ON w^*-SEQUENTIAL CONVERGENCE AND QUASI-REFLEXIVITY

RALPH DAVID McWILLIAMS
ON w^*-SEQUENTIAL CONVERGENCE AND QUASI-REFLEXIVITY

R. D. McWilliams

This paper characterizes quasi-reflexive Banach spaces in terms of certain properties of the w^*-sequential closure of subspaces. A real Banach space X is quasi-reflexive of order n, where n is a nonnegative integer, if and only if the canonical image $J_X X$ of X has algebraic codimension n in the second dual space X^{**}. The space X will be said to have property P_n if and only if every norm-closed subspace S of X^* has codimension $\leq n$ in its w^*-sequential closure $K_X(S)$. By use of a theorem of Singer it is proved that X is quasi-reflexive of order $\leq n$ if and only if every norm-closed separable subspace of X has property P_n. A certain parameter $Q^{\infty}(X)$ is shown to have value 1 if X has property P_n and to be infinite if X does not have P_n. The space X has P_0 if and only if w-sequential convergence and w^*-sequential convergence coincide in X^*. These results generalize a theorem of Fleming, Retherford, and the author.

2. If X is a real Banach space, S a subspace of X^*, and $K_X(S)$ the w^*-sequential closure of S in X^*, then $K_X(S)$ is a Banach space under the norm φ_S defined by

$$\varphi_S(f) = \inf \left\{ \sup_{x \in \omega} \| f_n \| : \{f_n\} \subset S, f_n \overset{w^*}{\longrightarrow} f \right\}$$

for $f \in K_X(S)$ [5]. If $S \subseteq T \subseteq K_X(S)$, let

$$C_X(S, T) = \sup \{ \varphi_S(f) : f \in T, \| f \| \leq 1 \} .$$

Thus, $K_X(S)$ is norm-closed in $(X^*, \| \cdot \|)$ if and only if $C_X(S, K_X(S))$ is finite [5]. For each integer $n \geq 0$ let $\mathcal{T}_n(S)$ be the family of all subspaces T of X^* such that $S \subseteq T \subseteq K_X(S)$ and such that $K_X(S)$ is the algebraic direct sum of T and a subspace of dimension $\leq n$. Let

$$C^{\infty}_n(S) = \inf \{ C_X(S, T) : T \in \mathcal{T}_n(S) \} ,$$

and let

$$Q^{\infty}(X) = \sup \{ C^{\infty}_n(S) : S \text{ a subspace of } X^* \} .$$

It will be said that X has property P_n if and only if $S \in \mathcal{T}_n(S)$ for every norm-closed subspace S of $(X^*, \| \cdot \|)$.

3. Theorem 1. Let X be a real Banach space and n a non-
negative integer. If X has property P_n, then $Q^n(X) = 1$. If X does not have property P_n, then $Q^n(X) = \infty$.

Proof. If X has property P_n and S_i is a norm-closed subspace of X^*, then $S_i \in \mathcal{T}_n(S_i)$ and hence $C^\omega_x(S_i) = 1$. If S is an arbitrary subspace of X^* and S_i the norm-closure of S, then $C^\omega_x(S) = C^\omega_x(S_i)$ and therefore $Q^n(x)(X) = 1$.

If X does not have property P_n, then X^* has a norm-closed subspace S such that $K_x(S)$ contains an $(n+1)$-dimensional subspace V such that $S \cap V = \{0\}$. Now V has a basis $\{e_1, \ldots, e_{n+1}\}$ of vectors with $\|e_i\| = 1$, and there exist $F_1, \ldots, F_{n+1} \in X^{**}$ such that for each $j \in \{1, \ldots, n+1\}$, $F_j(f) = 0$ for every $f \in S$ and $F_j(f_i) = \delta_{ij}$ for each $i \in \{1, \ldots, n+1\}$ [7, p. 186]. Let $\alpha = \max \{\|F_j\| : 1 \leq j \leq n+1\}$. Further, there exist vectors $x_1, \ldots, x_{n+1} \in X$ such that $f_i(x_j) = \delta_{ij}$ for $1 \leq i, j \leq n+1$ [7, p. 138].

Since $f_1, \ldots, f_{n+1} \in K_x(S)$, the restrictions of $J_x x_1, \ldots, J_x x_{n+1}$ to S must be linearly independent on S, and hence for each

\[i \in \{1, \ldots, n+1\}\]

there exists $g_i \in S$ such that $g_i(x_j) = \delta_{ij}$ for each j [7, p. 138]. Now for each $i = 1, \ldots, n+1$ there is a sequence $\{p_{ih}\} \subset S$ such that

\[p_{ih} \underset{h}{\rightharpoonup} f_i\]

The sequence $\{p_{ih}\}$ may be chosen so that

\[\|p_{ih}(x_j) - \delta_{ij}\| < \frac{2^{-h}}{(n+1)\|g_j\|}\]

for each j. If we let $F_{ih} = p_{ih} + \sum_{j \neq i}^{n+1} \left[\delta_{ij} - p_{ih}(x_j)\right]g_j$, then $f_{ih}(x_j) = \delta_{ij}$ for all i, h, j, and $\|F_{ih} - p_{ih}\| < 2^{-h}$, so that $F_{ih} \underset{h}{\rightharpoonup} f_i$; clearly $\{f_{ih}\} \subset S$.

For each $i \in \{1, \ldots, n+1\}$ and $h \in \omega$, let $g_{ih} = f_{ih} - f_i$. Thus $g_{ih}(x_j) = 0$ and $F_j(g_{ih}) = -\delta_{ij}$ for all i, h, j, and $g_{ih} \underset{h}{\rightharpoonup} 0$ for each i.

Generalizing a method of Fleming [3], for each positive number N we let R_N be the linear span and S_N the norm-closed linear span of $\{f_{ih} + Ng_{ih} : 1 \leq i \leq n+1; h \in \omega\}$. Note that for each

\[i \in \{1, \ldots, n+1\}, f_{ih} + Ng_{ih} \underset{h}{\rightharpoonup} f_i \]

thus $V \subseteq K_x(R_N)$. Now let f be a nonzero element of V and $\{v_m\}$ a sequence in R_N such that $v_m \underset{w^*}{\rightharpoonup} f$. Clearly f has the form

\[f = \sum_{i=1}^{n+1} \alpha_i f_i\]
and each \(v_m \) has the form
\[
v_m = \sum_{i=1}^{n+1} \sum_{h=1}^m \alpha_{m,ih} (f_{ih} + Ng_{ih}) .
\]
For every \(j \in \{1, \ldots, n+1\} \),
\[
\alpha_j = f(x_j) = \lim_m v_m(x_j) = \lim_m \sum_{h=1}^m \alpha_{m,ih} ,
\]
and since \(F_j(f_{ih} + Ng_{ih}) = -N\delta_{ij} \), it follows that
\[
F_j(v_m) = -N \sum_{h=1}^m \alpha_{m,ih} .
\]
Thus \(\lim_m F_j(v_m) \) exists and is equal to \(-N\alpha_j \). Now
\[
\| v_m \| \geq \frac{|F_j(v_m)|}{\| F_j \|} ,
\]
and hence \(\lim \inf_m \| v_m \| \geq N |\alpha_j| /\| F_j \| \geq N |\alpha_j| /\alpha \). Since \(j \) is arbitrary, \(\lim \inf_m \| v_m \| \geq (N/\alpha) \max |\alpha_j| \). From the definition of \(\varphi_{R(n)} \), it follows that \(\varphi_{R(n)}(f) \geq N/\alpha \max_j |\alpha_j| \geq N \| f \| /\alpha(n+1) \). If \(T \in \mathcal{T}(S_n) \), then \(T \) must contain some nonzero \(f \in V \) since \(V \) is \((n+1)\)-dimensional, and hence \(C_X(S_n, T) \geq N/\alpha(n+1) \). Therefore \(C_X^n(S_n) \geq N/\alpha(n+1) \). Since \(N \) is arbitrary and \(\alpha(n+1) \) is independent of \(N \), it follows that \(Q^n(X) = +\infty \).

Theorem 2. Let \(X \) be a real Banach space and \(n \) a nonnegative integer. If \(X \) is quasi-reflexive of order \(\leq n \), then \(X \) has property \(P_n \). If \(X \) is separable and has property \(P_n \), then \(X \) is quasi-reflexive of order \(\leq n \).

Proof. If \(X \) is quasi-reflexive of order \(m \leq n \) and \(S \) is a norm-closed subspace of \(X^* \), then it can be seen from the proofs of Theorems 5 and 6 of [4] that \(K_x(S) \) is the direct sum of \(S \) with a subspace of \(X^* \) of dimension \(\leq m \). Hence \(S \in \mathcal{T}(S) \), and consequently \(X \) has property \(P_n \).

On the other hand, let \(X \) be separable and suppose that \(X \) has property \(P_n \). Let \(F_1, \ldots, F_{n+1} \) be linearly independent elements of \(X^{**} \) and \(S = \bigcap_{i=1}^{n+1} \{ f \in X^* : F_i(f) = 0 \} \). Thus \(S \) is a norm-closed subspace of \(X^* \) of codimension \(n+1 \), and hence, by property \(P_n \), \(K_x(S) \) has codimension \(m \) for some \(m \in \{1, \ldots, n+1\} \). There exists a subspace \(U \) of \(X^* \) of codimension 1 such that \(K_x(S) \subseteq U \). Thus \(U = S \oplus V \) for some subspace \(V \) of \(X^* \) of dimension \(n \). Now \(U = K_x(U) \). Indeed, if \(\{g_i\} \subset U \) and \(g_i \xrightarrow{w^*} g \), and if \(P \) is the projection of \(U \) onto
V along S, then as in the proof of Theorem 5 of [4], P is bounded and \{a_i\} is bounded, so that \{Pg_i\} is bounded and hence has a subsequence \{Pg_{ij}\} which converges inner m to some v in the finite-dimensional subspace V. It follows that \(g_i - Pg_i \xrightarrow{w^*} g - v \in K_x(S) \) and hence that \(g \in K_x(S) + V = U \).

Since \(U = K_x(U) \) and \(X \) is separable, it follows, by an argument involving the \(bw^* \)-topology of \(X^* \) [3], that \(U \) is \(w^* \)-closed. If \(n = 0 \), let \(F = F_1 \). If \(n > 0 \), there exist linearly independent vectors \(f_1, \ldots, f_n \) spanning \(V \), and there exist scalars \(\alpha_1, \ldots, \alpha_n, \) not all of which are zero, such that \(\sum_{i=1}^{n+1} \alpha_i F_i(f_j) = 0 \) for \(1 \leq j \leq n \); indeed, the \((n + 1)\) vectors

\[
\begin{bmatrix}
F_i(f_1) \\
\vdots \\
F_i(f_n)
\end{bmatrix} \\
(i = 1, \ldots, n + 1)
\]

in \(n \)-dimensional Euclidean space must be linearly dependent. Let \(F = \sum_{i=1}^{n+1} \alpha_i F_i \). Thus, for \(n \geq 0 \), \(F \neq 0 \) and \(U = \{ f \in X^* : F(f) = 0 \} \).

Since \(U \) is \(w^* \)-closed, \(F \) is \(w^* \)-continuous on \(X^* \) [7, p. 139], and hence \(F \in J_xX \). Thus every \((n + 1)\)-dimensional subspace of \(X^{**} \) contains a nonzero element of \(J_xX \), which means that \(X \) is quasi-reflexive of order \(\leq n \).

REMARK. Theorems 1 and 2 contain a generalization of Fleming's theorem [3] that if \(X \) is a separable Banach space, then \(X \) is reflexive if and only if \(Q(X) = 1 \). The following theorem generalizes a theorem of [3] and [4].

Theorem 3. A real Banach space \(X \) is quasi-reflexive of order \(\leq n \), where \(n \geq 0 \), if and only if every norm-closed separable subspace \(Y \) of \(X \) has the property \(P_n \).

Proof. If \(X \) is quasi-reflexive of order \(\leq n \) and \(Y \) is a closed subspace of \(X \), then \(Y \) is also quasi-reflexive of order \(\leq n \) [1] and hence \(Y \) has property \(P_n \) by Theorem 2. Conversely, if every norm-closed separable subspace \(Y \) of \(X \) has property \(P_n \), then every such \(Y \) is quasi-reflexive of order \(\leq n \) by Theorem 2, and hence \(X \) is quasi-reflexive of order \(\leq n \) by a theorem of Singer [6].

Remark. In Theorem 3 the word "separable" can be deleted. By virtue of Theorem 1, Theorem 3 is also true if "property \(P_n \)" is replaced with "property that \(Q^{(n)}(Y) = 1 \)". Since a space \(X \) is quasi-reflexive of order \(n \) if and only if \(X \) is quasi-reflexive of order \(\leq n \) but not of order \(\leq (n - 1) \), Theorem 3 can easily be rewarded in such
a way as to give a necessary and sufficient condition that X be quasi-reflexive of order exactly n.

4. **Theorem 4.** If X is a real Banach space, then $Q(0)(X) = 1$ if and only if w-sequential convergence and w^*-sequential convergence coincide in X^*.

Proof. Suppose the two kinds of sequential convergence coincide and S is a subspace of X^*. If $\{f_i\} \subset S$ and $f_i \rightharpoonup f$, then $f_i \rightharpoonup f$ and hence some sequence of averages far out in $\{f_i\}$ converges in norm to f [2, p. 40]; thus $f \in S$, the norm-closure of S, and hence $\varphi_S(f) = \|f\|$. Therefore, $C^*(S) = 1$ and $Q(0)(X) = 1$.

Conversely, suppose there are a sequence $\{f_i\}$ in X^* and an $f_0 \in X^*$ such that $f_i \rightharpoonup f_0$ but $f_i \not\rightharpoonup f_0$. Then there exists an $F \in X^{**}$ such that $F(f_i) \neq F(f_0)$. The sequence $\{F(f_i)\}$ is bounded and hence contains a subsequence $\{F(f_{i_j})\}$ such that the limit $\alpha = \lim\inf F(f_{i_j})$ exists, but $\alpha \neq F(f_0)$. Since $F \neq 0$, there exists $g \in X^*$ such that $F(g) \neq 0$. Let $g_j = f_{i_j} - (F(f_{i_j})/F(g))g$ for each $j \in \omega$ and

$$g_0 = f_0 - \frac{\alpha}{F(g)}g.$$

Then $F(g_j) = 0$ for each $j \in \omega$, but $F(g_0) \neq 0$. For every $x \in X$,

$$g_j(x) \rightharpoonup f_0(x) - \frac{\alpha}{F(g)} g(x) = g_0(x),$$

so that $g_j \rightharpoonup g_0$. Let S be the norm-closed subspace of X^* spanned by $\{g_j : j \in \omega\}$. Then $g_0 \in K_X(S)$, but $g_0 \not\in S$, since $F(g_0) \neq 0$ whereas $F(f) = 0$ for all $f \in S$. Thus $S \not\in \mathcal{I}_\sigma(S)$, and hence X does not have property P_0, so that $Q(0)(X) = \infty$ by Theorem 1.

References

Received June 15, 1965. Supported by National Science Foundation Grant GP-2179.

Florida State University
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. J. C. Baker</td>
<td>A spherical Helly-type theorem</td>
<td>1</td>
</tr>
<tr>
<td>Robert Morgan Brooks</td>
<td>On locally m-convex *-algebras</td>
<td>5</td>
</tr>
<tr>
<td>Lindsay Nathan Childs and Frank Rimi DeMeyer</td>
<td>On automorphisms of separable algebras</td>
<td>25</td>
</tr>
<tr>
<td>Charles L. Fefferman</td>
<td>A Radon-Nikodym theorem for finitely additive set functions</td>
<td>35</td>
</tr>
<tr>
<td>Magnus Giertz</td>
<td>On generalized elements with respect to linear operators</td>
<td>47</td>
</tr>
<tr>
<td>Mary Gray</td>
<td>Abelian objects</td>
<td>69</td>
</tr>
<tr>
<td>Mary Gray</td>
<td>Radical subcategories</td>
<td>79</td>
</tr>
<tr>
<td>John A. Hildebrant</td>
<td>On uniquely divisible semigroups on the two-cell</td>
<td>91</td>
</tr>
<tr>
<td>Barry E. Johnson</td>
<td>AW*-algebras are QW*-algebras</td>
<td>97</td>
</tr>
<tr>
<td>Carl W. Kohls</td>
<td>Decomposition spectra of rings of continuous functions</td>
<td>101</td>
</tr>
<tr>
<td>Calvin T. Long</td>
<td>Addition theorems for sets of integers</td>
<td>107</td>
</tr>
<tr>
<td>Ralph David McWilliams</td>
<td>On w*-sequential convergence and quasi-reflexivity</td>
<td>113</td>
</tr>
<tr>
<td>Alfred Richard Mitchell and Roger W. Mitchell</td>
<td>Disjoint basic subgroups</td>
<td>119</td>
</tr>
<tr>
<td>John Emanuel de Pillis</td>
<td>Linear transformations which preserve hermitian and positive semidefinite operators</td>
<td>129</td>
</tr>
<tr>
<td>Qazi Ibadur Rahman and Q. G. Mohammad</td>
<td>Remarks on Schwarz’s lemma</td>
<td>139</td>
</tr>
<tr>
<td>Neal Jules Rothman</td>
<td>An L^1 algebra for certain locally compact topological semigroups</td>
<td>143</td>
</tr>
<tr>
<td>F. Dennis Sentilles</td>
<td>Kernel representations of operators and their adjoints</td>
<td>153</td>
</tr>
<tr>
<td>D. R. Smart</td>
<td>Fixed points in a class of sets</td>
<td>163</td>
</tr>
<tr>
<td>K. Srinivasacharyulu</td>
<td>Topology of some Kähler manifolds</td>
<td>167</td>
</tr>
<tr>
<td>Francis C.Y. Tang</td>
<td>On uniqueness of generalized direct decompositions</td>
<td>171</td>
</tr>
<tr>
<td>Albert Chapman Vosburg</td>
<td>On the relationship between Hausdorff dimension and metric dimension</td>
<td>183</td>
</tr>
<tr>
<td>James Victor Whittaker</td>
<td>Multiply transitive groups of transformations</td>
<td>189</td>
</tr>
</tbody>
</table>