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The purpose of this paper is to show that the well known
theorem in the theory of linear operators in Hilbert space
indicated in the title holds for nonlinear operators and to a
certain extent for noncontinuous ones, and to provide a con-
structive method for solving the equations involved.

In different and more precise terms the theorem about to be
generalized says:

THEOREM 1. Let T be an everywhere defined linear mapping of
a complex Hilbert space 57 into itself. Then for any complex
number N at a positive distance d(n, T') from the numerical range of

T: 4 (T) = {(Tx, x), |z || = 1}, (parentheses indicating scalar product)
the equation

(1) e = Tae —y

has a unique solution for every yeS7. The operator (T — \N)™
thus defined is bounded and ||(T — N)7'|| < d~'(\, T). Moreover, for
adequate choices of the averaging factor & depending on T and N only,
(2) (T — 2Ty =lim[Q — &) + o™ T — )", ,

Nn-—I00

where x, 18 any point in SZ and T — y the operator mapping « into
Tx — y.

The theorem having been stated in somewhat more general terms
than usual, a proof is needed.

Proof. By definition of d(\, T),

(T =D, = o lf| L2l — 2]z do, Do,
whence it follows by Schwarz’ inequality || (T — M)z || = d(\, T) ||z ||,
proving that T, = T — A[ is a one-one mapping with bounded inverse
and || T £ d7'(\, T). By the first inequality above any vector
orthogonal to the range <Z(T,) of T, must vanish, meaning that
A (T,) isdense in &#°. Thus for any y € 57 there is a sequence {x,}
such that Tz, — y; since T;* is bounded {x,} converges to some ele-
ment x. Setting x} = x, — x and y* = y — T,zx, one obtains from the
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same inequality and for any complex number o
div, Ty |ly* [IF = limd(N, T) || y* + oy |I?

< lim | T\(y* + oxf), y* + ox})|

n—0o

= (Tw*, v*) + ally*II°],

which by the arbitrariness of ¢ implies [|y*|| = 0, that is, ¥y = T\x.
Hence <2(T,) = &7, as the theorem required.

Passing to the proof of the second part we remark first that by
the Closed Graph Theorem T, is itself bounded. Taking then y, as the
point in _#(T') closest to » we observe that Re (M — p)/(A — 1)) =1
for any pe _#(T), since _47(T) is convex ([21], p. 181). 8o, if a =
IN(L — p,) with t real and positive,

(AT : xa“z— WDty e Hllil;gaﬁzuz ~2Re[ (0 - ((zz,xa;) )]

2
s+ I TiF—2t.

For ¢ < 2d*(\, T)/|| T\ I* the right hand member is <1, the operator
T + (1 — a)d

is contractive, and the equation x = (aA"'T + 1 — a))x — an™'y —
equivalent to (1) — can be solved by iteration, according to Banach
Contraction Principle ([14], p. 43). This completes the proof.

As M. H. Stone remarked ([22], p. 149), the theorem is not valid
for linear mappings only densely defined: Any maximal symmetric not
essentially self-adjoint mapping has the real axis as its numerical
range and only a half plane as its resolvent.

Before entering the nonlinear realm we wish to point out an
interesting by-product of Theorem I, no doubt known, but perhaps not
in the simple form it appears here. We have proved that if »¢ 7 (T)
then T,, and hence T, is bounded. Therefore, if .7 (T) does not ex-
haust the complex plane 7T is bounded. The converse of this being
obvious, and since _#"(T) and _y(T) are simultaneously different from
the whole complex plane by the convexity of _4#"(T), we may conclude:

COROLLARY. Amn everywhere defined linear mappings of the
Hilbert space inmto itself 1is bounded if and only if its numerical

range does not exhaust the complex plane.

To make ready for the extension of Theorem I to nonlinear map-
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pings we begin by assigning a meaning to the various terms appearing
in its statement when applied to general mappings. The notion of
numerical range generalizes naturally as follows:

DEFINITION 1. The numerical range of a mapping T: 5% — 5%
with domain < (T) is the set of complex numbers

() = IR b2 8) gy, ;e (1))
|2 — a, ||*

In general little can be said of this set except that it is connected
if T is continuous and <7 (T) connected. In the one-dimensional case,
that is, when T is a mapping of complex numbers into complex
numbers .+ (7T) is nothing but the set of all incremental ratios
(Tx, — Tw,)/(x, — =,). For linear mappings it coincides with the ordi-
nary notion and is always a convex set ([22], p. 180); if in addition
the mapping is maximal normal the closure of .+ (T) coincides with
the convex hull of the spectrum.

For any complex number )\ we shall denote by d(x, T') and D(», T')
the infimum and the supremum respectively of the distances from X
to points of _#7(T). Hence

(3) A\ T)=|N—(Tw, — Ty, @, — @)/|| 2y — 2, [P = DN, T,
or, writing T, = T — Al,

dy, T Ny — @ [P = [(Thwy — Ty, @1 — @) |

(4) <D, D) ® — %P,

whence by Schwartz’ inequality it follows
(5) dn, T oy, — @ || = || Towy — The||

The ordinary norm for linear operators becomes the Lipschitz norm
defined as follows:

DEFINITION 2. The Lipschitz norm of an operator T: 5% — 57 is
the number (the value - oo being allowed)

| Ty — T |

= s e =l

where the sup is taken with regard to all pairs of distinct points in
2(T). If ||T|| < o, T is said to be Lipschitzian.

Let us finally recall that a demicontinuous mapping T: 5% — 57
is one which is continuous from the strong topology in the domain to
the weak topology in the range. Demiclosedness is the closedness
notion associated with this type of continuity, and says that a mapping
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T is demiclosed if the strong convergence of x, to x together with the
weak convergence of Tz, to y imply x ¢ 2(T) and y = Tx. In the sequel
Z.(z) will denote the open ball of radius » about z, and Zi(z) its
closure.

These preliminaries settled, we may now state the main result
concerning the extension of the existence part of Theorem I:

THEOREM II. Let T: 57 — 57 be a demiclosed mapping defined
on o closed ball Z(0), demicontinuous over any finite dimensional
subspace, and vanishing at the origin. Furthermore, )\ let be a
number at a positive distance d = d(n, T) from the numerical range
of T. Then the equation

(6) T — e =1y

has a unique solution in <Z(0) for any ye Z4 0). The operator
(T — AI)™ thus defined is Lipschitzian and || (T — N7 || < d7'(h, T).

This theorem was first proved by the author [24] for mappings
densely defined in a ball under the assumption of local cross-bounded-
ness, and sequential demiclosedness, conditions which—it was shown
later [14]—imply to local boundedness and <7(T) = Z.(0). Subse-
quently, F. Browder [11] showed that local boundedness can be dropped
if sequential demiclosedness is stepped up to demiclosedness. We do
not give the proof here, the reader may find it in the mentioned articles.
Instead we discuss an idea pointed out to the author by G. B. Minty
according to which if T is everywhere defined the “global” numerical
range, a rather unwieldy object, can be replaced by the “local closed”
numerical range, a smaller and easier to handle set, defined as follows:

DEFINITION 3. The local closed numerical range of a mapping
T: 57— 57 is the set 4 (T) = (\ #AT), where
r>0

() AUT) = {‘T%H’fﬁc_mglnj %, m,me (1), 0<[o—a, || <7}

This is Minty’s extension of Theorem II and proof.

TueorREM III. (Minty). Let T: 57— 57 be a demiclosed mapping
everywhere defined in 57, demicontinuous on any finite dimensional
subspace therein., For any complex number N at a positive distance
d = d(n, T) from the local closed numerical range of T, and for any
Yy € 57, the equation vx = Tx — y has a unique solutton. The opera-
or (T —NI)* thus defined 1s Lipschitzian, and ||[(T — N1 £
d=*(n, T).
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Proof. Clearly the _#(T) are nested closed sets in the sense
that r, < r, implies .#; < .7;, and therefore the distance din, T)
from M to their intersection is equal to the limit of the distance
d,(n, T) to 47(T) as r— 0. Now assume 7 to be so small that d,, > 0,
and take any point y,e S#2(T;) and one of its pre-images x, under
T, =T —»I. The mapping T(2° + a) — y, — \x, restricted to <Z(0)
and the complex number X\ satisfy all requirements of Theorem II
with d = d,,, because the numerical range of the mapping is contained
in A45.(T). Hence, the range of T(x, + x) — ¥y, — Mz + x,) contains
F 4, (0), and y, is the center of a ball of radius rd,. contained in the
range of T,. This being so for any y,c FZ(T;), F(T,;) must be the
whole space 57,

More delicate is the proof that T, is one-to-one; we take the finite
dimensional case first. As any point in &2(T) is the center of a ball
of radius » on which T, is one-to-one, the pre-image by T, of any
point y,e 57 is a discrete set and therefore countable; let x,, «,, --
be its elements. Hence z; ¢ ZZ.(x;) for ¢ == 7, and the balls <7 ,(x;),
9 =1,2, ..., are digjoint. Further, any pre-image of any point in
PBira,,(¥o) has a ball of radius /2 about it containing one of the ,’s;
in other words it is in one of the balls &z .(x;}). Thus, the pre-image
of 4, (¥) by T, decomposes into a class of disjoint sets, each
contained in just one ball & .(x;). These are all open sets homeomor-
phic to Z, 24, (¥o), since T, restricted to any <Z(x;) is a topological
mapping. Under these conditions, ¥, being arbitrary and 7 simply
connected, it is enough to invoke the “Monodromy Principle” ([12], p.
146) to conclude that 7T, is one-to-one. To extend this to infinite
dimensions, simply take any two points x; and x, in < (T), construct
the space 2% generated by x, #,, and apply the above result to the
restriction of the mapping E,T to 5% (here E, is the orthogonal pro-
jection on 2573). If w, # x,, then E,T)x, = E,T:x,, and in consequence
szl S Tz%z.

From the above arguments one sees that || T\x, — Th. || < rd,,
implies ||z, — «,|| < 7, and this is turn, |2, — 2. || < d5' || The, — T, ||,
This proves the local Lipschitz character of T;?, of which—as we shall
see—the global Lipschitz character is an easy consequence. For any
couple of points ' and «” in 2(T) and any positive integer =, let
%, +++,®, be the points in < (T) such that

Tlxk - sz/ + E(sz” — Tzﬂ?’), k = 0’ ceeL W,
n

If n is sufficiently large,

| Tww, — Ty || = % || Ta'" — Ta'||
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is smaller than rd,. and

d21‘
w

|2 — Tpen || = oy || Ty — Thwps || = || Ty — Ty ||,

E=0,1,..--, 1.

Adding these inequalities together one obtains,
o — || £ 3| @ — By || = doy || Tia” — T’ ||,
1

whence passing to the limit » — 0, the sought for Lipschitz condition
follows.

We now turn to the discussion of the second part of Theorem I,
namely to the construction of the solution of equation (1) as a limit
of a sequence of succesive averages

(8) = (1 — a)we, + a v (To, —¥),

between a vector and its transform by NYT — y), built from an
original approximation x, by means of a suitable choice of the aver-
aging constants «,. For the purpose of generalization the fact that
all averaging constants can be taken as equal should be looked upon
as merely accidental to the linear case. The extension to nonlinear
equations is here again possible but, as it was to be expected, not
under conditions as general as those for the first part. Furthermore,
to prevent the iterates from running out of the domain of definition
when the mappings are not everywhere defined, we shall find it
necessary to modify scheme (8) with an extra factor in front of .
This, however, is a point of secondary importance. Our first step is
to show that the idea is feasible, that is, that there exists at least
one sequence {a,} leading to the solution:

THEOREM IlI. Let T: 57 — 57 be a mapping vanishing at the
origin, defined on Z(0), continuous and bounded there. Further, let
A be a nonvanishing complex number at a positive distance d = d(n, T)
from the numerical range of T, and x the solution of the equation
e = Tx — y for some y € Z.40). Then for any sequence of complex
nwmbers {v,}v such that

oo

(9) 71 =1, XA ~—[7%f) =,

1

and any vector x, satisfying ||x|| + ||x — .|| < r, the vector sequence
{x.}e having w, as its first term and the successive ones determined by

(10) 2, = (1 — @)y + A (Tw,y — ¥)
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where the a,’s are calculated from

| Tow — Twwpy [Pty = =M1 — Ty, @ — ) (L + 7)),

(1) (T, = T —\I)

can be continued indefinitely and converges to x.

Proof. Notice that «, is uniquely determined by (10) except when
W Twe — Ty, || = 0, in which case any complex number satisfies (11).
But then =z, , =« by (6) and x, coincides with x regardless of the
value of «,, and so do all successive terms. As the theorem’s con-
clusiong are obviously valid for the resulting sequence, we may discard
its occurrence and assume that || Tyo — T,x,_, |l vanishes for no k.

The sequence {x,} may terminate only by running out of the
domain of definition of 7. To see that this does not happen it is
enough to show that the relation |[z| + ||z — z,_,|| < r (valid for
k — 1 = 0) propagates from one term to the next. Subtracting (10)
from

z=1—a)x + arx(Te —y)
one obtains
-z, = (1 —a)@ — ) + e (Te — Ta,y)
= (® — %) + N (T — Thwyy)
and hence
o — 2 |" = ||z — 2 [P + 2Re[a V(T — Ty, @ — Z_1)]
+ N R The — Toepn |

Replacing «, by its value given by (11), and transferring terms,

e — @ [P = [[o — o |
_ (T — Ty, @ — Ly [* 2Re (1l 1 2
12) TTa— TaciF oo MR
_ (T — Ty, @ — @) (1 2
= - 'Yc .
T — TP D
Hence

e — x|l = [l — 2],
and

el + e —a =7
if

Noll + e — @z =
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The existence of {x,}7 is thus fully guaranteed.
Making use of the estimates
(T — T2y, @ — @) P = AP || — @ [P
| Tww — T, ||P < B?,

one obtains from (12),

d*le —

e — @ [ = llo — @ ] 2 5

T ||*
Dl — .

Dividing this inequality by || — 2, |]*||2 — 2, |* and observing that
(T — 2 [)/(le — 2, ) = 1, one gets

(S SR PR YOt [ S
N e A P AL B
o AL~ (%[
=

which added together from k =1 to k = »n yield

1 .1
o —w, [~ o — P

d2’ﬂ 2
i -7 PD.
+ g 20— 1%

Clearly ||z — «, || — 0 by the divergence of >\ (1 — |7 [9).

We have thus demonstrated the possibility of passing by repeated
averaging from an approximating =, with ||« || + |2, — 2| < » to the
solution 2 itself. If no such approximation is known a priori, the
averaging scheme may be modified so as to yield the solution starting
from any approximation whatever., We shall not enter into the details
here, but with the reassurance derived from Theorem 4 shall proceed
to the more substantial task of establishing a recursive procedure for
the determination of the averaging factors. This we are able to do
only under the assumption that the mapping satisfy a Holder condition
of exponent >1/2. Yet, in order to bring the ideas involved into
focus we shall confine our attention to the simpler case of cross-
Lipschitzian mappings. These are mappings for which the quantities

= SI%H T T, = (T = o 2= 2 ) B [

called cross-Lipschitz norms, are finite. It has been shown |14} that
this notion of continuity, obtained by replacing the ordinary increment
Tx, — Tx, by its component orthogonal to x;, — x,, is strictly weaker than
Lipschitz continuity and stronger than Holder continuity of any order
vy < 1. The interested reader will find the modifications necessary to
extend the theory below to v-Holder continuous mappings (v >1/2) in the
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Appendix at the end of [25]. The next two lemmas form the core
of the averaging theory.

LemMA 1. Let T: 27 — 57 be a continuous, cross-Lipschitzian
mapping defined on Z.(0) vanishing at the origin, \ ¢ nonvanishing
complex number at a positive distance d = d(n, T') from the numeri-
cal range of T,y a point in Z.0). Then for any ,c Z.(0) not a
solution of (1) and any complex number « such that

2, = (1 — a)x, + ax(Tx, — y)
belongs to Z.(0),

(13) N Twy —ylf = | Theo — y II° > R(1 — i,\/iz)’ (T, =T — ),

|| Towo — v |I?
where
d*(n, T)
(1) R=_— 20 :
d*n, T + (T
(15) y = a (T, — Tyw,, , — ®,) +1.

" R) |2 — @, |
Proof. We have

T, — y 1P = || (Thwy — ) + (Toxe — Tamo) ||°
= || Tw, — y | + || Towe — Tho ||
-+ 2Re (Tgxa - Tlxoy Tlxo - y) ’

and
N, —y|f — || Tawa — ¥ |
T . 2

(16) || Thwy — ¥ || 2

— —2Re (T, — Ty, Trwy — y) _ | Thw, — Ty, ||

|| Towo — o | || T — y|*

Since
(17) By = @ + %(szo — ),

the first term on the right of (16) is readily seen to be —2 Re (R(y — 1)).
As to the second, decomposing the increment Tx, — Tix, into its
longitudinal and transversal components and observing that the latter
is equal to the transversal component of Tx, — Twx, whose modulus
does not exceed || T'||* || #. — @,]|, one obtains
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(Tlxa - Tlx()y Lo — xo) :

e — ||

| Tya — Tomo [P 1 [
|| Towo — y|* = || o — y[I?

(N TI e — 7]

g_ (Tim(r - Tlx()y Lo — xo)
@ — @ |f

A
2 a |* 1ye
R =D+ [ LTIy

(18)

IA

& ary

Il

Notice now that by virtue of (5), |E(v — 1)(Ma)| = d, and so that
la/nv| < (R/d) |* — 1| and insert this in (18),

| Tha. — sz?zliz < Rz<1 + (Il TZHL)2> v —1FP=R|»r—1°,
|| oo — ¥ ] d

Therefore, returning to (16),

H Txxn_‘y“u_ H Tszn—y[«g z *2R€(R("/— 1)) o R{'\/— 112
H T).xo - 2/”

=R(1 -7,

as we set out to prove,

Formula (13) is the key to the averaging theory; it points to the
fundamental fact that, by averaging, the error committed in solving
equation (1) can be made strictly smaller whenever there is an « whose
corresponding v lies in the interior of the unit dise about the origin.
This calls for a study of the mapping a— v, which is precisely the
content of the next lemma. To state the lemma we shall need the
concept of “admissible approximation”.

DEFINITION 4. Let T: 57— 27 be a mapping defined on <7(0)
vanishing at the origin, A a complex number at a positive distance
d = d(n, T) from the numerical range of T, and y a vector in <7, A0).
A vector x, <Z(0) is said to be an admissible approximation to the
solution of equation (1), if

(19) Nyl + [Ty =yl Srd, (Th=T—\).

It is important to notice that the test for admissibility does not
require the knowledge of the solution. One sees at once that z, = 0
is admissible for those equations with ||y = rd/2, and that any «,
is admissible only if T is defined everywhere. For y’s with ||y | = »d,
z, is admissible if and only if it is a solution.

LemmA II. Let T:. 57 — 57 be a continuous, cross-Lipschitzian
mapping defined on <Z.(0) vanishing at the origin, \ a nonvanishing
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complex number at a positive distance d = d(\, T') from the nmumeri-

cal range of T,y a wvector in Z.,0), and 2,€ ZZ(0) an admissible
approximation, not the solution of (1). Then if

Ty = (1 — )z, + an T (Tx, — ¥),

the mapping of the complex plane into itself

« (T, — Ty, @ —xa>
20 A — Y = 0 1
(&0) 229 N P

s o homeomorphism having as domain the circular disc

(21) a_’_)\J(T}wo_yyxo) 2£| \2 r: — ||WOH2 ')\; (T;xo—y, 900) 2’
|| T — y|I* 1 — || Towo — y|I* || Towo — y |

and as range a closed domain containing the wunit disc about the
origin. Its inverse is Lipschitzian with norm not exceeding R |\ |/d.

Proof. The mapping (20) is defined for those «’s for which
lz.|] £ 7. By (17) such a set coincides with the circular disc (21).
On use of (17) again one may write, setting vy, = T)x,,

" -1 _
(22) v = _1_ (7/“ _ Tl(a/“ + an 7/20)7 Yo 7/) + 1 .
R % — ¥l

It is clear that v is a continuous function of «. Moreover, from (22)
one may also derive

Y7 — __1_ (Tlxal B Txmazy Yo — y)
a — Q, R (a1_‘a2)Hyo'_sz
— 1 (Tlmal - Txxazy xa'l - xa2)
RX | @, — By |
and by (6)
(23) ‘ 71— Ve > d )
o, — o, RN

Hence the mapping is one-to-one and has a Lipschitzian inverse with
the required norm. As it was continuous it is a homeomorphism, and
by Brouwer’s Domain Invariance Theorem ([1], p. 156) its range is a
closed domain, whose boundary is in a one-to-one correspondence with
the boundary of disc (21), that is, with the set of a’s for which
[|2.]] = . Since ||2,|| <7, @ =0 is an interior point of (21) and
therefore its image v = 1 an interior point of the range, which by
this fact has a nonempty intersection with the disc |v| < 1. More-
over, no point of the disc is on the range boundary, because if |v| < 1
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then by (13) and the admissibility of x,

ol = d7 | Tawe |l = d7(I Towa — y | + 9]
< d(| Ty —yll + lyl) £ 7,y

showing that « is not in the boundary of (21) and hence that neither
is v in the range boundary. Therefore the disc |v| <1 being con-
nected must be entirely contained in the range of the mapping (20).
The lemma has thus been proved.

This lemma assures us that any v in the unit disc is the image
of an «a, far in excess of what is really needed for the effective cal-
culation of the solution of equation (1). In fact it is enough to be
able to determine just ome a so that v lies in the interior of the
unit disec uniformly, say, within a disc of smaller radius p. If d(¢)
is the modulus of continuity of v as a function of «, any d(0)-net
covering the disc (21) contains one such « at least, and so if d(¢) is
known the inequality |v(a)| < o can be solved effectively.

THEOREM V. Let T: 57 — 57 be a continuous, cross-Lipschitzian
mapping defined on Z(0) vanishing at the origin, . o nonvanishing
complex number at a positive distance d = d(n, T') from the numeri-
cal range of T, and y any point in Z.40). Then for any admissible
approximation x, and any sequence {v,}7 of complex mnumbers satis-
Sfying

(24) mlsl,  2A = (%)=
the sequence of successive averages
(25) @, = (L — @)@y + (T, — y)

starting with x, and constructed with averaging factors «, satisfying
the equations

(26) | — Tpa [P (Ve — 1) = }(;;: (Tyw, — Tipyy @ — Tp)

can be continued indefinitely and converges to the solution of (1).
Moreover, if « s the solution,

(27) s~ ol s ATB W fy 1 R e

Proof. Should two consecutive terms coincide, say x,., and x,,
then it would follow from (25) that x,_, is a solution of the equation
and all successive terms are equal to that solution regardless of the
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values of the «,’s, which, consistently with this, are no longer
determined by (26). As the Lemma clearly holds in this case, we may
exclude it from our considerations.

In other cases, inequality (13) indicates that admissibility is passed
from one term to the next. Hence the ,’s never come out of <Z,(0),
are defined and admissible for all values of k£, and

WTowes —y[P = | Towe — y | =RA— 7D, E=1,2,++,
|| Ty — ¥ |f? N

that is,
Ty —yll = | Tap — y I [L = BRA — [}, k=12 -.-.

Multiplying these inequalities together, one obtains
(28) 1 7oy — y il = 1 1o — g LT[ = BA — |7 1",

which, since the divergence of > (1 — |7v,|*) implies the divergence
to zero of the product on the right, proves that T)x,—y. But T;!
being Lipschitzian the %, converge to an «, and T, = y. Finally, (27)
follows from (28) upon recalling that

@, —wl = d?'0N T) || T, — T ]

Hence, a recursive averaging procedure to construct the solution
of equation (1) from any admissible approximation has been established.
The slightly more complicated scheme below applies to cases where
no admissible approximation is known beforehand. The leading idea
is the following: if @ is admissible for Moz = Tax — dy then by aver-
aging an x; can be found which is admissible for v = Ta — 6’y with
some o' larger than d, and so, starting with x;) = 0—which is admis-
gible for Mz = Tz — oy, 0 < 9, < 1/2—it is possible to construct by
repeated averaging an admissible approximation for e = Tx — §,y,
0, = 1, and then the solution of (1).

THEOREM 1V. Let T: 57 — 57 be a continuous, cross-Lipschitzian

mapping defined on Z(0) vanishing at the origin, \ a nonvanishing
complex number at a positive distance d = d(n, T) from the numeri-

cal range of T, and y any point in Z,(0). Then for any sequence
{ve}e of complex numbers satisfying

(29) V=1, SA— 7)) = e

1

the sequence of modified successive averages

(30) 2y = (1 — a)w,y + XN (Ta, ., — 04_1Y)
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having x, = 0 as its first term and successive ones contructed with
correcting factors

G s=1-@-0)[I 20 +[L-RL-|%PPY, 0<o =2,

and averaging factors «, determined as solutions of

(32 llme— @l — 1) = 5 (T — T, @ — @) ©

R
can be continued indefinitely, and converges to the solution of (1).
Further if x is the solution,

— 2(1—50)Hy|| n_]-_ 1 _ 2\11/2
@3) |, — ] = i T) 5+ = R0 = 7P

Proof. The factors in the product defining 6, being all positive
numbers not exceeding one, the 6,’s form a nondecreasing sequence in
the interval (0,1). Further, since

-{13(1 —mB=1- -;_{1 + 11— R — |7, /)" gga — 7]

the divergence of >\ (1 — |7, [°) implies the divergence to zero of the
product on the right member of (31). Therefore §, 1.

We prove that x, is defined for all values of the index k by
showing that if «,., satisfies ||, || + || T'¥,—y — 0ry || =< || ¥ || then
x, is defined and ||,y || + || Tww, — 0wy |l < ||¥|]. Under the above
assumptions x,_, is admissible for Mz = Thx — 6,_,y. If it is a solution
of this equation then x, = %,_,, regardless of the value of «,, which
is now undetermined; if it is not a solution, Lemma 2 guarantees the
existence of «, satisfying (32), and x, is again defined. Then in either
case,

oy || + || Toer, — 0y || = [ 0xy || + || (T, — 0pay) — (0 — 0x0)¥ ||
=20, — o) [yl + | Tow — 0w 1]

By Lemma 1, (13)
| T, — 0y || £ [1 — B — [ 7 || Tawpes — 00y ]

a relation which holds even if wx,_, is the solution of Mz = Tx — 6,_,¥.
Taking account of this in the previous inequality and recalling that
| T — 0¥ || = [yl — [0,y || one obtains

0wy 1] 4 1 Tow — 00y [| S {20, — 05) + [1— R(L— |7, )]"*L — 0D} [ w I,

which is the desired conclusion, since by the definition of the d,’s the
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expression in braces on the right is equal to 1. Having proved the
existence of the sequence {x,}; and the relations

(34) HgkyHJr“‘TAxk—'akyHéHyH: kZOyly"')

the rest follows easily. We have

|| T, — vy = || T, — 0y + (0, — L)y ||
(35) S| T — oyl + (1 — o) [yl
=2(1 —d)llvll,

and as 0, 1, Tz, — vy, and by the usual argument, %, — x, ¢ satis-
fying T2 = y. Finally, coupling (35) with ||z, — || < d'|| Tz, — v ||,
one obtains (33).

The computational strategy provided by Theorems V and VI is
very broad and flexible. In practice one is not given the v,’s from
which one determines the «,’s; on the contrary, one tries to make
judicious choices of the «,’s in order to place the v,’s within the unit
circle, and this only a finite number of times until the desired approxi-
mation is attained; naturally, the divergence of 3 (1 — |7*|*) never
comes up in actual calculation. In some cases—presumably when the
computations are done by hand—it may be preferable to reduce the
number of steps by making them individually more effective, that is,
by bringing the 7v,’s as close as possible to zero, while in others, it
may be more expedient to make rough estimates and thus gain in
simplicity what is lost in accuracy. In a looser manner still, the «,’s
make be picked at random—a la Monte-Carlo—keeping only those that
improve the approximation; the method seems to be probabilistically
convergent.

Averaging computational techniques have been used in the past—
not always with success. (For a reference to extensive calculations
see [3], Ch. X, and [2]). Aside from cases where no averaging could
possibly converge, the failures may be attributed in part to the in-
sistence in using constant averaging factors, after the linear model.
In view of this situation it is not inappropriate to stop to investigate
the circumstances under which the usual procedure works. We shall
broaden the scope of our investigation so as to also be able to give
a partial answer to questions of when the averaging factors can all
be taken of same modulus, or of same argument. In terms of the
family of homeomorphisms « «— vy—which depend on A, y, and x,—these
problems amount to a search for conditions under which the images
of |7] <1 by the functions |a(v)|, or by the functions arg (a(v))
have, for fixed N and ¥ and varying «, an open interval in common,
Our findings in this direction are contained in the following lemma,
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which can be considered as a continuation of Lemma II;

LemMmA III. Under the hypotheses of Lemma IV, the jfollowing
holds:

a. If the numerical range of T is bounded then for any t on
the interval (0,2 | N | R/D(\, T)) there are o’s in the disc (21) such that

. dt Dt
36 al=t, 7§1~m1n< , 2 — );
(36) || g N E B
b. if the numerical range of T is wviewed from A under an
angle of amplitude 2 < 7w, and if w, is the bisector direction, then
for any 0 in the interval

(argk—krc»a)o—ﬂ—g n_[)>

,arg N + T — W, + 5
there are «’s in the disc (21) such that
37) arga = 0, |7i§sin<]6—(ﬂ~wo)—arghl+—g—>;

c. if the numerical range is both bounded and viewed from N\
under an angle of amplitude Q < w, the area between the open discs

(38) |a — 22 goain
D

CBAR o AR ] < DR
D D . D

is contatned im the disc (21), and for any « therein

5

FRUSPR IV SR -
) B NP D* D
|?\,l2R2 . la _ AR g—iteo+ i) 2} .
D? D

Proof. a. If the range is bounded D(\, T') < oc, and since
RX\(v — 1)/a is the difference between \ and a point in (T,

(40) ain, T) Z =11 _ DT
RN || RN

A

It follows that if & maps into v = p, with p real and 0 < p < 1, then
la| <1 —p)R|\|/d, while if it maps intoy = —p, || =1 + p)R |\ |/D.
Therefore by continuity, if (1 — o)R|M|/d < (1 + po)R|N|/D, that is if
(D —d)(D + d) < p <1, the pre-image of |v| < p contains a’s whose
moduli fill the closed interval I, = (1 — p)R|N\|/d, (1 + o)R|N|/D),
which as o approaches 1 grows to the limiting open interval (0, 2R |\ |/D).
The proof is concluded by remarking that for any ¢ in this interval
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the smallest o such that ¢e I, is precisely given by the right hand
member of inequality (36).
b. By definition of 2 and w,

®, — géarg! (T-’X?l"‘ szy T, — ivz) —N\S(OO-F 2
Hxl—xz“z 2

and so, recalling the meaning of R\~ — 1)/,

41 w, — arg» — — < arg -1 gwo—argk+£.
a 2

As v varies over the disc |v| < p, arg (v — 1) varies over the closed
interval (7 — arcsin o, @ + arcsin p). Therefore by (41) the pre-image
of the disc |v| =< p contains an a with

arga = T — @, + arg A + aresin p — ‘—Z—
and an « with

arga < T — o, + arg A — arcsin p + %,

and in consequence, by continuity, contains a’s whose arguments cover
the closed interval

J,,:<7r—a)o+argk—arcsinp%——g,n~w0+argx+arcsinp—%),

provided arcsin o = 2/2. As p /1 this interval becomes

, T — @, + arg A\ +

(n—wmtargx-—n”_g n'—‘Q),

and for any ¢ in it the smallest p such that deJ, is
. Q
psm(]ﬁ — (Tt — w,) — arg )| + 5_)’
in agreement with (37).
¢. In this case both (40) and (41) hold, and if « belongs to the
two discs (38),

0< |/\:£2Rz . la . )\;3 g—i(wo22) 2

= 2B poameieseny — |qff
D
(42) oR
= [a[’f[xlcos<arga — (argk — w, + g)) — [a[‘

whence one deduces first |arga — (arg» — w, £ (2/2)) | < /2, and
then by (41),
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Q
__g_<arga—arg>v+a)o-ééarg("/“l)
Q T
garga—argx+wo+—2—<57

which, as cos« is a concave function in the interval (—=z/2, 7/2), yields

0 < min {cos <arg o —argn + w, — %), cos <arg o — arg n -+ o, + §>}
< cos (arg (v — 1)).

Therefore taking the minimum in (42),

0 < min {[Mngz —la — AR g—ilog+al2) 2],
[M —_ la{ —_ >\’R 6—i(u)o—!)/2) 2]}
D? D
=< |al[—‘?‘%x—lcos(arg(7 —1) — [a'\] )

The right hand member of this inequality does no decrease if
|a| outside the square brackets is replaced by its upper bound
(R|N|/d) |y — 1], and the |« | inside by its lower bound (R |\|/D)|v —1!,
both obtained from (40). Thus

0 < min {[ IMNPRE ‘CY _ B o—iw0+2/2)
D? D
[|7\, 12 R? B ’CK B AR J—— 2]}
D? D

RIM . 1 [2RIM o RIM L
< Ky 1’[*—13 cos (arg (7 — 1) = L2 | 1]

(43)

_RINE e
_W(l [7]?) .

This is (39). It remains to check that the whole area between
the two discs (38) is contained in the disc (21). In the first place it
is clear that there are points simultaneously interior to the three
discs, because the first two—which have a nonempty intersection—
pass through the origin, whereas the third contains in its interior.
Secondly, by virture of (43) and Lemma 1, no point interior to the
area in equation belongs to the boundary of disc (21). Therefore, the
area being connected is entirely contained in the disc (21).

Upon observing that the ranges of values assigned by a., b., and
c. to |a|, arg a, and « respectively, as well as the bounds for v do
not depend on y nor on the admissible approximation x,, one may draw
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from Lemma 3 the following interesting conclusion,

THEOREM VII. If, under the hypotheses of either Theorem V or
Theorem VI, the numerical range of T is either bounded, or viewed
Srom » under an angle of amplitude less than w, or both, then it 1is
possible to construct geometrically convergent averaging schemes with
averaging factors of constant modulus in the first case, of constant
argument in the second, and with constant averaging factors in the
third.

It is to be noticed that under the cross-Lipfchitz condition, the
requirement that _#"(T) be bounded amounts to asking that T be
Lipschitzian, In fact, if D(0, T') is the supremum of the distances to
the origin of points in _#(T), then || T||*< D*0, T) + (|| T||*)*. On
the other hand, the condition that _s(T) be viewed from )\ under an
angle of amplitude less than 7 can be expressed by requiring that the
convex hull of _#(T) contain no straight line and that A be at a
positive distance from it,

Point c. of Lemma 3 raises the following natural question: Is the
contractiveness of the operator (1 — a)l + ax~*(T — y) the reason why,
for a’s satisfying (48), the solution of (1) can be obtained by iteration?
In other words, is (1 — a)l + an*(T — y) contractive for such «a’s?
The answer is yes, and can be proved through calculations very similar
to those leading to c.; the contraction factor turns out to be not
larger than

2
o — AR ¢t @otel2)

1 dD\ min{MPRZ _
RN D
INFRE la_ AR -
D D

}

A related question is that of the asymptotic behavior of the
sequence of averaging factors. When may the sequence terminate with
some sort of constancy? It is evident that the answer must involve
only the local behavior of the operator, for, if a sequence of averages
converges, it finally dwells within an arbitrarily small neighborhood
of the solution and thus involves only the values of the operator in
such a neighborhood. Therefore, if any of the conditions of Theorem
VII is valid locally the corresponding assertion holds asymptotically.
This applies for instance to locally Lipschitzian mappings, in which
case the averaging factors can be taken as having a constant modulus
from an index on, or to continuously differentiable ones, which having
local numerical ranges arbitrarily close to the numerical ranges of
linear mappings make asymptotically constant averaging schemes
possible.
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Let us finally remark that the value \ = 0, excluded from our
considerations, can be brought within the range of the averaging
theory by replacing equation 0= Tx — y by its equivalent z =
(T + Dx — .

The theory offered here is a development beyond the closely related
theory of monotone operators started by the author [23] and continued
by C. L. Dolph [13], G. J. Minty [17]-[21], L. I. Kolodner [16] and
F. E. Browder [4]-[11], which can be summarized in the statement
“the closure of the convex hull of the numerical range contains the
spectrum”.
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