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Let Xbe the domain of a linear transformation A. Certain
subspaces of the second algebraic conjugate Xff, obtained by
the application of a weak completion process to some suitable
subspace of X, may be regarded as spaces of generalized ele-
ments to which A has a natural extension. When A is a closed
Hubert space transformation, its domain can in this way be
extended to a weakly complete space (Theorem 1). For a self-
adjoint operator T this extension X may be regarded as the
dual of a perfect countably Hubert space precisely if T has
a compact inverse (Theorem 2). Any element in X is obtained
by a repeated application of the extended transformation T
to some element in X (Theorem 3). A discussion of the ex-
tension of functions of T to X, and a spectral theory for T
conclude the paper.

The most widely accepted and used method of defining distributions
(generalized functions) is probably to regard them as continuous linear
functionals over a countably normed space of test functions, i.e. a
metric space where the distance function

d(x,y) = ±
P=O 1 + II a? - y \ \ p

is constructed with the aid of an increasing sequence (|| ||p) of norms
that are pair wise compatible [3]. Other methods are based on com-
pletion procedures, analogous to the one used by Cantor to extend the
rational number system to the reals [9, 10,11], the standard motiva-
tion being that in using simpler concepts this makes the theory available
to physists, engineers et al. An intuitively appealing way of doing
it [9, 20] is to start with a linear space X of functions equipped with
an inner product, and then consider sequences (xn) in X with the
property that for each x in X the sequence of inner products (xn, x)
converges. The linear space of equivalence classes associated with the
obvious equivalence relation for such sequences can be interpreted as
an extension X of X obtained by adjoining to this space the missing
limit elements of sequences of the type considered. This procedure
justifies the use of the term generalized function for an element in X.

In §2 we discuss briefly the obvious extension of this method to
the case when we consider sequences in a linear space X for which
(xn, my converges for all m in a total subset M (the set of test func-
tionals) of its algebraic conjugate Xf. It is natural to regard the
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extension X(M) of X that we obtain as a space of generalized elements
to which we may approximate by elements in X.

Now the generalized elements represent elements in Mr, i.e. essen-
tially in Xff, rather than in Xf. Since there exists a canonical embed-
ding of X in Xff—but, in general, no such embedding of X in Xs—this
appears reasonable, and it indicates that the point of view taken in
[9, 20] is a natural one.

The above method for selecting subspaces of Xff provides a direct
and elementary representation of the generalized elements, and in
applications to spaces of functions we need only use very simple con-
cepts of integration, etc. But our main reason for adopting it is of
a different nature.

Basically, generalized functions are introduced in order to extend
the domain of certain differential operators to complete spaces of func-
tions. Now, if we apply the weak completion process considered to
the domain X and range Y of a linear operator A we may choose the
test functionals so that the sequence (Axn) defines an element in Y
whenever (xn) defines one in X, which gives us an immediate extension
of A to all of X. So in this paper we regard spaces of generalized
elements as extensions of the domains and ranges of linear transfor-
mations, determined by the operator or the set of operators we are
interested in.

Section 3 deals with transformations with domain and range in a
Hubert space H. Given a finite set s^f of linear operators in H we
shall use the term good element with respect to Ssf for an element
that is in the domain of any polynomial in these transformations and
their ad joints, and we denote the subspace of H consisting of good
elements by G^ or simply G. When G is dense in H, it represents a
total subspace of the dual H', and G = G(G) provides an extension of
H to which any polynomial in the given operators has a natural ex-
tension. The space G of generalized elements is complete (in the
obvious weak sense) if all the transformations are closed (Theorem 1).
In this situation we may, in fact, equip G with a sequence of inner
products so that it becomes countably Hubert, with a dual that is
congruent to G.

The rest of the paper deals with the special case when j%f consists
of a single self-adjoint operator T. The countably Hubert space
Gτ is then perfect if and only if T has a compact inverse (Theorem
2). After this paper had been submitted for publication a proof of
this theorem appeared in a paper by A. Pietsch [14]. Cf. also Notices
of the American Mathematical Society, abstract 64T-363 (August 1964)
p. 583.

Furthermore, the transformations
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fn(T) = (1 + T2 + T4 + + T2")1'2, n - 1, 2, ,

may be extended to Gτ, and any x in Gτ has the form x = fn(T)x for
some integer % and some $ in H. It follows that each generalized
element can also be written as x — Tnx + y, where x is in H and y
is in Gτ. We may take y = 0 if zero is not in the spectrum of T,
and choose i/ so that Ty = 0 if zero is an isolated point of the spectrum
(Theorem 3). When T is a differential operator this is sometimes
referred to as the fundamental theorem of distribution theory. For
instance, if T — i(d/dt) restricted to absolutely continuous functions
of period 2α, then Gτ is the space of infinitely differentiate functions
of the same period (usually denoted by K(a)), and every generalized
function can in this case be interpreted as the result of repeated dif-
ferentiation of a continuous periodic function, plus a constant.

The functions u(T) which have an immediate extension to Gτ are
those which map Gτ into Gτ. Theorem 4 gives necessary and sufficient
conditions on u for this to be the case, and also classifies those func-
tions u for wτhich the extended transformation u(T) maps all of Gτ

into Gτ.
The extension Eλ of the resolution of the identity associated with

T is also a resolution of the identity, and it is of the same type as
Ex in the sense that they are simultaneously discontinuous, of con-
tinuous growth, or constant. It is related to T in much the same
way as Eλ is related to T. The nature of the inverse of f — λ ί is,
for instance, determined by the behaviour of Eλ: the inverse exists
precisely if λ is a point of continuity, and it is defined on all of Gτ

precisely if λ is a point of constancy. Moreover, f has the same
characteristic vectors as T.

The fact that Eλ — Eμ{— co < μ < x < oo) maps Gτ into Gτ enables
Cβ

us to construct operator Stieltjes integrals of the form I u(X)dE?x to
Ja

obtain the representation

u(T)x = Γ(T

We may interpret this as a method for evaluating certain divergent
integrals. If T has a discrete spectrum we have a summation method
for divergent series.

When H is represented as a direct integral of Hubert spaces of
functions so that T corresponds to the operator A defined by multi-
plication by the independent variable λ, then Gτ is represented by GA.
In the special case where T has a simple spectrum we may in most
cases choose a generating element g in Gτ for which

σ(X) = ((Eλ - E0)9, g)
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has the jump one at each discontinuity, and increases like λ at all
points of continuous increase. The representation L\ of H is then
particularly simple, and the mapping identifying L\ and H is the
Fourier-Plancherel transformation when T — i(d/dt) with domain and
range in L\— oo, oo),

The last section contains a few simple examples.

2* Extensions of linear spaces* The terminology in this section
follows [19]. Let J b e a real or complex vector space and M a subset
of its algebraic conjugate Xf

m We use (x, my to denote the value of
a linear functional m in Xf at a point x in X, and (xn) to denote a
countably infinite sequence xl9 x2, in X. We shall say that (xn)
converges M-weakly to x if

lim ζxn, my = (x, my

holds for all m in M, and that (xn) is an M-weak Cauchy sequence
if the limit on the left hand side exists for all m in M. We may clearly
without loss of generality assume that M is a subspace.

When M is total we obtain an extension I of I by adjoining
the missing limit elements of M-weak Cauchy sequences, on analogy
with the standard procedure for the completion of, say, metric spaces.

The formal definition of X is as follows: Let R be the vector
space of ikf-weak Cauchy sequences with addition and scalar multipli-
cation defined in the natural way, and let N be the subspace of R
consisting of sequences that converge M-weakly to zero. Then

X= X(M)=R/N

is the required extension of X. The totality of M ensures that the
mapping J: X —> X, defined by

Jx = [(x)]

is one-to-one, so J embeds X isomorphically in X. We shall use x as
a general symbol for an element [(xn)] in X, but we shall also often
keep the notation x for an element of the form Jx.

The concepts of M-weak Cauchy sequence and M-weak convergence
carry over to X if the functionals in M are extended in the obvious
way:

ζx, my = lim (xn, my .
n-*oo

We shall say that X is (M-weakly) complete if every M-weak Cauchy
sequence is M-weakly convergent. In general X is not complete.

To obtain a counterexample, let X be the real vector space of
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continuous real-valued functions defined on the real line, with point-
wise addition and scalar multiplication. Then the set M of all linear
functionals δa, "evaluation at the point a", of the form

<a, δα> = x(a) ,

where a is a real number, and x(ά) denotes the value of the function
x at the point α, is total. The M-weak Cauchy sequences are in this
case sequences of continuous functions converging pointwise, and X(M)
can in a natural way be identified with the Baire class 1. M-weak
convergence in X(M) is then equivalent to pointwise convergence, and
it is well known that the Baire class 1 is not complete with respect
to this convergence.

The reason for the above construction of X is that it provides us
with a possibility of extending linear operators in a direct and simple
manner. Let A be a linear transformation from Xx into X2 and let
Aτ denote the transpose of A. Then if Mλ and M2 are total subspaces
of X{ and X{, respectively, and if Mλ is chosen so that it contains
ATM2, we may define A: X1(Mι) — X2(M2) by

ASS = [(Axn)] .

The equality (Axn, m2> = ζxn, Aτm2y implies that the definition is
consistent.

Our main objective is to extend linear operators to complete spaces.
We have therefore tried (without success) to find a general classifica-
tion of the sets M for which X(M) is complete. It is easy to prove
that this is the case if M is spanned by at most denumerably many
functionals, but this is of no help as far as the applications we have
in mind are concerned. We can, however, achieve the desired result
for operators that are defined and closed in a Hubert space, and for-
tunately this is very often the case.

Before we turn to inner product spaces, let us just briefly mention
a topological formulation of the problem of completeness.

For an arbitrary subset S of Mf, we define ps S, the pseudo
M-closure of S, to be the set of all z in Mf for which there exists a
sequence (zn) in S such that lim^c, <m, zny = (m, 2> holds for all m in
M, and we say that S is M-closed if ps S = S. Note that ps A is
not necessarily M-closed, and that ps S and S(M) coincide only if M
is total regarded as a subset of Sf.

The set of M-closed subsets of Mf are the closed sets of a topology
of Mf. This M-topology is in general not linear, but it is translation
invariant, and scalar multiplication is continuous in the two variables
separately.

Since X(M) = ps X the question of M-weak completeness now
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becomes the question whether or not ps X is equal to the M-closure
of X. This would, for instance, be the case if the ikf-topology is a
metric topology, or if, in the terminology of [17], the topology for Mf

defined by the mapping S —> ps S satisfies axiom F.
From now on we assume that an inner product is defined on X.

We may then regard X as a dense subspace of a Hubert space H.
We shall use the standard notation (x, y) for the value of the inner
product of x and y in H. Any subset Y of H corresponds in a natural
way to a subset of X1', and as such it is total precisely if Y is dense
in H. For simplicity, we shall make no notational distinction between
Y and its natural embedding in Xf.

We shall consider extensions of H of the form X(Y), where Y is
dense in H. In this situation we use the notation (x, y) for (x, yy

(^lim^oo (xnt y)) and define (y, x) — (x, y). Whenever (hn) is a F-weak
Cauchy sequence in H we can choose a sequence (xn) in X with the
property that

lim (xn, y) = lim (hn, y)

for all y in Y. This means that the extensions (with respect to the
same Y) of all dense subspaces of a Hubert space are equivalent.
More precisely, if c denotes the natural embedding of X in Yf we
have cX{Y) = cfϊ{Y). The only difference between them is that an
equivalence class in H( Y) contains more sequences than the corresponding*
one in X(Y). It is by changing Y that we obtain essentially different
extensions.

To illustrate, we take for H the space L2(— co, oo), and for Y
the Schwartz class S [cf. 9]. If / is a locally square integrable func-
tion with the property that (1 + t2)~nf is in L\— oo, oo) for some
integer n, then there certainly exists an / in L2(S) such that

(/, g) = Γ f(t)g(t)dt
J-oo

holds for all g in S. Hence there is such an element in S(S) as well
[9, pp. 22-23].

If Z is a subset of Y, then any Y-weak Cauchy sequence in X
is also a Z-weak Cauchy sequence. But this does not imply that X(Z)
is larger than X(Y). No inclusion relation cX(Y)^cX(Z) exists, for
different elements in cX(Y) may correspond to the same element in
tX(Z). Note that cX(H) = cH since H is weakly complete, i.e. the
choice Y — H gives us no proper extension.

Let A be a linear transformation from X into iJ. If the domain
DA* of its adjoint A* is dense in H we may extend A to an operator
from X(Y) into H(Z) by taking for Z a dense subset of DA* and for
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Y any dense subset of H containing A*Z. If there exists a dense
subspace G of X with the property that both A and A* map G into
G, we can choose Y = Z = G to obtain an extension A: X(G) —> ί?(G).
Since cG = cX = cH, and Arc = Ax for all α? in X, it is only a formal
change to regard A as an operator from G(G) into G{G). But this
change enables us to give a direct definition of the extension A* of
An for % = 1, 2, •••. We can, in fact, extend any transformation B,
such that both B and 5* map G into G, to a transformation £ from
G into G by putting

Bx = [(Bxn)]

for each x = [(xn)] in G. It is clear that B satisfies {BY = 5%, and
{!?£, 7/) = (2c, B*y) holds for all ?/ in G. Also, I? is sequentially con-
tinuous in the sense that Bxn converges G-weakly to Bx whenever xn

converges G-weakly to x.

3* Extensions of linear operators in a Hubert space* The
terminology in this section follows [3,5]. Let {AJJU be a finite set
of linear operators with domain and range in a Hubert space H. By
a good element with respect to the set {AJ we shall mean an element
that is in the domain of any product of these operators and their
ad joints. We denote by G = GAl,A2,...,Am the subspace of H consisting
of all good elements with respect to {AJ. Thus any one of the trans-
formations Ai or Af, ί = 1, 2, , m, maps G into G. It might of
course happen that G contains only the zero element, but very often
G is dense in H. When this is the case we can define G = G(G)1 and
extend each transformation Ai—in fact each polynomial in these
operators and their ad joints—to this space. We shall refer to the
elements in G as generalized elements with respect to the set {AJ.
It turns out that G is complete if each transformation is closed in H.
In order to show this we equip G with a sequence of inner products
so that it becomes countably Hubert, with an adjoint that is congruent
to G.

THEOREM 1. Let Aiy i = 1, 2, « ,m, he a finite set of closed
linear operators with domain and range in a Hilbert space H. Assume
that the subspace G of good elements with respect to these operators
is dense in H. Then G is {G-weakly) complete.

Proof. For each nonnegative integer p, let Apk, k = 1, 2, , {2m)p,
denote the operators that appear in the expansion of (ΣΠ=i^ + A*)p.
Put

n (2m]P {2m)n

(x, 1/). = Σ Σ (4>Λ A,ky), and Gn = f) DA , for n = 0,1,2, . . .
p=0 fc=l k=l ft
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The verification that ( , )n defines an inner product on Gn is straight
forward, and it is clear that the norms || ||w = ( , )l/2 are nondecrea-
sing in G. We shall show that they are also compatible, and that Gny

with the inner product ( , ••)„, is a Hubert space.
Assume that (xu) is a Cauchy sequence in Gn+1 which—regarded

as a sequence in Gn—converges to x in Gn. Then {Ankxv)^λ converges
to Ankx in H for k — 1, 2, , (2m)*. The equality

II xu lli+i - II Xu Hi + ί 2 | Γ Σ ( I I A ^ a , ||2 + \\ AfAnkχv ||2)

shows that for each i = 1, 2, , m; A: — 1, 2, , (2m)%+1, the sequences
(AiAnfca?v)Γ=i and (A*AnkxJ)~=i are Cauchy sequences in H and converge
accordingly in H. Since each operator A< and A*, i — 1, 2, , m, is
closed, we conclude that & must be in Gn+1, and that (α?v) converges
to x in this space. It follows by induction that the norms are com-
patible, and that Gn is complete. Since

oo

G r —— ( I {jΓ>n

this implies that G is a countably Hubert space [3, Chapter I §3.2],
Now let i be the natural embedding of G in Gf, defined by

ζy, ex) = (y, x) for all y in G. Then £ certainly maps G into G'. Since
G' is weakly complete [3, Chapter I §5.6], and

<j/, ex) — lim <̂ τ/, cxn)
n—*oa

we conclude that c actually maps G into G'. All we have to do now
is to verify that e is onto G'. But we know [3, Chapter I, §4.3] that
for every xr in Gf there exists an integer n and an x in Gn for which

/ n (2m)P

<y,χ'> = (y,χ)n = (y,Σ> v

Σ

with Sϊ in G. This completes the proof of Theorem 1.
Whenever we speak of the space of good elements with respect

to a set of closed linear operators we shall mean the countably Hubert
space G constructed in Theorem 1. Note that if (xn) converges to
zero in G, then (A^J , i = 1, 2, - - ^ m , tends to zero as well. This
means that the restriction of each operator A* to G is continuous in G.

The last lines of the proof give us the following

COROLLARY. Let {A;}f=1 be a finite set of closed linear operators
in a Hilbert space H, and let G be the subspace of good elements
with respect to there operators. Then for every x in G there exist
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an index n and an element x in Gn such that

n (2m)P ^ n ^

tλS X j / i •*!• p fc Λ p fciV / i JL pds ,

where TQ = I and Tp+1 = Σ»*i (ATPA? + ΆfT.A,).

To illustrate, let {φu, v = 0, 1, 2, •} be an orthonormal basis in
a separable Hubert space H, and let (kv) be a sequence of positive
real numbers that tends monotonically to infinity. Define a "torsion
operator" A by letting the domain of A consist of all x ~ ΣΓ=o £χfP» in
H for which ΣίU I ^A |2 converges, and then take Ax = ΣΓ=o CvKpv+i-
A is closed, and G — GA consists of all x = Σ ^9, in ί ί for which
the sum

3̂  I k k k c I2

converges for all #>. A straightforward calculation shows that for any
y in G the operators Tp of the corollary above give

where the τ/s are real numbers satisfying

Thus for any x in G there exist an index n and an a; — Σ α^v in
such that for any y = Σ &̂ v i n G

Σ = Σ a
i/=0 v = 0

Putting y = φv we see that cv(w) = (if, 9?v), which means that

It follows from the inequalities for the r/s that

••• K

converges for some p.

4* Generalized elements with respect to a self-ad joint trans*
formation* The terminology in this paragraph follows [1]. Let T be
a self-adjoint operator in a Hubert space H, and let Eλ be the
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corresponding resolution of the identity. We adopt the convention that
Eλ_0 = Eλ. Functions of T are defined as in [1, §74], The good ele-
ments with respect to T are those for which the integral

I λ \nd(Eλx, x)
o

is finite for all natural numbers n. Gτ is dense in H since it contains,
for instance, the domain of the densely defined transformation exp \T\.
The sequence of inner products giving the topology in Gτ may be
defined by

(a, V)n = Σ (T*x, T*y) = (fn( T)x, fn( T)y),

where /n(λ) = (1 + λ2 + λ4 + + λ2w)1/2. We might here equally well
use any other sequence (fn) of real-valued and, say, continuous func-
tions satisfying

g /2(λ) rg . ^ fn(X) ^ fn+1(X) ^ .

and

lim I λ |-nΛ(λ) = 1, rc = 1, 2, .
Hi-**

Whatever sequence of this type we choose, the integral

is finite for any y in Gτ and all natural numbers n and p. This means
that fn(T) maps Gτ into Gτ, and thus the corollary of Theorem 1
takes the form: x is a generalized element with respect to T if and
only if x — fn(f)x for some natural number n and some x in H.

Countably Hubert spaces that are perfect or nuclear have several
interesting properties [cf. 3 and 5]. There is a very simple classifica-
tion of the GΓ-spaces that have these properties: Gτ is perfect if and
only if the resolvent operator Rλ — (λ — Γ)"1 is compact for some λ,
and Gτ is nuclear if and only if Rλ

n is of Hilbert-Schmidt type for
some λ and some natural number n.

THEOREM 2. Gτ is perfect if and only if T has a pure point
spectrum with no finite limit point, and Gτ is nuclear if and only
if it is perfect and in addition

Σ

converges for some p, where mv is the multiplicity of the character-
istic value Xu.
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Proof. We shall first show that Gτ cannot be perfect if the
spectrum of T has a limit point at a finite value of λ, say λ0. For
if this is the case then the projection Eλz — EXl, where Xλ < λ0 < λ2,
is of infinite rank, which means that we can choose an infinite ortho-
normal sequence (yv) = ((Eχ2 — Eλ^xυ) in H. The set B — {yv} can
obviously contain no accumulation point in H— much less in Gτ. But
B is bounded in Gτ since

\l == \\fp(T)yu ||2 - Γ S | / , ( λ ) \2d\\EλVv ||2 ^ m a x | / , ( λ ) |2 = Kp

so Gτ is not perfect.

Now assume that T has a pure point spectrum with the only limit
point at infinity. Choose a number μ in the resolvent set of T and
put S = S(T) — c(T — μl), where the constant c is chosen so that
S(λ) is greater than one for all λ in the spectrum of T. We may then
consider the inner products in Gτ defined by (x, y)n = (Snx, Sny). Thus
if B is a bounded infinite subset of Gτ containing the sequence (xu),
we know that for each n the set {|| Snxv ||}Γ=i is bounded. Taking
n = 1, and noting that S"1 is compact, we conclude that (xu) must
contain a subsequence (xOu) converging in H to x0, say. And if we
take n = 2 it follows that (SxOu) contains a subsequence (Sxlu) that
converges in H. Since xlv converges to xQ and S is closed it follows
xQ is in Ds and that (Sxlv) converges to Sx0.

Continuing this process we obtain a sequence of subsequences
(βm/)Γ=i> w = 0, 1, 2, •••, with the property that (Snxnv) converges to
Snx0 in H. But then the diagonal sequence (xuu) converges to x0 in
Gτ, i.e. x0 is an accumulation point of B. We have now proved the
first part of the theorem.

As for the second part, we know that Gτ is perfect if it is
nuclear, so in this case T must have a point spectrum with infinity
as the only limit point. Denote the characteristic values by λM v =
0,1, •••, let {9>JΓ=o be a complete orthonormal set of characteristic
elements of Γ, and let μv be the characteristic value corresponding to
φv (several μ»'s may be equal). Put φ[n) = fή1(f^u)(Pu for n = 1, 2, .
Then {φln)}Γ=,o is an orthonormal basis for the Hubert space Gn of
elements in the domain of fn(T), with the inner product ( , «)n. But
for any nonnegative integers n and m, and any y in Gn, we have

( * ) y - Σ (v, <P»)ΦU = Σ 4 ? τ ^» ̂ w ))n^im )

Choosing m = 0 we see that the assuption that Gτ is nuclear implies
that ΣΓ=0 [Λί/^v)]"1 must converge for some p, which in turn implies
that
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Σ

converges. Conversely, if this condition is fulfilled we can for every
m find an n so that the sum

converges. It follows from (*) that Gτ is nuclear, and the proof is
complete.

Our next theorem states that any generalized element with respect
to T is the result of a repeated application of T to some element in H,
plus a good element having the character of a constant or near-
constant (with respect to T).

In some applications where T is a differential operator this
gives us a representation of Gτ as a class of derivatives, and it is
then often referred to as the "fundamental theorem of distribution
theory".

THEOREM 3. Any x in Gτ can be written as

X = fnXλ + X2 ,

where xλ is in H, x2 is in Gτ, and n is a natural number. We may
omit x2 if X = 0 is not in the spectrum of T. If X = 0 is an iso-
lated point of the spectrum we can as x2 take an element with
Tx2 = 0, and if X = 0 belongs to the continuous spectrum we may,
given any ε > 0, choose x2 so that \\ Tx2\\ < ε.

Proof. Let x = fn(f)x be an element of GT9 and let a be a posi-
tive number that is not a characteristic value of T. Define g(X) by

f/n(λ) if -a<XSa

(0 otherwise,

and h{\) by g{X) + Xnh{X) = fn(X). Then g(T) maps H into Gτ, and
h(T) maps H into if since it is a bounded transformation. But then

x - Λ ( 7 > = fnh(T)x + flf(Γ)aj = T*xx + ^2 ,

where xx is in if and x2 in GΓ. Since

II %2 II2 - Γ fn(^)d(Eλx, x ) , a n d || T ^ 2 1 | 2 = Γ Xψn(X)d(Eλx, x)

we see that x2 = 0 if [ — α:, α:] contains no point of the spectrum and
T#2 = 0 if the interval contains no other point of the spectrum than
λ = 0. Finally, if λ = 0 is in the continuous spectrum we can make
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|| Tx2\\ smaller than any given positive ε by choosing a small enough,
since

5* Extensions of functions of a self-ad joint transformation*
Any transformation u(T) which maps all of Gτ into Gτ can be extended
to Gτ in a direct manner by the definition u{T)x = [(u(T)xn)]. In this
case the simple relations u(T) + v(f) = (u + v)(f) and u{T)v(T) =
(uv)(T) follow automatically. A function c(T) that does not map Gτ

into Gτ can also be extended, but now the domain of the extension
becomes a proper subspace of Gτ. For the domain of c(T) we take
all x in Gτ that are of the form fn{T)x with x in the domain of c(Γ),
and for such x we define

c(T)x = fp(T)c(T)x .

Here the domain of c(T) contains no element in i ϊ that is not already
in the domain of c(T), so there is nothing particularly good about the
elements in Gτ as far as c(T) is concerned. In order to extend c(T)
to H we should instead consider the good elements with respect to
this transformation.

The following theorem provides a classification of those transfor-
mations that can be extended to all of Gτ, and also of those whose
extension maps all of Gτ back into Gτ.

THEOREM 4. Let u be a complex valued function of a real vari-
able λ, — oo < x < oo. Introduce the conditions

(i) u is locally L2

σ for all σ(X) — (Eλx, x) with x in H,
(ii) the essential limit of \X\pu(X) as X tends to infinity on the

spectrum of T is zero.
Then the following holds true:

(a) The transformation u( T) maps Gτ into Gτ if and only if u
satisfies (i), and (ii) for some (negative) integer p.

(b) The transformation u{T) maps Gτ into Gτ if and only if
u satisfies (i), and (ii) for all integers p.

Proof. We prove statement (b) first. If u(T) maps Gτ into Gτ,
then (fpu)(T) is a bounded transformation from H into H for any
p = 0,1, 2, . This means that u must be in all the L2

σ's in ques-
tion and that | X \p u(X) is bounded for all p and therefore converges to
zero for all p when | λ | —> oo. Conversely, assume that these condi-
tions hold and let x = [(xn)] be any element in Gτ. Then Xvu(X) is
bounded for all p and therefore the transformation Tvΰ(T) maps H
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into Gτ for p = 0,1, 2, . But then

lim (Tpu(T)xn, z) = lim (xn, Tpΰ(T)z)

exists for any z in H. Since if is weakly complete it follows that
Tpu(f)x is in H for all p, i.e. that %(Γ)2 is in Gτ.

As for the statement (a) the "if" part is obvious. To prove that
the given conditions are also necessary we first note that if there exists

I u(X) |2 d(Eλx, x) does
a

not exist, then the good element (Eβ — Ea)x is not in the domain of
u(T), so this transformation cannot map Gτ into Gτ.

Finally, if X~pu(X) does not essentially converge to zero with
respect to some σ(X) as λ-^+oo for any integer p, we can inductively
choose sets Sk of positive σ-measure on the positive real axis, each
one to the right of the preceding ones, so that | u(X) \ > Xk on Sk.
But then

v(X)
^ on \JSk

0 otherwise

has the property that Xpv(X) converges to zero as X tends to infinity
for all p, so v(T) maps H into Gτ. But u(T)v(T) is unbounded, so
its domain cannot be all of H. This means that u(T) cannot be de-
fined on all of Gτ, and the proof is complete.

It is easy to check that the extension Eλ of the resolution of the
identity associated with T is also a resolution of the identity. It
follows, for instance, from the representation x = fn(T)x that Eλ

converges (weakly) to the identity transformation on Gτ, since

lim (Eλχ, y) = lim (Eλx, fn(T)y) = (Z, y).

The verification that Eλ is of the same type as Eλ, in the sense that
they are both constant, of continuous growth, or discontinuous at the
same values of λ, presents no problem.

These observations indicate that T is a natural extension of T.
It turns out that most anything that can be said about T in H in
fact also holds for T in Gτ. The price we pay is, of course, that it
holds only Gτ-weakly. We now proceed to give some additional support
to this statement, and begin by nothing that f and T have the same
characteristic values and the same characteristic vectors. Clearly
Tx = Xx in H implies that fx = Xx in Gτ. Conversely, assume that
Tx — Xx holds in Gτ. Choosing n in the representation x = fn(T)x so
large that x is in the domain of T we then have ((T — X)x, fn(T)y) = 0



ON GENERALIZED ELEMENTS WITH RESPECT TO LINEAR OPERATORS 61

for all y in Gτ. Since fn(T) has a bounded inverse mapping Gτ into
Gτ this means that (Tx — Xx, y) — 0 for all y in Gτ, i.e. that Tx = λ£
in if. So X is a characteristic value of T, and x is a corresponding
characteristic element. But then x is in Gτ and x = /w( T)cc = /n(λ)#
is, of course, also a characteristic element.

Now the theorem [5, Ch. I, §4.5 Th. 5'] stating that any self-adjoint
transformation in a rigged Hubert space has a complete system of
characteristic elements (in the weak sense we are discussing) implies
that Gτ cannot be nuclear unless T already has a complete set of
characteristic elements in H (cf. Theorem 2). Although the extension
of T to Gτ introduces no new characteristic elements, we may of course
get such elements if we extend transformations mapping Gτ into Gτ

that are not functions of T. [Example 2, § 6].
We also note that if E(Δ) = Eλ - Eμ (or =Eλ+0 - Eλ), then E(Δ)

and E(Δ) have the same range. In fact, for any y in the range of
E(Δ) we have

y = E(Δ)x = E(Δ)E(A)x = E(A)z ,

where z is in Gτ. Moreover, μ is a point of continuity of Eλ if and
only if f — μϊ is one-to-one and also a point of constancy if and only
if the range of T — μΐ is all of Gτ. The direct construction of
operator Stieltjes integrals as a limit of Stieltjes sums [cf. 1] carries
over from H to Gτ. In fact, let (Sn) be a sequence of Stieltjes sums

converging (strongly) in H to I c(X)dEλ, and let Sn be the sum obtained

by changing E(Δk) to E(Δk). Then Sn maps Gτ into Gτ, and (SJc) is

a GΓ-weak Cauchy sequence. Letting [(Snx)] define I c(X)dEλx we have

βc(X)dEλx = c(T)(Eβ ~ Ea)x

and thus also

Theorems of the type: "a; is in the domain of c(T) if and only if c
is in L2

σ with σ(λ) = (Eλx, x)" may be formulated in Gτ with the slight
modification that we have to use σ(X) — ((Eλ — E0)x, x) instead. It is
then easily verified that x is in the domain of c{T) if and only if c/"1

is in LI for some n.
Finally, the realization of H as a direct integral of Hubert spaces

in which T corresponds to multiplication by the "independent variable"
give us a realization of Gτ as a space of generalized elements with
respect to multiplication. Let us just mention a few results in the
special case when T is cyclic (i.e. has a simple spectrum). Then any
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generating element h in H is also a generating element in Grτ, and so
is (? = fp(T)h for any 29, meaning that to any 3; in Gτ there corre-
sponds a transformation c(T) such that 2c — c(T)g. In fact, 2c = fn(T)x
and x - φ(T)h imply that £ = (fnφf^ι)(f)fp(T)h = c(2*)fc

The mapping 2c —> c(λ) gives us the desired realization of Gτ as
the space of generalized elements with respect to the transformation
A in LJ, where σ(X) = ((Eλ — E0)g, g) and A is defined by (Ac)(X) =
λc(λ). It is easy to verify that

c(f)geGτ<=>ceGΛ

c(f)geGτ<=>ceGΛ.

The first statement, for instance, is true because c(T)geGτ^> g is in
the domain of c(T) <=* cf~ι e L\ for some n<=^ ceGΛ.

The point of interest here is that we may choose the generating
element g in Gτ in such a way that σ becomes normalized, in the
sence that it has the jump 1 at each point of discontinuity and increases
like X at all points of continuous increase. This can, in fact, be
done whenever there is a generating element h in H for which

M*fi(μ)d(Eμh,h)
X Jo

increases to infinity with λ for some n. Such normalizing generating
elements have sometimes been introduced as "improper elements". [Cf.
1, §77 where the normalizing generating elements for the transfor-
mations multiplication by t and i(djdt) in L2(—00, 00) are adjoined to
this space].

When σ is normalized it is appropriate to refer to the mapping
identifying Gτ and GΛ as the Fourier transform [Example 3, § 6],
The equality

(x, y) - (c(f)g, b(T)g) = \~j(X)b(X)dσ(X)

holding for any x = c(f)g in GΓ, and any y = b(T)g in Gτ generalizes
ParsevaPs relation. In particular the "coefficient function" c in x =
c(T)g satisfies the relation

6* Examples* We conclude this paper with a few applications
of the results obtained above.

EXAMPLE 1. Let H be a separable Hubert space, and T a self-
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adjoint transformation in H with a simple spectrum having infinity
as the only limit point. The points of the spectrum are denoted by
λv, v = 1, 2, , and the corresponding normalized characteristic ele-
ments by φ». They form a complete orthonormal set in H. We may
regard this set as given, and then define T in the following manner:
Choose any sequence (Xv) of real numbers such that | λv | tends to in-
finity with v, then take for Dτ all x in H for which Σ | Xv(x, φv) |2

converges, and put Tx = Σ X^x, φu)φu for such x. According to Theo-
rem 2, Gτ is perfect. It is also nuclear if Σ j λv \~n converges for
some n.

The normalizing generating element in Gτ is § r =ΣΓ=i < P^ &nd
σ(χ) = ((Eλ — EQ)g, g) is a montonically increasing step function that
is zero at λ = 0 and has the step one at each characteristic value \ .
The representation c(T)x = \ c{X)dEλx here takes the form

c(T)x = Σ 4 , P ^ > M

meaning that

(c(T)x, y) = Σ c(λp)(flcf ^ ) ( ^ , 2/)

holds for all 2/ in G>. The representation x == fn(T)x tells us that if
x is in Gy then

Σ i X~n(x, φv) |2

converges for some n, and, conversely, that Σ cvΦ» is in Gτ if Σ I V X I2

converges for some n. This can be interpreted as a summation method
for certain divergent series in H. The coefficient sequence (cv) is, in
the terminology of §5, the inverse Fourier transform of X c ^ v .

EXAMPLE 2. Let q be a real valued, positive, infinitely differen-
tiable, and even function of ί, —oo < £ < co, that increases to infinity
with t. Let T be the self-adjoint transformation —(d2/df) + q with
domain and range in L\— oo, oo). Then T is of the type considered
in Example 1, and Gτ is nuclear. Assuming that q satisfies a few
additional conditions, not affecting its rate of increase [6, 7], it can
be verified that Gτ is identical with the space of good elements with
respect to the two operators differentiation and multiplication by q in
L2, and that it also coincides with the space K{MP}, with Mp = qp,
defined by [cf. 3]

= {v;(Q(t))p^eL*(-o*,oo) for n ^ V, V - 0, 1, 2, ...} .



64 MAGNUS GIERTZ

The choice q(t) = t2 is of special importance since the characteristic
elements (the Hermite functions φu, y = 0,1, 2, •••) are then also
characteristic elements of the Fourier transform. In this case the space
Gτ is identical to the Schwartz class S, and the representation

x =

gives us an expansion of the generalized functions in S in series of
Hermite functions [8, 21, 22].

Let us now for a moment consider the operators P, Q, and U,
where P and Q are the self-adjoint transformations i(d/dt) and multi-
plication by t with suitable domains in L2(—oo, oo), and U is the
Fourier-Plancherel transformation. They all map Gτ into Gτ. Neither
P nor Q has any characteristic elements in L2(—oo, oo), but any real
number λ is a characteristic value of their extensions P and Q to Gτ.
The corresponding characteristic vectors are, respectively,

L V 7i

The resolutions of the identity associated with P and Q do not map
Gτ into Gτ, so they cannot be extended to all of Gτ. The extension
U of the Fourier transform to Gτ has the same characteristic values
as U does, namely the solutions of λ4 = 1. But we do obtain additional
characteristic vectors. Each element x of the form

= 0, 1, 2, 3,

where ΣΓ=o I (2v + l)~nc4v+k |2 converges for some n, is a characteristic
vector corresponding to the characteristic value ( — ί)k. The represen-
tation of an arbitrary element x in Gτ as the sum of four characteristic
elements of U thus carries over from L2 to Gτ = S [15, §113]. The
resolution of the identity El belonging to U maps Gτ into Gτ, since
it is composed of third degree polynomials in U. However, the range
of E'(Δ) is, as we have just seen, not equal to that of E'(Δ).

EXAMPLE 3. Let P be the self-ad joint transformation corresponding
to the differential operator i(d/dt) with domain and range in L\— oo, oo)
—i.e. restricted to those functions which are absolutely continuous on
any finite interval. The spectrum of P is simple, and consists of the
entire real axis, so GP is not perfect. Among the elements in GF we
find <5-functions, in fact
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has the property (x, δa) = x(a).
For any real numbers a and β the projection E(Δ) = Eβ — Ea

maps GP into GPi and the value of the good function E(Δ)x at the
point t is given by (E(Δ)x)(t) = (x, zt), where zt is the good function

pίβ(t-s) _ pieces)

zt(a, β,s)=e e

2πi(t - s)

To see this, we note that certainly (E(Δ)y)(t) = (y, zt) holds for any
y in GP [1, §77], and thus

(y, zt) = {E{A)y, δt) - (y, E(Δ)δt)

implies that zt(a, β, s) — (E(Δ)δt)(s). But this proves our statement
since (E(Δ)x)(t) = (E(Δ)x, δt) = (x, zt).

The function e~μι is a generating element in L2, so

is also a generating element. It normalizes σ(X) = ((Eλ — E0)g, g) since

{{Eλ - E0)g)(t) = V2Ξzt(0, λ, 0) - β ~ ^ ~ }

implies that σ(X) = λ. So in this case L2

σ = L2(—oof oo).
Thus every x in GP has the form x = c(T)g, where

c(X)\

X2n
-dX

converges for some n.
The relations

*=

and

4r@> & 30)g) (af,
dλ v 2 π dλ V —%t

which when x is in L2 correspond to the Fourier-Plancherel transfor-
mation and its inverse, provide an extension of this transformation
and its inverse to the generalized elements with respect to A and P in
L 2 ( - oo, oo). The classifications c(f)geGP^c e GΛ and c(f)geL2*=>c e L2

correspond to well-known theorems about Fourier transforms.

EXAMPLE 4. Let Tλ and T2 be the differential operator i(d/dt)
restricted to those absolutely continuous functions x in U( — a, a) which
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have their derivative in this space, and satisfy x(a) = —x(—a) and
x(a) = x( — a) respectively. Both transformations are self-ad joint and
have a discrete and simple spectrum. The characteristic values for
TΎ are λn = (π/a)(n + (1/2)) and for T2 they are μn = (π/a)n, n =
0. ± 1 , ±2, •••. The corresponding normalized characteristic vectors
are φn = (l/τ/2α)e ~w«* and ψn = (l/V2ά)e-*μ*t. Both GTι and GTz are
nuclear. The second of these spaces is the space K(a) of periodic
infinitely differentiable functions of period 2a [5, Ch. I, §3.6],

To illustrate Theorem 3 we note that any x = X c*Φ» i n GTl can
be written as x = Γ̂ a?, where α? = Σ G^K%ζPv is in if for sufficiently
large w, and every x = Σ CVΨΊ, in Gr2 has the form x = T2xx + x2

where x2 = coψQ is in Gτ% and a?! = Σv^o cv\~nψv is in H.
Finally, we make the observation that as a rule Tx and T2 give

different results even if they operate on a differentiable function x
in U and that neither Tλx nor Γ2# is equal to i(dx/dt). We have, in
fact,

dt

and

Γ2α; = — ί(x(a) ~ x( — a))δa + i —— .

In general, the extension to U of a differential operator with boundary
conditions remembers these conditions. This fact is useful in some
applications, and it supports the statement that T is a natural exten-
sion of T.

The author is indebted to the referee for improvements in the
presentation and terminology of the note concerning completeness on
page 51.
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