A topological semigroup S is a Hausdorff space together with a continuous associative multiplication on S. A semigroup S is said to be uniquely divisible if each element of S has unique roots of each positive integral order in S. The present paper concerns uniquely divisible semigroups on the two-cell.

The main result of this paper is a statement of equivalent conditions for a commutative uniquely divisible semigroup on the two-cell to be the continuous homomorphic image of the cartesian product of two threads. This result is applied to determine the structure of commutative uniquely divisible semigroups on the two-cell whose idempotent set consists of a zero and an identity.

A U-semigroup is a semigroup which is isomorphic (topologically isomorphic) to the real unit interval $[0, 1]$ under usual multiplication. A thread is a semigroup on an arc such that one endpoint is a zero and the other endpoint is an identity.

For a semigroup S, $E(S)$ denotes the set of all idempotent elements of S. The statement "$E(S) = \{0, 1\}$" means that the only idempotents of S are a zero (0) and an identity (1).

Throughout this paper N denotes the set of all positive integers and R denotes the set of all positive rational numbers. Hereafter the statement "S is an UDS" means that S is an uniquely divisible topological semigroup.

If S is an UDS, $x \in S$, and $n \in N$, then $x^{1/n}$ denotes the unique nth root of x in S. If $r \in R$, $r = m/n; m, n \in N$, and $x \in S$, then $x^r = (x^{1/n})^m$. It is not difficult to show that x^r is unique for each $r \in R$. Define $[x] = \{x^r; r \in R\}^*$ (closure in S).

2. Preliminary results.

Theorem 2.1. Let S be a compact UDS such that each subgroup of S is totally disconnected. Then, for each $x \in S \setminus E(S)$, $[x]$ is a U-semigroup.

Proof. Let H denote the maximal subgroup of $[x]$ containing the identity (e) of $[x]$, and let K denote the kernel (minimal ideal) of $[x]$. Then H and K are connected subgroups of S. Hence $H = \{e\}$ and $K = \{f\}$, where f is the identity of K.

There exists a continuous one-to-one homomorphism σ from the
additive nonnegative real numbers \bar{R} into $[x]$ such that $[x] = H\sigma(\bar{R})^*$ (closure in $[x]$) [4, Theorem 3.1]. Since $H = \{e\}$, $[x] = \sigma(\bar{R})$. Note that $\sigma(\bar{R})^*\sigma(\bar{R}) = \{f\}$ [4, Theorem 3.1].

Let $I = [0,1]$ under usual multiplication. Define $\psi: [x] \rightarrow I$ by $\psi(f) = 0$ and $\psi(p) = \exp(-\sigma^{-1}(p))$ if $p \neq f$. Then ψ is an isomorphism of $[x]$ onto I.

Corollary 2.2. Let S be a compact semigroup such that each subgroup of S is totally disconnected. Then S is an UDS if and only if each point of $S\setminus E(S)$ lies on an unique U-semigroup in S.

Corollary 2.3. Let S be a semigroup on the two-cell. Then S is an UDS if and only if each point of $S\setminus E(S)$ lies on an unique U-semigroup in S.

3. Uniquely divisible semigroups on the two-cell. Throughout this section S denotes an UDS with identity (1) on the two-cell and B denotes the boundary of S. Note that $1 \in B$ [10]. If S has a zero (0) and $0 \in B$, then B_1 and B_2 denote the boundary arcs from 0 to 1 in S. Thus $B = B_1 \cup B_2$ and $B_1 \cap B_2 = \{0,1\}$.

Lemma 3.1. If S has a zero (0) and each point of $E(S)$ lies on a thread in S containing 1, then each point of S lies on a thread in S from 0 to 1.

Proof. Since $0 \in E(S)$, there exists a thread T from 0 to 1 in S. Let $e \in E(S)$. Then there exists a thread T_e from e to 1 in S. Now eT is a thread from 0 to e in S. Thus $eT \cup T_e$ contains a thread $T(e)$ from 0 to 1 in S such that $e \in T(e)$. Hence, if $e \in E(S)$, then e lies on a thread $T(e)$ from 0 to 1 in S.

Let $x \in S\setminus E(S)$. Then, by Corollary 2.3, x lies on an unique U-semigroup I in S. Let z denote the zero of I and u the identity of I. Since $z, u \in E(S)$, there exists threads $T(z)$ and $T(u)$ from 0 to 1 in S such that $z \in T(z)$ and $u \in T(u)$. Thus $T(z) \cup I \cup T(u)$ contains a thread T^i from 0 to 1 in S such that $x \in T^i$.

Lemma 3.2. If $E(S) = \{0,1\}$, then $0 \in B$.

Proof. Suppose $0 \notin B$. Let $x \in B\setminus E(S)$. Then $B\setminus [x] \neq \emptyset$. Let $p \in B\setminus [x]$. Since $[x] \cap B$ is closed, there exists a point y in the arc from p to x on B which does not contain 1. Then $[y]$ must meet $[p]$ or $[x]$ in a point q not in $E(S)$. Thus q lies on two distinct U-semigroups in S. This is a contradiction to Corollary 2.3. Hence $0 \in B$.
Lemma 3.3. Suppose S has zero (0) and $0 \in B$. If each of B_1 and B_2 is a thread, then $S = B_1 B_2 = B_2 B_1$.

Proof. Now $1 \in B_1 \cap B_2$. Hence $B \subset B_1 B_2$. Define $\varphi : B_1 B_2 \to S$ by $\varphi((b,b_2,1)) = b b_2 b$. Then φ is continuous, $\varphi((b,b_2,0)) = 0$, and $\varphi((b,b_2,1)) = b b_2$. Hence $B_1 B_2$ is contractible, and thus $S = B_1 B_2$. Similarly, $S = B_2 B_1$.

Lemma 3.4. Suppose S has a zero (0) and $0 \in B$. If each point of S lies on a thread from 0 to 1 in S, then each of B_1 and B_2 is a thread.

Proof. Let x and y be distinct points of $B_1 \setminus \{0,1\}$ such that y separates x from 1 on B_1. Suppose $[x] \neq [y]$. Let T_1 and T_2 denote threads from 0 to 1 in S containing x and y respectively. Then, since y separates x from 1 on B_1, $T_1 \cap T_2$ contains an idempotent f such that $xf = x$ and $fy = f$. Hence $xy = (xf)y = x(fy) = xf = x$. Thus, if y separates x from 1 on B_1 and $[x] \neq [y]$, then $xy = x$.

If $B_1 \setminus E(S) = \emptyset$, then the fact that B_1 is a thread follows from the preceding paragraph. Suppose $B_1 \setminus E(S) \neq \emptyset$. Let $z \in B_1 \setminus E(S)$. Then there exists a U-semigroup I in S such that $z \in I$. Let a be the zero of I and b the identity of I. Let M be the component of $I \cap B_1$ containing z, $h = \inf M$, and $g = \sup M$ in the cut-point ordering ($<$) of B_1 from 0 to 1. Since $h = \inf M$, there exists a sequence $\{h_n\}$ of points of $B_1 \setminus I$ such that $h_n < h$ for each $n \in N$ and $h_n \uparrow h$. Thus, by the preceding paragraph, $h_n h = h_n$ for each $n \in N$. Since multiplication is continuous in S, $h_n h \to h^2$. Hence $h = h^2$. Since $h \in I$, $a = h$. Similarly, $g = b$, and hence $I \subset B_1$. Thus B_2 is a thread. Similarly, B_2 is a thread. This completes the proof of Lemma 3.4.

A commutative UDS S can be considered to be a generalization of a semilattice (a commutative idempotent semigroup). Indeed, if $S = E(S)$, then S is a semilattice. Consequently, Theorem 3.5 is a generalization of Theorem 3 in [1].

If S is commutative, then the kernel K (the minimal ideal) of S is a compact connected group. Hence K is either the circle group C or a point. It is not difficult to show that K is uniquely divisible. Thus, since C is not uniquely divisible, K is a point. Hence, if S is commutative, then S has a zero (0).

Theorem 3.5. If S is commutative and $0 \in B$, then these are equivalent:

(i) each point of $E(S)$ lies on a thread in S containing 1;
(ii) each point of S lies on a thread from 0 to 1 in S;
(iii) each of B_1 and B_2 is a thread;
(iv) \(S \) is the continuous homomorphic image of the cartesian product of two threads.

Proof. (i) implies (ii). [Lemma 3.1].

(ii) implies (iii). [Lemma 3.4].

(iii) implies (iv). By Lemma 3.3, \(S = B_1B_2 \).

Define \(\psi : B_1 \times B_2 \to S \) by \(\psi((b_1, b_2)) = b_1b_2 \). Then \(\psi \) is a continuous homomorphism onto \(S \).

(iv) implies (i). Let \(I_1 \) and \(I_2 \) be threads and \(\varphi \) a continuous homomorphism of \(I_1 \times I_2 \) onto \(S \). Let \(g \in E(S) \) and \(p \in \varphi^{-1}(g) \). Then there exists a thread from \((0, 0)\) to \((1, 1)\) in \(I_1 \times I_2 \) containing \(p \).

Hence, by Theorem 2 of [3], \(\varphi(T) \) is a thread in \(S \) containing \(g \) and 1.

Corollary 3.6. If \(S \) is commutative and \(E(S) = \{0, 1\} \), then \(S \) is isomorphic to \((I_1 \times I_2)/J \), where \(I = [0, 1] \) is a U-semigroup and \(J \) is the ideal \(\{(x, y): x = 0 \text{ or } y = 0\} \).

Proof. By Lemma 3.2, \(0 \in B \). By Theorem 1 in [7], there exists a thread from 0 to 1 in \(S \). Therefore, by Theorem 3.5, each of \(B_1 \) and \(B_2 \) is a thread, and thus are U-semigroups. The map \(\psi : B_1 \times B_2 \to S \) defined by \(\psi((b_1, b_2)) = b_1b_2 \) is a continuous homomorphism of \(B_1 \times B_2 \) onto \(S \).

Suppose \(\psi((b_1, b_2)) = 0 \). Then \(b_1b_2 = 0 \). Suppose \(b_1 \neq 0 \neq b_2 \). Then, for each \(n \in N \), \(b_1^{1/n}b_2^{1/n} = 0 \). But \(b_1^{1/n} \to 1 \) and \(b_2^{1/n} \to 1 \). Thus \(1 = 0 \).

This contradiction implies that either \(b_1 = 0 \) or \(b_2 = 0 \). Hence \(\psi((b_1, b_2)) = 0 \) if and only if \((b_1, b_2) \in J \).

Suppose \(\psi((a, b)) = \psi((c, d)) \), \((a, b), (c, d) \in (B_1 \times B_2)/J \). Then \(ab = cd \). Since \(B_1 \) and \(B_2 \) are U-semigroups, there exist \(p \in B_1 \) and \(q \in B_2 \) such that one of the following cases hold:

(i) \(a = cp \) and \(b = dq \);

(ii) \(a = cp \) and \(d = bq \);

(iii) \(c = ap \) and \(b = dq \);

(iv) \(c = ap \) and \(d = bq \).

We will assume that case (i) holds. The proof for the other cases is similar. Thus we have \(cp \cdot dq = cd \). Hence \((pq)(cd) = cd \). Let \(x = pq \) and \(y = cd \). Then \(xy = y \). Hence, for each \(n \in N \), \(x^ny = y \). If \(x \neq 1 \), then \(x^n \to 0 \). Thus, if \(x \neq 1 \), then \(y = 0 \), and hence \(cd = 0 \).

By the preceding paragraph, either \(c = 0 \) or \(d = 0 \). But \(c \neq 0 \neq d \). Hence \(x = 1 \) and \(pq = 1 \). Then for each \(n \in N \), \(p^nsq^n = 1 \). If \(p \neq 1 \), \(p^n \to 0 \), and hence \(0 = 1 \). Similarly, if \(q \neq 1 \), then \(0 = 1 \). This contradiction implies that \(p = q = 1 \). Thus \(a = c, b = d \), and \((a, b) = (c, d) \).

Hence \(\psi \) is one-to-one on \((B_1B_2)/J \), thus completing the proof of the corollary.
REFERENCES

Received January 27, 1966. This paper contains part of a doctoral dissertation written under the direction of Professor D. R. Brown while the author held a National Aeronautics and Space Administration graduate fellowship.

THE UNIVERSITY OF TENNESSEE
KNOXVILLE, TENNESSEE
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. J. C. Baker, A spherical Helly-type theorem</td>
<td>1</td>
</tr>
<tr>
<td>Robert Morgan Brooks, *On locally m-convex -algebras</td>
<td>5</td>
</tr>
<tr>
<td>Lindsay Nathan Childs and Frank Rimi DeMeyer, On automorphisms of separable algebras</td>
<td>25</td>
</tr>
<tr>
<td>Charles L. Fefferman, A Radon-Nikodym theorem for finitely additive set functions</td>
<td>35</td>
</tr>
<tr>
<td>Magnus Giertz, On generalized elements with respect to linear operators</td>
<td>47</td>
</tr>
<tr>
<td>Mary Gray, Abelian objects</td>
<td>69</td>
</tr>
<tr>
<td>Mary Gray, Radical subcategories</td>
<td>79</td>
</tr>
<tr>
<td>John A. Hildebrant, On uniquely divisible semigroups on the two-cell</td>
<td>91</td>
</tr>
<tr>
<td>Barry E. Johnson, AW-algebras are QW-algebras</td>
<td>97</td>
</tr>
<tr>
<td>Carl W. Kohls, Decomposition spectra of rings of continuous functions</td>
<td>101</td>
</tr>
<tr>
<td>Calvin T. Long, Addition theorems for sets of integers</td>
<td>107</td>
</tr>
<tr>
<td>Ralph David McWilliams, On w-sequential convergence and quasi-reflexivity*</td>
<td>113</td>
</tr>
<tr>
<td>Alfred Richard Mitchell and Roger W. Mitchell, Disjoint basic subgroups</td>
<td>119</td>
</tr>
<tr>
<td>John Emanuel de Pillis, Linear transformations which preserve hermitian and positive semidefinite operators</td>
<td>129</td>
</tr>
<tr>
<td>Qazi Ibadur Rahman and Q. G. Mohammad, Remarks on Schwarz’s lemma</td>
<td>139</td>
</tr>
<tr>
<td>Neal Jules Rothman, An L₁ algebra for certain locally compact topological semigroups</td>
<td>143</td>
</tr>
<tr>
<td>F. Dennis Sentilles, Kernel representations of operators and their adjoints</td>
<td>153</td>
</tr>
<tr>
<td>D. R. Smart, Fixed points in a class of sets</td>
<td>163</td>
</tr>
<tr>
<td>K. Srinivasacharyulu, Topology of some Kähler manifolds</td>
<td>167</td>
</tr>
<tr>
<td>Francis C.Y. Tang, On uniqueness of generalized direct decompositions</td>
<td>171</td>
</tr>
<tr>
<td>Albert Chapman Vosburg, On the relationship between Hausdorff dimension and metric dimension</td>
<td>183</td>
</tr>
<tr>
<td>James Victor Whittaker, Multiply transitive groups of transformations</td>
<td>189</td>
</tr>
</tbody>
</table>