, — 1) Sydt
< 0t — t)

for all 0 < ¢, < ¢, < oo,

By Ascoli’s Lemma, there exists a subsequence of {y,(t)} which
converges, uniformly on every finite interval [0, T'], to a continuous
function y(f). We have thus proved the following result:

LEMMA (3.1). There exists a sequence {y,(t)} of functions, ad-
massible for the wvartational problem (2.1), (2.2), which converges
uniformly in every finite interval [0, T] to a continuous function
y(t). Moreover, lim J(y,) = » = g.L.b. J(y) = 0.

n—r00

What we now wish to show is that, for each ¥,(¢t) defined above
and «, constant, the linear differential equation

has a solution satisfying u,(0) = 0, lim «,(¢) = 0. Moreover, this solu-
t—oo

tion is also an admissible function (for suitable «,) and
(8.7 J(u,) = J(y.) .

To do this, we consider the integral equation corresponding to
(3.6):
(3.8) w(®) = a,| ot @O F @, e

0

where ¢(t, 7) is the Green’s function of the differential operator L(u) —

% — u for the boundary conditions u(0) = 0, lim u(¢) = 0, and is defined
t—oo

by

(3.9 9, 7) = {

egtsinh 7, 07t
g7 sinh ¢, t<T.
Under the conditions imposed on F'(n,t) and the admissibility condi-

tions imposed on y,(t), we shall prove that u,(t) defined in (3.8) is
indeed the desired solution of (3.6).
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Using (3.9), we see that (temporarily setting a, = 1)

U, (t) = et Stsinh Y. F (v, T)dt
(3.10) ’ .
+ sinh tS ey, F(y:, t)dr .
t
Employing the definitions

(3.11) Q(t) = Stsinh Y. F (Y2, T)dt

(3.12) R(t) = S”é%F(yft, o)z,

equation (3.10) takes the form (for a, = 1)
(3.13) U,(t) = €'Q(t) + R(t) sinh ¢ .

To study the behaviour of Q(t) near zero, we use (2.4), (3.4)
and the monotonicity of t*~“®ginh¢ in (0,¢) for ¢ = 0. Equation
(3.11) yields

(3.14) Q(t) < pt== sinh tg:‘c‘“EF(pzz', de, =0,
On the other hand, we see from (3.12) that for 0 < ¢ < 1
R(t) = R(1) + | ey, F(y, e
<RL) +p S}l/ZF(pZT, Dde |

where R(1) < pe'[max. F'(0* t)].
1St<oo

Since 75-0/% < 5=a for > t, 0<e<1/2, and since =~ <1
for 0 <7 <1, ¢ =21/2, the last inequality becomes

pSlTl—sF(‘OZT’ 7)dzT , e=1/2

(3.15) R@) = RO+, 7

pts—umS T F(o'r, T)dr, 0<e=<1/2.
t

If we combine (3.13), (3.14) and (3.15) we see that w,(t)— 0 as
t— 0 provided F'(n,t) satisfies (If). If (Ie) is fulfilled and we use
this condition in the equivalent form

Smfl—EF(czr, e < oo, e=1/2

0

then ¢~'u,(tf) approaches a finite limit as ¢ — 0.
To study the behavior of Q(¢) and R(t) for large ¢t we use (2.5)
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and (3.4) in (3.12) to find that, for ¢ > 0
(3.16) R(t) < pe[max. F (¢, 7)].
tst<eo

Also, if 0 < ¢, < ¢,
Q) = Qt) + S sinh ty, F(y2, 7)de

where Q(t,) is finite by (3.14).
In view of (2.5) and (3.4), we then have

(3.17) Q) < QL) + £ S (e,  0<t,<t.

Thus, if (Id) is satisfied, Ste’F(pz, 7)dT = ofe’) as t— o and (3.13),
(3.16) and (3.17) show thaf u.(t) — 0 as ¢ — co.

We shall now examine the behavior of #,(¢). Using (3.10) to
compute A u,(t + k) — ()] and letting h-—0, we see that .(¢)
exists and is given by

(3.18) %,(t) = —e*Q(t) + cosh tR(t) .

Equations (3.16) and (3.17) then show that #,({) — 0 as ¢ — o when-
ever F'(y,t) satisfies (Id) and either (Ie) or (If). Similarly, (3.14) and
(8.15) show that | #,(¢) | is bounded near ¢ = 0 if F satisfies (Id) and (Ie).
If only (If) is satisfied, then it is seen 4,(t) = 0(¢*'?) as ¢ — 0.

If we now compute A [, (t + k) — %,(t)] from (3.18), we find that
1,(t) exists and that u,(t) is a solution of (3.6) for «, = 1. Moreover,
u,(t) is nonnegative in (0, o) since y,(f) was assumed to be. Finally,
we can show that

(3.19) lim %, (t)u,(t) = 0,

if we combine (3.18) with the above comments concerning ,(t). We
may summarize our results as follows:

LEmMMA 3.2. If y.(t) is defined as in Lemma 2.1 and «, 1s a con-
stant, then equation (3.6) has a solution w.(t) satisfying u,(0) = 0,
lim u,(t) = 0 whenever F(n,t) satisfies (la)—(1d) and (f) or (le).

t—re0

Moreover w,(t) s such that hm W, (t) =0, hm n,(6),(t) = 0 and, if con-
dition (le) ts fulfilled, hmt un(t) exists.

4. Convergence of the comparison functions to a fundamental
solution. We now proceed to prove the existence of a fundamental
solution to (1.1). To do this we first show that, for suitable «,, u,(t)
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is an admissible function for our variational problem and satisfies (3.7).

Multiplying (3.6) by wu,(¢), integrating from 0 to T, and using
(3.19), we obtain

@) o) = | o + wde = @\ P, Ods - u(Tyi(T).

Using (2.5) to estimate u,(t) and (3.5) to estimate y,(t) in the interval
[0, 1], and employing the Schwarz inequality in [1, T'], we find that

|, w0, F @3, D)z = o Tho| 2 F (0, <)z
0 0
T e[ (T

[ urw aae] 1 vre ]
1 1

Hence, in view of (2.2) (applied to y,(¢)) and (3.4),

1/2

@2 | Fh 0de £ poo(T) + po(T) max (e, O},

where ¢, = Slz'l“?F(pzz', 7)dr and max {F'(0*, t)} exist by properties (Id),
0 1=t <oo
and (If) or (Ie).
Combining (4.1) and (4.2), it follows that

oi(T) = a.00(T) + u (T (T),

where ¢, is a constant independent of n. Completing the square in
the last inequality, we have

[our) — ] < B4 4w (myiyT)
2 4

However, since u,(7T) and 4,(T) tend to zero as T-— o (Lemma 3.2),

this establishes the existence of the integral w(@li, + ui)dr and, because

of (2.7), also the existence of wu“;,F(u‘;, ‘L‘)d‘&'o. Therefore, as shown in

§2, we may choose the constan‘oc «, in such a way that

(4.3) Swm + utyde = S“uzF(uz, e .

and u,(t) becomes an admissible function for the problem (2.1), (2.2).
If we use the convexity of G(»,t), the Schwarz and other ele-
mentary inequalities, it is easy to establish inequality (3.7), i.e.,

(4.4) J(w,) = J(y.) .

Moreover, in view of the way in which these inequalities are used,
equality is possible only if u, and y, coincide. If we note that the
existence of all integrals involved is insured by the facts that 4,(t) = 0
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(=) and ¥,(t) = 0 (¢Y%) near zero, the proof proceeds like a com-
parable one in [5] and will be omitted. The proof also establishes the
useful inequality

(4.5) aSyF(y tdt < Swusz, tydt .
0 0

Because of the definition of the number \ in (8.3), we must have
lim inf J(u,) = ) since u,(¢) is an admissible function. Formulas (4.4)

and (3.3) thus lead to the relations

(4.6) lim J(u,) = lim J(y,) = ).

Moreover, using the same inequalities which lead to the uniform
boundedness and equicontinuity of the sequence {y,(¢)} in §2, we find
that {u,(¢)} converges uniformly in every finite interval [0, T'| to a
continuous funetion u.(t), i.e.,

(4.7 Lim u,(t) = u,(t) .

n—rco

This proves:

LEMMA 4.1. Under the conditions (Ia)—(Id), and (Ie) or (If), the
sequence u,(t) defined in (3.6) converges uniformly in every finite
interval [0, T'] to a continuous function u,(t). Moreover, lim J(u,) = \.

Now, wu,(t) will be a solution to our variational problem if we can
show that

(4.8) lim J(u,) = J(limw,) = J(u,) .

We proceed to establish this result by first proving the uniform
convergence of ,(f). It is from this point on that we need (le)
rather than (If) for the existence proof. When F'(, t) satisfies (Ie),
then, as shown in §3, each of the u,(¢t) approaches a finite limit as
t—0. In this case, each 4,(f) is continuous in [0, ). Furthermore,

(4.9) @, (0) — %n(?) = €7[Qu(¢) — Qu(?)] + cosh [ R,(t) — E.(D)]

where Q;(t), Ri(t), ¢ = 1,2, --+, were defined in (3.11) and (3.12).

When conditions (Ia)—(Ie) are satisfied, we have shown that each
of the Q,(t), Ri(t) existed for all ¢ > 0 as long as ¥,(t) was a member
of {y,(t)}. Since the sequence {y,(t)} was shown to converge uniformly
in every finite interval [0, T'], it is easy to see that the same is true
of the sequences {Q.(t)}, {R.(t)}. Equation (4.9) then shows {u&,(?)}
converges uniformly.

In view of (4.7), therefore, we have
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(4.10) lim %,,(t) = ,(2)
where the convergence is uniform in every finite interval [0, T'].

We also need to show that «,, which is determined by (4.3), is
bounded for all n. By (4.5)

SwuiLF(ui, o)dr
(4.11) a 0

IA

I

S”yiF(yz, 7)de

To see that this denominator in (4.11) has a lower bound, we set
0% = S (@ + y2)dr and employ (2.2), (2.4) and (2.5). Thus

o = S‘”(g; + y2)dr = ryiF(yi, t)dt
(4.12) " 0
< g;S T F (0’7, 7)d7t + 0 max [F (a3, t)]
15t <oo

- 0

for ¢ = 0. Since ¢% > 0 by our requirement that v,(f) # 0, we can
divide both sides of the inequality by ¢2 and obtain

(4.13) 1< Slrl—EF(oz;r, D)dr + max [F(a2, 1)] .
1St<oo

0

If it were true that o% < 1 for some n, condition (Ic) would show
that

F(oit,7) < 0¥F(r,7),
F(o},7) <o¥F(1,7).

Substituting in (4.13) would then yield
1< 0® Slr‘"EF(z', T)dt + 0¥ max [F(1, t)]
0 15t<e

for ¢ = 0. This inequality shows that o2 cannot approach zero as

n— <o, 1.e.,
(4.14) ot = SwyiF(yi, fde=M>0, foral n,

when conditions (Ia)—(Id), and (If) or (Ile) are satisfied.
In order to examine the numerator in (4.11), we apply (3.1) to
u,(t) and use the normalization (4.3) to obtain

1+0
0

(4.15) S“uzF(uz, Dydr < J(w,) .
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In view of (4.4) and the fact J(y,) < Sw(gﬁ + y2)dr £ 0%, the last in-
0
equality yields

| ura, e < L2200,
0

Combining this result with (4.11) and (4.14), we have

(4.16) a<ltd 0 el n,
5 M

Thus «, is bounded above.
To return now to the proof of (4.8), we write

&:(ug +ud)de — S“(u ¥ uz)df[
(4.17)
<

vy T oo
gomg 4 ud)dr — g (@ + m)df[ + ‘ST(ua + o)z

0

In view of (3.6) and Lemma (3.2), however,
[+ e = a, | uy P, e + w(Tan(T)
T

Moreover,

rmm(yz, )de < max. [F(g*, )] S“’unyndr
T TEt<oo T
= max. |F(e", o] | Tudc |
T=t<oo

T

) 1+
é;lélggi. [F<p,t)]P[ 5 ] ,

where the final result follows from the fact that

1+96 1+6
0 0

J(,) = %pz.

S“’uzdr < J(u,) <

If we now combine the above inequality with its predecessor, and
substitute into (4.17), we find

HT(@‘% +ud)dr — S(u +wyde| = ||t + wae — | @+ we

0 0 0 0

146 ]1/2
0

max. [F (0% t)] + | u,(T)i.(T)|.

TI'sSt<oo

+ anp"’[

But since

IA
~

ps
6 M
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by (4.16), and g (w2 + ,)dt converges to Sr(u0 + uddr (Lemma 4.1
and the uniform convergence in (4.10)), our last inequality shows that

H (w} + uddr — hmg (%% + u2) dr{

n—rc0

= K max [F (0%, )] + [d(T)uy(T)|.

T=Et<oo
If we now use the results that #,(T)u(T)— 0 as T — « (equation
(4.10), Lemma 3.2, Lemma 4.1) and max [F (0% ¢)]—0 as T— o
I'st<oo
(property (Id)), we finally obtain
(4.18) lim S‘”(ui + ut)de = S“(ug + ud)dz .

n—o

Employing similar techniques, we can also show that

(4.19) lim S“G(u‘;, o)yt = rG(uﬁ, oydr .

n—ro0

Hence, equations (4.18), (4.19) and (2.1) yield the result
(4.20) lim J(u,) = J(u,) ,

which proves (4.8) and verifies that u,(t) is indeed the solution of our
variational problem. Moreover, since (4.14) also holds for w,(t), equa-
tion (4.15) shows that

J(u,) > M>0.

)
1+94
Because of (4.6), we have thus proved

(4.21) lim J(u,) = lim J(y,) = J(u,) =N >0,

n—co

and w,(t) cannot be identically zero in [0, )

We now proceed to show that wu,(t) satisfies (1.1) and is con-
sequently a fundamental solution for the interval [0, ).

As previously remarked, the sign of equality is possible in (4.4)
only if ,(¢t) and u,(t) coincide in [0, «). Equation (3.6) shows that,
in this case, ¥,(t) must be a solution of

(4.22) U —u+ a,Fu,t)=0 for some a >0,

where %(0) = lim u(t) = 0. Hence, if we let y,() = w,(t), we find
t—o00

(4.23) Uy — Uy + XU F (U3, t) = 0

because of the minimum property of u.(t), i.e., in this case, J(u,) =
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J(y,) and the previous comments apply. Furthermore, since u,(t)iq(t)— 0
as t— 0 and wu,(t)i,(t) — 0 as ¢ — o (equation 4.10 and Lemmas 3.2
and 4.1), it is also true that

(4.24) S“’(ug 4 oud)dr = aQS“uOF(ug, )dz .
0 0

Comparing this result with the normalization condition (4.3), we
see that a, = 1. Thus u,t) is shown to be a solution of the differ-
ential equation (1.1). In view of the uniform convergence of {u,(t)},
Lemma 3.2 shows that u,(t) — 0 as t — « and ltir? t~u,(t) exists.

5. The existence of solutions with zeros in (0, «). Having
established the existence of a fundamental solution to (1.1) on [0, <),
we can also prove that there exist similar positive solutions of (1.1)
on every subinterval of the positive ¢-axis. These solutions will also
approach zero at the end-points of the interval.

Indeed, for the interval [a, =), @ = 0, we replace g(t, 7) in (3.9) by

e*etsinh (z — a), 0ast<t
g(tsf): .
e*e*sinh (t — a), t<t

also for the interval [a, b], 0 < a < b < <, we define

sinh (b — ¢t) sinh (t — a) 0O<a<t<t

sinh (b — a)
g(ty T) = : 1
sinh (b — 7) sinh (f — a) t<7t<b
sinh (b — a) , T

The corresponding variational problem for the interval [a, b] (or [a, )]
will then have a solution which also solves the boundary value problem

= = < o
61 §-y+uFey =0, [0 YO0 S 9=ech<
y(a) = limy@t) =0, 0=a <,
The proof of these statements is the same as before, except that
the special treatment of the singularities at ¢t = 0, t = oo, or at both
of these points, now becomes unnecessary. Our final result may then
be stated

THEOREM 5.1. Let I" denote the class of functions y(t) which
are continuous and piecewise differentiable in [a,b], 0 a <b < oo,
satisfy y(a) = y(b) =0, yt) =0 in [a,d], and are nonnegative in
(a, b). Let us require, moreover, that

(5.2 L@ + vt = ['vFar, nar,
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where F' satisfies conditions (I1a)—(Ie).
Then if we define

b
(5.3) Jw) = {1 + v = G, nldt
where y(t)e I and G(7,t) is given by (2.3), the minimum problem
(5.4) J(y) = min. = Ma, b)

is solved by a solution of the differential equation (1.1). Moreover,
y(@) > 0 wn (a, d), Ma,d) > 0, and if a = 0, lim ¢t~ y(t) = 0.

We shall outline the completion of the proof of Theorem I and establish
the existence of a discrete infinity of solutions 4,(t), y.(f), <« -, ¥.(t), + - -,
in |0, ) such that %,(0) =0, lim¢'y,(t) exists and lim y(¢) = 0.
Furthermore, the »" solution Willt l;)e shown to possess n . 1 distinet
zeros in (0, ). We may follow a procedure due to Nehari [6] but
must also take into account the nature of the singularities at zero
and infinity. The procedure depends on the following result.

Letting \a, b) denote the minimum of J(y) in (5.3) for the inter-
val {a, b], we first prove

LEMMA 5.1. (a) If a<ad S0 <b, then Ma, b) < Mo, b).

d) Ma,b)— o asb—a—0 (as a— o if b= oo, as b—0 if
a = 0).

() Ma,bd) is a continuous function of a and b (of b only if
a=0, of a only if b = .).

Since F'(y, t) has the properties (Ia)—(Ic) and since condition (Id)
and either (Ie) or (If) insure the existence of all integrals involved,
the verification of Lemma 5.1 proceeds exactly as the proof of the
corresponding lemma in [6]. It is necessary, however, to divide the
proof into three stages for the intervals |0, a][a, b], [b, =], 0 < a <
b < « and use the inequalities and arguments of the previous exist-
ence theory.

Nowif 0 =t, <t <t, < --- <t,= oo, wheret,, «-+,t, ;aren — 1
distinet points in (0, ), we consider funections #.(¢) in the interval
[t,_1, t,] (or [t,_, o)) which are piecewise continuously differentiable,

vanish at ¢,_; and t,, but not identically in (¢,_,, £,), and are normalized
by

(5.5) S W + ut)dt = S WF@E At v =1,2, -, 7.
ty—1

ty—1

If we define u(¢) in [0, ) by setting u/(t) = u,(t) in [¢t,_,, L.}, v =
1,2, ..., n, then the n™ “characteristic value” is defined by
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(5.6) M:mmﬁm+W—wmmw

where u(t) ranges over the class of all functions with the properties
indicated above. By Theorem 5.1, it is sufficient to consider functions
#(t) which coincide with solutions of (5.1) and are such that w(¢,_,) =
u(t,) = 0.

Let us define

(5.7) g M t), (=0, = ).
By property (c) of Lemma 5.1, ¢ is continuous funection of ¢, ¢,, +++, ¢,_,,

and, by property (b), the values ¢, must be bounded away from each
other and from infinity in any sequence of sets for which p tends to
its greatest lower bound. It is thus sufficient to confine the values
t, ++, t,_ to a sufficiently large finite interval [0, T'] and, therefore,
the minimum of p is actually attained for some set of n — 1 finite
distinet values ¢,, v =1, .-, — 1, with 0 < ¢, , < ,.

Since the minimum of g in (5.7) is the same as the minimum of

r[z’ﬁ + u? — G(w*, t)]dt under the normalizations
0

V(W+umu:E”WFmeu V=12 n
y—1 v—1
and other specified conditions on u(t), our minimum problem (5.5), (5.6)
has a solution %,(f) which coincides in each interval [¢,_,,¢,] with a
solution y(¢) of (5.1). Morever, ¥,(t,_,) = v.(¢,) = 0 and ¥,(¢t) > 0 in
(t,_i, t.) because of Theorem 5.1. Acecordingly, our “n™ eigensolution”
has n — 1 distinct zeros in (0, =») and thus we obtain a different solu-
tion v,(t) for different values of =.

Our task is now to show that this function #,(¢) is a solution of
(5.1) throughout the interval [0, =) i.e., we wish to show that

(5.8) tlitm Yy (t) = tlitm yty, v=1,2 ..., n—1,
=ty iyt

after first requiring that vy,(¢) be positive in (0, ¢,) and change sign
thereafter at each point ¢,. This alternation of sign is possible since
—y(t) satisfied (5.1) whenever y(t) does, and the change of sign does
not affect the admissibility conditions or the value of J(y).

Since t,, t,, +-+, t,_, are all in (0, ), we are examining the slopes
of y,(t) at points where F(,t) is conttinuous. The proof of (5.8)

follows its counter part in [6] except that S ’ [72 — G(¥*, t)]dt is replaced
oo ty—1
0

by S [¥* + ¥* — G, ©)]dt. It is easy to see, however, that the extra
ty
term S y*dt presents no additional difficulties.

ty—1
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To summarize our results, we have the following theorem.

THEOREM 5.2, Let I", denote the class of functions y(t) with the
properties: y(t) is continuous and piecewise differentiable in [0, oo);
y(it,) =0 and y(t) =0 in (t,_,,t) (v=1,2, ..., n), where the t, are
numbers such that 0 = t, < t, <t, < +»+ < t,_, < t, = co; moresver,

(5.9) SZ”_I(y'z +ydt = S_yF(y Bdt, v=1,2 -+, 2,
where F(n,t) is subject to conditions (Ia)—(If).

If G(»,t) is the function defined in (2.3), then the extremal problem
(5.10) S“’[y 4y — G, B]dE = min =\,
has a solution y,(¢f) whose derivative is continuous throughout [0, o).

The function y,(¢) has exactly » — 1 zeros in (0, ), and is a non-
trivial solution of the differential system

J—y+yF,t) =0, y0) :}irgy(t) =0,

for which lim ¢'y(¢) exists.
This result proves Theorem I.

6. The case F(y% t) = p(t)y**. In the existence theory of the
previous sections, all of our results through Lemma 4.1 were valid
when conditions (Ia)—(Id) and (If) were satisfied. In fact, we used
the stronger condition (Ie) (rather than (If)) only to insure that the
sequence {u,(t)} converged uniformly in every finite interval [0, T'], and
thus to prove that

lim J(u,) = Jdim «,) .

We can, however, circumvent this requirement of continuity of

each u,(t) at ¢t = 0 when we consider F'(»,t) in the special form

(6.1) F(y*, t) = pt)yy™.

The proof of the convergence of the comparison functions u,(t) to a
fundamental solution is similar to one in [4] and the adaptations
necessary in our case are repetitive of the arguments used in the
proof of Theorem I. The following result is valid.

THEOREM 6.1. If F(y*, t) = p(t)y*™* and conditions (Ia)—(le) are
replaced by (1a’)—(1e'), Theorem 5.2 remains valid with the exception
that lim t~'y(t) may no longer exist. Moreover the characteristic

t—oo
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values assume the simpler form

a
a+1

Ny = S“m + )t
0

7. Asymptotic estimates for certain eigenvalues. We shall now
consider the special equation

(7.1) j—y+ 2

3
T

0,

for which it is possible to obtain information concerning the behavior
of the associated eigenvalues \, for large values of n. We remark
that (1.1) reduces to (7.1) for F'(y* t) = y*/t* and F' obviously satisfies
conditions (Ia)—(Ie).

For the above equation (2.1) becomes

(7.2) Jw) = | (o + v - LoYat

and, in view of the normalization

t, . ty y4
(1.3) " wrwae =" Lar, v-12m,
ty—1

ty—1

equation (7.2) reduces to
1(=.

(7.4) Jw) = 5 |+ vt

To recapitulate in terms of Theorem 5.2, equation (7.1) has a
solution which is continuous in [0, «), vanishes for ¢ = 0, ¢t = - and
n — 1 points in |0, ). The function y(¢) is characterized by the
variational problem:

If ¢, ¢, -, t,_, are any n — 1 values in (0, <o), satisfying ¢, ; <,
y=2,.--,mn — 1, we consider functions u(t) which vanish at zero, at
infinity and these n — 1 values ¢,. Furthermore, we require u(t) to

be of class D’, normalized by (7.3), nonnegative and not identically
zero in (0, o). The function for which

(7.5) A, = min = —;—Sm(y'z + yAdt
0

for all choices of ¢,, v=1,-.-, % — 1, is a solution of (7.1) with the
properties indicated in Theorem 5.2, The value of the minimum, X,
in (7.5) we refer to as the “n'® characteristic value” or “n" eigenvalue”
of equation (7.1).

As m increases, it is easy to see that ), does also. Indeed, if we
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let u(t) = y(t) for 0 <t < ¢t,-,, and u(t) =0 for ¢, <t < o, where
y(t) is the solution of our problem for \,, then u(t) is an admissible
functien for the (» — 1)® problem. Hence,

Moo = | 0+ — GG, 1t = | "1+ 0 - G, Dl

=n = |7+ - Gl ol
tn—1
- >"n - A’](tn—ly Oo) .
Thus,
7\"n~1 < 7\“n, ’

since \,(t,_,, o) is positive.

We shall now find more exact information concerning the \,’s
associated with equation (7.1).

If u(t) is a competing function for the above minimum problem

and S”(uz + u?)dt exists, then, as shown in §2, u(t) may be normalized
0

by multiplying «(t) by a constant «, in (¢,_,¢t), v=1,2, ..+ n.
Then

ty ‘ -
(7.6) S(w+mw:ﬁg dt

2
ty—1 ty_-1

and v(t) = a,u(t) satisfies (7.3) in (¢,_,, t,). Moreover, (7.5) shows that

n ty n ty
Mgl“g(w+mﬁ:%2mg(m+mm,
= 1 ty—1

ty_1 yv= —

or, in view of (7.6),

W”W+WWT

12 ty1

?»Z'l ooyt ’
= S Py

ty—y

(7.7) o

A

We therefore can find an estimate from above for ), by substituting
into (7.7) any function u(t) satisfying u(0) = u() = u(t,) = 0, u(t) = 0
in (¢t,_,, t.), w(t) € D'[t,_,, t,], for any set of numbers ¢,,- -+, ¢,_, in (0, ).

Moreover, if z(t) is the solution to our n-th minimum problem in
[0, 8], then the function

b

cO

“_zm, 0<t
u)_o, b<t

I\ 1IN

is a competing function for the n-th problem in [0, ). Hence

(7.8) M0, ) < X, (0,0), 0<b< co.
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The estimate (7.7) shall then be applied to the interval [0, b], i.e.,
take 0 =t, <t, < -+- < ¢, ,<t, =0, where b < «,

For a competing function u(¢), we take a solution to the differ-
ential equation

(7.9) U+ u=0

for which u(t,_,) = u(t,) = 0, u(t) > 0 in each interval [¢,_,, t,]. The
existence of such solutions is proved in [5].
We note that

(7.10) ud(t) = [S vjo(t)dt]z < (t— ty_l)g” wdt
tv—l tv—l
for t, , <t <t, and thus

v - 2 (it
St u?dtg_(t_”_z—t'*——l)—g wrdt .

ty—1 ty—1

Furthermore, since

¢y 4 ty
S el dtg_l_g wdt, v=1,2 v, m,
1

2 2
ty—1 t tu

ty—

the inequalities (7.7) and (7.8) show that

ti[l + -(—t-—'gt;l)z—][gt aﬁdt]z
ty—1

t
S " urdt
ty—1

3

1

(7.11) A,(0, o) < =
2 4

it

where 0 < ¢, < ¢, < «++ < ¢, = b are any set of points in (0, ). Using
the fact that

ty ty
(7.12) g aedt = S wdt |

fy—1 ty—1
for every solution of (7.9) which vanishes at ¢,_, and ¢,, and the
property

wdt =

gtv A
ty—1 (tu - tu—~1)3 ’

where

=3l

(this result is proved in [6]), we find that (7.11) reduces to the form

A » t,?: tz ti(tu — tu——l)]
713) A0, o) = A [ + +
( ) ( ) 2 ”Z‘:l (ty - tu~l)3 (t/ - t»—l) 4
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where t, = b, t, =0, and ¢, ¢t,, -+, ¢,_, are any n — 1 distinct points
in (0, o).

To find a similar expression estimating X\, from below we proceed
as follows.

From (7.3) and (7.10), it is found that
ty

ty . ty oyt
S W+wm=g-7wgm—mﬂ

ty—1 y—1 ty—1

ty 2

wﬂ Y

Y ty—y U

where y(t) is the solution of our minimum problem (7.5), and ¢, ¢,
.+, t,_, are the corresponding zeros of y(¢). Thus,

(7.14) |7 @+ war = Lo bl 1 gae(” yar,
1 ¢ ty—1

ty—1 v— y—1

)):2’ ...’n_— 1_
Furthermore, we define the function v(¢) = a,y(¢) in each interval
[t,_, t.], where «, is to be determined by

ty ty
(7.15) Sww:mgym.

ty—y ty—1
In this way, v(f) becomes a competing function for the variational
problem:

ty

(7.16) ﬂm:S_KW~%ﬁmzmm:pmma)

ty

under the normalization

(7.17) r@m:rvm.
ty—1 ty—1

The functions v(t) are required to satisfy the same admissibility con-
ditions as we required in (2.1), (2.2). It is shown in [5] that the
minimum (¢, t,) is attained when wv(¢) is a solution u(t) of (7.9),
which takes the value zero at t¢,_,, ¢, and is positive in (¢,_,, ¢,).

Because of (7.17) and the comments following (7.12), equation
(7.16) shows that

(7.18) Mt i, t) = _;_Stv widt = A

VRN ("
ty—1 2(?5,, - t»—-1)3 2 Je,,

for every admissible function »(¢) satisfying (7.17). In particular using
v(t) = a,y(t) and noting (7.15), equation (7.18) yields the result

ty 2
TN
~4L—giY@m:£ng:L_u“_”
z(tu - tv—1)3 2 ty—1 2 ty—1 2 S‘v y"dt
ty—1
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Since

ty ty
| var =
ty—1

ty=1

ty

y4 2 92 2
T dt = ty—-lg (?/ + ?/ )dt ’
1

t

y—

we may write this last expression in the form

: [\, gat]
(7.19) At e

(t, — t..0)° SW @ + ) dt:

A

Let us now rewrite (7.14) in the following way

ty ty
, S yzdtg yidt
{798 < Jt— ty—1

(7.20)

— = ty
tv tv—l S (yz + yZ)dt

ty—1

Then if we add (7.19) and (7.20) and cancel out the common factor
ty .

S (¥* + y»)dt in the right hand side, we obtain

t,—q

791 At:_, 2 1 < tv 2dt =92 «ee.m—1
(7.21) (t,—tH)3+tV—tD#1: ydt, v =2, , .

ty—1
Finally, using the fact that
\" =" @+ va,
-1 -
equation (7.14) also yields
(7.22) —Ji—gyyWﬁ,v:&-mn—l.
, -1

tv‘tv

Adding the last two equations and noting (7.5), we have, for
n = 3, the result

=t At:_ i
Z [ 1 - 1
2(tu - tu—l) tu - tv——l

v=2

]gm,

where the ¢,, ¢,, - -+, t,_, are the n — 1 internal zeros of the “n™ eigen-
function” y(t).

In view of this inequality and the fact that we may take any
values ¢,, t,, --+, t, in (7.13), we have proved the following result,

LEmma 7.1. If \, is the n'® characteristic valve associated with
the differential equation (7.1), for the boundary conditions y(0) =
Y(eo) = 0, then, if n = 3,
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n—1
lim inf 5 [_4 b b ] <,
0<tu<‘;° =L 2 (tv - tu-—l)3 tu - tu-1

ty—1<t,

e AL t t2 t2(t, — t,_,)
= lim inf == [ 1 + v AN v—1 ] ,
‘t)<tp§:° 2 ,,Z;l (t,, - tlf—l)3 (tv - tu—l) 4

where

I

A comparison of the upper and lower bounds in the above in-
equality suggests that they might be nearly equivalent asymptotically,
but finding the exact minimum for either expression seems difficult.

We can, however, get an upper bound for \, by first substituting
the arithmetic means ¢, = v¢,/n in the right hand side. Minimizing
with respect to ¢,, we then obtain

< 24 [2 n@n +1)(n +1)

x’ﬂ:
9 3

or

JE | .
3

@23) = aw[teo(2)], 4= TE

To find a lower bound for A, in terms of %, we must replace our
previous result (Lemma 7.1) with an expression that can be easily
minimized. To do this, we see from the Rayleigh minimum principle

that
r, = S"' Vgt < St” pdt
4 10g2 ty ty— t ty—1

v—1

for all functions y(t) for which the integrals exist and which are
piecewise differentiable in [t,_,,¢,] and vanish at the end points.
Equality is achieved for the function

7 log ¢
y=VTsin|— b=

t
lo v
£ tya

If we use the above inequality when y(¢) is the #™ solution of our
variational problem and ¢, ¢,, ---, f,_, are its internal zeros, and apply
the techniques used above, we can obtain the estimate
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n—2 i — 2)°
4 (6logn + ¢)*

A

A

(7.24)

n 9

where ¢, is a finite constant and n = 3.
We summarize the results in (7.23) and 7.24 as follows.

THEOREM 7.1. Let \, be the w™ characteristic value associated
with equation (71.1) and the variational problem (7.3), (7.4), (7.5). For
n = 3, N, satisfies the following itnequalities.

Totoga 1 Aigw)] 20 = 4wt o))

a=vz 3 27 L)L -]

8. Some numerical results. In this section we shall obtain
further information regarding the behavior of solutions to the equation

where

k
(8.1) g’j—y+t@:_1:0, for k= 2,3.
Synge [8] studied this equation for k£ = 2 with a view to obtaining
numerical values for the fundamental solution. It is our aim to verify

his results and compute the fundamental solution also for k& = 3.
To do this, we note that when F'(%? t) = (| ¥ |*")/t** (8.10) becomes

t o, yk . y
U,(t) = e*‘g sinh 7 =2 dz + smhtS et =2dt
0 Th= t
(|y.| = y. since we consider only nonnegative functions). It was
shown that J(u,) < J(y.) where equality holds only if u,(¢) coincides
with the solution of the variational problem

E—1 |yl
k4+1 ¢kt

Jw) = (o + v - )it = min

"W+ e = T8 gy
o P °

We may convert our existence proof into a procedure for the
numerical computation of the fundamental solution y(t) by starting
with a function v,(¢), nonnegative in (0, o), for which v,(0) = v,(<) = 0,

u(t) £ 0, r(qﬁﬁ + )dt exists and
0

"ot + wpae = 720
0 0
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It we then define v,(t), vi(t), --+, by

k

“_dr

v
Tk«-l

t
v,4(t) = ame*ts sinh 7
0
(8.2) N
t

. vk
+ sinh tS e" —2 dr
,Z.k—l

where «,,, is determined by

Sy oo k+
(8.3) (@0 + b ) dt = |~ ge
0 o Tk

we shall have J(v,,,) < J(v,). If there is a unique nonnegative solu-
tion to (8.1) for 1 < k < 5, the above procedure must converge to it.

In order to test the rapidity of convergence in the above itera-
tion, the problem was programmed for k¥ =2 on a Bendix G-20
computer, using a Simpson’s Rule evaluation of the integrals in (8.2).
The second integral was restricted to the interval [0,10] and v(¢) =
te* was used as an initial approximation.

After 23 iterations it was found that

[0,(t) — V()| < .00001, n =23, 0<t<10.

where v,(t) was evaluated at multiples of 4¢ = .05.

Setting y(t) = v,s(t), «(t) = t7'y(t), the following results were
obtained.

2(0) = 5(0) = 4.19172 = S”e—fﬂﬂdf,
T

0

(8.4) x(4.5) = .03926 ,

b

A = 16.0687 = Smsinh Y10 4.
0 T

where y(t) ~ Ae~' for large ¢t and y(t) ~ ¥(0) sinh ¢ for small values
of ¢t [4]. We recall that «x(f) is the corresponding solution of (1.3).
The values found by Synge were

2(0) = 4(0) = 4.19169
(8.5) 2(4.5) = .03926
A =16.0723.
A comparison of (8.4) and (8.5) shows that the correspondence is
good, especially for x(0) and x(4.5), whereas for A the correspondence

occurs for one less significant digit. We thus apply the same iterative
procedure outlined in (8.2) and (8.3) for the case £ = 3 and find that
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Ny = —S (@ + yA)dt = 3.00787
2(0) = §(0) = 4.33738
A = 2.71386 — S‘”r? sinh ty(t)dt |

0
where, as previously noted, y(¢) ~ Ae~* for large ¢ and y(t) ~ 9(0) sinh ¢
for small values of ¢,
It is also shown in [4] that when the values (0) and A are given,
there are simpler iteration procedures, for calculating y(¢), which are
valid at the ends of the interval.

The author wishes to express his gratitude to Professor Zeev
Nehari for his invaluable advice and guidance furnished during the
course of this research work.
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