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Let S be a subset of a completely regular Hausdorff space
X. Saufficient conditions on S and X are obtained for the
ring of continuous real-valued functions on S to be isomorphic
to an inverse limit of quotient rings of the ring of continuous
functions on X, or, alternatively, of the ring of bounded con-
tinuous functions on X. An application to the theory of rings
of quotients of rings of continuous functions is given.

A decomposition spectrum of a set with some kind of structure
is an inverse system of quotient structures of the same type. Decom-
position spectra have been discussed recently by various authors: For
topological spaces by Flachsmeyer [2], Pasynkov [4], and Vegrin [6];
and for ordered sets by Rinow [5]. Vegrin also considers briefly
decomposition spectra of rings of continuous functions; however, the
question he investigates is different from those considered here.

DEFINITION. A decomposition spectrum of a ring A is an inverse
system of quotient rings of A.

The ring of all continuous real-valued functions on a completely
regular Hausdorff space X will be denoted by C(X), and the subring
of bounded functions by C*(X).

The inverse limit of a decomposition spectrum of a ring is, of
course, a ring. In the papers on decomposition spectra mentioned
above, it often turns out that the inverse limit is an extension of the
original structure (topological space or ordered set). Now if S is a
subset of X, C(S) is often an extension of C(X); and C(X) is always
an extension of C*(X). This suggests the following questions: (1)
For a subset S of X, when is C(S) isomorphic to the inverse limit of
some decomposition spectrum of C(X)? (2) When is C(X) isomorphic to
the inverse limit of some decomposition spectrum of C*(X)?

The first question has the trivial answer: When S is C-embedded
in X, that is when every function in C(S) can be extended to a
function in C(X); for then, in fact, C(S) is isomorphic to a quotient
ring of C(X), since the restriction mapping is a homomorphism onto
C(S). (This observation also leads naturally to the first question.)
So some particular answers are: When S is compact, or when S is
closed and X is normal, or when S is open-and-closed. The second
question has the trivial answer: When X is compact; for in that case,
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C(X) = C*(X). We show below that there are some nontrivial
answers to both questions.

For any fe C(X) and any subset B of X, the restriction of f to
B will be designated by f| B, and the image of B under f will be
written f[B]. The constant function in C(X) whose value is » will
be denoted by r, and the greatest lower bound of f and g in the
lattice C(X) will be symbolized by f A g. When we say that a
collection {B,} of subsets of a space Y containing a point p determines
the topology of Y at p, we mean that if f is a real-valued function
on Y and f| B, is continuous for all B,, then f is continuous at p.

The following lemma is used in obtaining all of our results on
decomposition spectra. A parallel statement to the one given explicitly
is indicated by the symbols in square brackets.

LEMMA. Let S be a subset of a completely regular Hausdorff
space X. Suppose there exists a collection {T,} of subsets of S with
the following properties:

(1) {T,} is closed wunder finite unions;

(2) For each pe S, the collection of all sets in {T,} containing
p determines the topology of S at p;

(38) For each feC(S) and each T,, the function f|T, can be
extended to a function in C(X) [C*(X)].

Then C(S) is isomorphic to the inverse limit of a decomposition
spectrum of C(X) [C*(X)].

Proof. One obtains the proof of the parallel statement by
replacing ”C(X)” with "C*(X)"” throughout the following proof.

From (1), {7T,} is directed by the relation ©. For each v, let I,
be the ideal {h e C(X): h[T,] = {0}}. Now each C(X)/I, is isomorphic
to {g | T;: g € C(X)}, so we shall view each element of C(X)/I, as an
element of {g|T,:9eC(X)}. Thus, if T,D T, then the natural
homomorphism defined by g | T, — g | T;s for g € C(X) may be considered
a homomorphism of C(X)/I, onto C(X)/I;,. Also, the transitivity
property is clearly satisfied by restriction mappings. Hence {C(X)/I}
and the natural homomorphisms comprise a decomposition spectrum
of C(X).

Now let fe C(S) be given. We define an element (f;) € 1ir_n (C(X)/1,)
as follows: For each v, f; is the image in C(X)/I, of a function in
C(X) whose restriction to T, coincides with f|T,; the existence of
such a function is ensured by (3). Then ( f,)el(iin (C(X)/IL,), because
T, > Ts implies f; | Ts=(f|T)) | Ts=f| Ts=fs. The mapping o: f—(f)
embeds C(S) in lim (C(X)/I,), since f =+ g implies f(p) # g(p) for some
pe S, whence f,; g, for any v such that pe T,. Furthermore, o is
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an isomorphism, because (f + g), = f; + ¢, and (fg), = frg, for each
e

To prove that o is surjective, let (b,)elim(C(X)/I;) be given.
Then b, is the restriction of a function in C(X) to T,, and, since
v < 0 implies that b, maps to b; under the natural homomorphism, b,
is an extension of b;. By (2), {T,} covers S, so (b,) may be associated
with a function b on S. Since b is continuous on each T, (2) implies
that be C(S); and a(b) = (b,).

THEOREM 1. If X is a first countable space and S is any subset
of X, then C(S) is isomorphic to the inverse limit of a decomposition
spectrum of C(X) [C*(X)].

Proof. Let {T,} be the collection of all subsets of S consisting
of a finite number of points of S together with sequences converging
to those points. It is clear that (1) holds; (2) holds because X, and
hence S, is first countable; and (3) holds because each T, is compact.
Hence the Lemma is applicable.

COROLLARY 1. If X is a first countable space, then C(X) is
isomorphic to the inverse limit of a decomposition spectrum of C*(X).

THEOREM 2. If X s a locally compact space, and S is any open
subset of X, then C(S) is isomorphic to the inverse limit of a decom-
position spectrum of C*(X).

Proof. Let {T,} be the collection of finite unions of some family
of compact neighborhoods of the points of S. It is evident that (1)
and (2) hold; and (3) holds because each T, is compact. Hence the
Lemma is applicable.

COROLLARY 2. If X is a locally compact space, them C(X) s
1somorphic to the imverse limit of a decomposition spectrum of C*(X).

THEOREM 3. If X is any completely regular Hausdorff space,
and S is any open subset of X, then C(S) is tsomorphic to the inverse
limit of a decomposition spectrum of C(X).

Proof. Let peS. By complete regularity, there exists an
h, € C(X) such that k,[X — S] = {0}, h,(p) = 2,and 0 < h, < 2. Hence
the nonnegative function g, = &, A 1 has the properties g,[X —S] =
{0} and g¢,[U,] = {1}, where U, is a neighborhood of p. Choose one
such neighborhood for each point of S, and let {7} be the collection
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of finite unions of these neighborhoods. Again, (1) and (2) are clear.
To see that (8) holds, consider a particular T, =U, U --- UU,,.
The nonnegative function g, + --- + g, 1is zero on X — S and at
least one on T,, whence g, = (g, + -+ + g, ) A 1 has the properties
91X — 8] ={0}, ¢IT;] = {1}, and 0= g, <1. If feC(S), we define
freC(X) by fi[X — 8] = {0} and f,(x) = tan ((g,(w))(arctan(f(x)))) for
xeS. Then f,| T, = (tanoarctano )| T, = f| T,, as required. Thus
(3) holds, and again the Lemma is applicable.

REMARK. If S is a cozero-set in X, say S = {zxe X: h(x) = 0},
where heC(X), then the decomposition spectrum can be formed
from an w*-sequence of quotient rings of C(X). For each positive
integer n, we set T, = {x e X:|h(x)| = 1/n}. There exists a function
9,€C(X) such that g, [X — S]={0},4,[T,] ={1}, and 0=9,=1,
gince T, is completely separated from X — S [3; 1.15]. The proof
that the collection {T,} satisfies (3) then concludes as in the proof
of Theorem 3. Now (1) is evident, and (2) holds because each pe S
is in the interior of some T,; so the Lemma is applicable to this
situation too.

We now give an application of Theorem 3. First recall that the
maximal ring of quotients of a commutative ring A with identity may
be obtained as the direct limit of the A-homomorphisms of dense
ideals of A into A [1; 1.9], and that the classical ring of quotients
may be obtained similarly from the A-homomorphisms of dense principal
ideals [1; 1.10]. Fine, Gillman, and Lambek have shown that (1) the
maximal ring of quotents of C(X) has a representation as the direct
limit of rings C(U), U ranging over the dense open sets in X, and
that (2) the classical ring of quotients of C(X) has a representation
as the direct limit of rings C(U), U ranging over the dense cozero-sets
in X [1; 2.6]. Combining Theorem 3 with these facts yields the
following result.

COROLLARY 3. If X s any completely regular Hausdorff space,
thew both the maximal and classical rings of quotients of C(X)
have representations as a direct limit of inverse limits of quotient
rings of C(X).
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