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If S is a locally compact and Hausdorff space and A is a
continuous linear operator from C,S) into the space C(T)
with the supremum norm topology then the Riesz Representa-
tion Theorem yields the formula [Af](z) = S SA(z, dy), where

S
for each x € T i(x, -) is a complex-valued regular Borel measure
on S. More generally a study is made of kernel functions 2
such that S fa(-, dy)e C(T) for f of compact support on S.
S
It is shown that i(-, E') is measurable for each Borel set E
and that u(F) =\ i(x, E)v(dx) is a regular measure on S yield-
T
ing the adjoint formula A*y = u. Necessary and sufficient
conditions are given on 1 so that A**(C(S))c C(T) and that
A** be continuous from C(S)g to C(T )z when S is paracompact.
Furthermore, kernel representations of 3-continuous operators

are studied with applications to semi-groups of operators in
Co(S) and C(S)s when S is locally compact.

We point out that as a consequence of our work the condition
(1.7) in the paper by Foguel [7] follows from (1.6) when the space is
locally compact and Hausdorff. Further the regularity of the above
measure yields the more specific vector-valued measure representation
of A, p(E) = (-, E) in the sense of [5, Th. 2, p. 492].

DEFINITION AND NOTATION. If X is a locally compact Hausdorff
space we denote by C(X),Cy(X) and C,(X)* the collection of all
bounded continuous complex-valued functions on X, those vanishing at
infinity, and those nonnegative functions of compact support, respec-
tively. The o-algebra of Borel sets is the o-algebra generated by the
open subsets of X, We denote by M(X) the space of bounded regular
Borel measures on X with variation norm and by B(X) the space of
bounded Borel measurable functions on X. Let M(X)* denote the
nonnegative measures in M(X). We give B(X), C(X) and C(X) the
supremum norm topology and || f]| = sup{| f(x)|: x € X}.

We wish to consider two further topologies on the space C(X).
We denote by C(X); the space C(X) with the locally convex topology
defined by the collection of seminorms Pu(f) = || ¢S], ¢ € Cy(X). Buck
[1] has shown that C(X), has adjoint or dual space M(X). We denote
by C(X)s the space C(X) with the locally convex topology whose
base of neighborhoods at the origin consists of all convex, balanced,
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absorbent sets V such that for each » > 0 there is a 8 neighborhood of
the origin, W, such that W N B, C V where B, = {fc C(X): || f|| £ r}.
In a recently submitted paper Dorroh [4] introduces this topology and
shows that C(X); has dual M(X) and that 8 =45 for X a para-
compact space. Further results on C(X); and C(X); have been recently
obtained by Collins and Dorroh in [2]. A set HcC M(X) is S-equi-
continuous (6’-equicontinuous) if there is a B(8’) neighborhood of 0,

W, such that H fdp'é 1 for all fe W and pge H. The B-equicon-
X

tinuous sets of M(X) have been characterized by Conway [3] who has
shown that H is B-equicontinuous if and only if H is uniformly bounded
and for each ¢ > 0 there is a compact set K — X such that the varia-
tion of g on X — K is less than ¢ for all e H. Since £ is a finer
topology than B any gB-equicontinuous set is A’-equicontinuous and
these are the same when X is paracompact.

Suppose S and T are locally compact and Hausdorff. Let 4 denote
the collection of open sets in S and o(4) the collection of Borel sets.
We consider complex-valued functions A defined on T x ¢(4) such that
Mx) = Mez, -) € M(S). For brevity we will denote this by »: T — M(S).
We denote the norm of the measure A(z) by |[M«)]|| and set || \]]| =
sup {|| Mx) |l: xe T}. If fe B(S) we write A(f) for the function defined
by M) = S f(y)Mx, dy) and A+, E) is the function whose value at
x is Mz, E) for e o(4). We let | M| (x, E) be the variation of the
measure Az, -) on the set E. We will say that the kernel \ satisfies
condition E(E') if {\M«): x € K} is S-equicontinuous (5’-continuous) for
each compact set K T.

Finally we take our topology from [8] and topological vector space
terminology from [9]. We make use of the Riesz Representation
theorem throughout and in particular its corollary:

121 @) = sup {|{sap| 7€ €8, 171 = 1, support (1) = U}

for each open set U.
We prove the following theorems.

THEOREM 1. (1) If M:T— M(S)* and M f) is lower semi-continu-
ous for each feC,(S)* them \(-, E) is Borel measurable for each
Eea(d).

2) If »:T— M(S) and M f)e C(T) for all feC/(S) then \(+, E)
and | N| (-, E) are measurable for each E e o(d).

(8) If \ satisfies (1) or (2) and ||[N]|| < o then N(f)e B(T) for
feB(S).

THEOREM 2. If )\ satisfies (3) of Theorem 1 then for each ve M(T)
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the formula pu(E) = STMx, EYy(dx) defines a regular Borel measure
on S such that |p| (E) = STM] (z, E)|v|(dx) and for fe B(S) we have
e = Priprav.

THEOREM 3. Suppose A is a continuous linear operator from the
space X to the space Y where X denotes CyS), C(S)s or C(S)s and
Y denotes C(T), C(T)s or C(S)s. Then there is a unique mapping
N T— M(S) such that

1y Af=xMJf) for all fe X and

IMN]=sup{|Af|: feX, [[fIl =1} < oo
(2) The adjoint of A, A*, takes M(T) into M(S) and is given by

A*m(E) = | Mo, Byu(d) .

(3) Under the natural imbeddings of B(S) and B(T) into M(S)*
and M(T)Y* respectively we have for fe B(S)

MS) = A¥*f where A** is the adjoint of A* restricted to M(T)

Hence A**(B(S))c B(T) and A** defines a continuous extension

of A to B(S) into B(T).

THEOREM 4. Let »:T— M(S). If M[f)eC(T) for all feC,S)
and ) satisfies condition E' then N f) is a continuous function on T
for fe C(S). Conversely, if S is paracompact and Mf) is continuous
Jor feC(S) then \ satisfies condition E.

THEOREM 5. Let N: T— M(S) and A the linear operator on C(S)
defined by Af = N(f). Then A is a continuous operator from C(S)s
into C(T)s or C(T)s if and only if || N]| < oo, Mf) e C(T) for feCyS)
and N satisfies condition E'.

COROLLARY 1. Let A:C(S)— Y where Y is as in Theorem 3.
Then A** 1is a continuous operator from C(S)s into C(T)s if and
only if the kernel \ satisfies condition E'. Moreover A** is the only
extension of A to C(S) given by a kernel and consequently is the
only B or B continuwous extension of A to C(S).

Proof of Theorem 1. Let U be an open subset of S and let yx
denote its characteristic function. Since A (2) is regular it follows that
Mz, U) = sup (Mf)(): 0 < f <y, FeC(S)*}. Since \(f) is lower semi-
continuous for each fe C,(S)*, then \(-, U) is lower semi-continuous
and hence Borel-measurable. Let 3 denote the class of Borel sets F
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for which \(-, E) is measurable. Then X contains all open sets and
is closed under countable unions of mutually disjoint sets Ee X and,
if A, BeYand ADB then A — BeZX. It now follows from [6, p. 2]
that ¥ = 0(4) and (1) is proven.

We now prove (2). If U is an open set then as a consequence of
the Riesz Representation Theorem we have

IN] (2, U) = sup {|M[f)@)|: fe C(S), || f|| = 1 and support (f) < U}
for each ze T.

This means that |[A|(-, U) is lower semi-continuous and as in the
proof of (1) that |\ | (-, E) is measurable for each Borel set E.

We can suppose for the remainder of the proof that M\(x) is a
real signed measure for each x € T and we then have [5, p. 123] that
Mz) = Mx)t — M)~ where M(x), M)~ e M(S)* and | M@) | = Ma)T + M)~
for all xe T. We show that A+, A~ satisfy condition (1).

Let feC,(S)" and set pz, E) = S f)Mx, dy). Then for each

E
x, u(x) € M(S) and for

geCyS), o) = Ssg(wf(y)?»(x, dy) = Mof) -

Hence p(g) is continuous for each ge C,(S) and therefore from what
we have just shown || (-, S) is lower-semicontinuous since S is open.
But |p¢|(x,S) = S J@W) N (%, dy) and therefore |\ | (f) is lower semi-
S

continuous for each fe C,(S)*. Since |\ | (x) = A (x) + M (x) and Mz) =
M (x) — N~ (x) it now follows that for fe C.(S)*, A" (f) and A~(f) are lower
semi-continuous. But then it follows from (1) that »*(., E'), A~ (-, E) and
hence \(-, E') are measurable for each Borel set E.

Condition (3) easily follows for we can approximate A(f) uniformly
by means of measurable functions of the form >.2_, a.\(., E,).

REMARK 1. T need not be Hausdorff or locally compact in Theo-
rem 1.

Proof of Theorem 2. It is well known that (&) = S M, E)v(dx)
T
defines a measure on S such that S fap = S MS)dy for fe B(S).
T

Hence we will only show that p is regular.

We can assume that v is real and ||v|| = 1. Further we can
suppose that n(x) e M(S)* for each xe T. For we can first assume
that Ma) is a real signed measure, and writing M) = Ma)T — M),
the proof of Theorem 1 shows that for feC,(S)*, M (f) and N (f)
are lower semi-continuous. Hence we have the condition (1) of Theo-
rem 1 and additionally, ||\ || = sup {|| M) ||: x€ S} < oo,
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LemMA 1. Let U be an open set in S,y its characteristic func-
tion. Let X ={feC(S):0=Ff=2}, Y ={9eC(T):0=9g =, U)h
Then

sup{Sngu: g€ Y} < sup {STx(f)dv:fe X} .

Proof. LetgeY,e > 0 and let g vanish outside the compact set
K and fix x e K.

Since ge Y then g(x) — ¢/2 < M2, U) and hence there is a func-
tion fe X such that g(x) — ¢/2 < M f)(x). Since M(f) is lower semi-
continuous there is a neighborhood V of 2 such that for ¢te V one
has g(x) — /2 < M(f)(t). But also there is a neighborhood V'’ of x«
such that if e V'’ then g(t) — e < g(x) — ¢/2. Hence there is a neigh-
borhood W of x such that for te W, g(t) — ¢ < Mf)(t). We extract
a finite cover of sets W of K with associated functions fe X. If we
let 2 be the pointwise maximum of the corresponding functions f then
he X and for ¢ e K we have

g{t) — e < M(A)D) .

Hence S gdy — ¢ < S Mh)dy and the proof is complete.
T T

LEMMA 2. S Me, U)v(da) < sup{g gdvige Y}.
T T
Proof. Let ¢ >0 and n be an integer such that ne > ||\|| =
(n — 1)e. Then set
E,={xeTike <Mz, Uy (k+ 1)} fork=01..-,n—1,

Then {E,} is a partition of T by Borel sets and

(1) 0< STx(oc, Uyw(dz) — ijs»(E,,) <.
Let
U, = {&: Mz, U) > ke}.

Then U, is an open set and E, = U, — U,,,. Since v is regular then
for each & there is a compact set K, C E, such that v(E, — K,) < ¢/n’
We can then find for each %k an open set V, with compact closure
contained in U, and containing K,. Further there exist functions
[reC(TY for k=0, ..., n— 1 such that f(x) = ke for x € K, fi(x) =0
for xeT— V, and 0 < fi(x) < ke for all xe T. Therefore f,(x) <
ke < Mz, U) for xe U, and hence f,e Y. We let
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f@) = max {fi(x): 0 <k <n — 1}.
It follows that fe Y and
n—1
@) = 3 keal@)

where y, denotes the characteristic function of the set E,. We then
have
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But
ST g, keydy = i kew(E,)
and applying (1) we have
0< STW, U)v(dz) — Sdev <ete

completing the proof.

Lemma 3. p(U) = sup {Lfdp: fe X} and p s regular.

Proof. Combining Lemma 1 and Lemma 2 we have

w(U) < sup {STM F)dv: fe X} .

But Ss fdp = STM f)dy and therefore

uU) < sup{| fp; fe X} = wv).

Now the mapping f— | fdyu defines a bounded linear form on the space
S
Cy(S) and hence there is a measure @ ¢ M(S)* such that S fdp = S fdw
S 8
for all fe Cy(S) and since w is regular
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o(U) = sup{gsfdw:fe X} - wU).

This means the collection X of all Borel sets £ for which w(E) = pu(E)
contains all open sets and it follows from [6, p. 2] as in the proof of
(1) Theorem 1 that ¥ is the class of all Borel sets. Hence p is the

regular measure w. It is easily seen that ju | (F) < S IN] (z, E) | v] (de)
and the proof is complete.

Proof of Theorem 3. From [1], [4] and the Riesz Representation
Theorem, X* = M(S) and Y* > M(T). From [9, pp. 38-39]

A*(M(T)) > M(S)

and the formula Mx) = A*8, where #(E) =1 if acE, 0 if x¢ E, de-
fines a map A: T— M(S) satisfying (3) of Theorem 1 since |[A]] =
sup{[| AL 11 £ 1, fe C(S)} < « because the norm, 5 and 8’ bounded
sets are the same (see [1] and [4]) and from [9, p. 45] A takes
bounded sets into bounded sets. Furthermore Af = M(f) for fe X and

if W(E) = S Mz, E)p(dz) then

for all fe X and consequently A*¢ = v since v is regular. Finally if
A** is the adjoint of A* restricted to M(T) then for pe M(T) and

Fe BS) [A**fN(p) = A = | fdA*p) = | Mg = MAN)

since N(f)e B(T). This holds for all we M(T) and consequently
A**f = \(f). Hence A**(B(S))c B(T) and || A**|[ = [| x|

REMARK 2. If for each t¢€]0, «}, T(¢) is a continuous operator
from X to X and T(t + u) = T(t)T(u) then T(t + w)** = T()** T(w)**.
If we then write [T(¢)f](x) = S Jy)n(z, dy), then by the above theo-

S

rem A (f) = T@)**f for fe B(S). If y is the characteristic function
of the Borel set £ we have

or the Chapmann-Kolmogorov equation
M@, B) = | My, B, dy)

Consequently a transition function A,(z, -) can be obtained for a semi-
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group of B or & continuous operators on the space C(S) when S is
locally compact.

REMARK 8. One can obtain a kernel ) satisfying (1) under the
weaker condition that A have range B(T) and domain C,(S). For the
set of linear mappings f— M f)(x) for ze T is pointwise bounded and
hence uniformly bounded since C,(S) is a Banach space.

Proof of Theorem 4. For each compact set K S there is a
function @g € C,(S) such that ¢ =1 on K. If feC(S) then the net
{pef} < CLS) converges /5 to f since it is uniformly bounded and B
convergent to f. Consequently C,(S) is &’ dense in C(S). If zeT
and U is a neighborhood of x with compact closure then {\(x,) : z, € U}
is a B’-equicontinuous set of linear functionals on C(S) for any net
{x.} < U converging to x. By hypothesis Mz,) — NM(2) on C(S). Since
C.(S) is B dense and {\(x,)} is B’-equicontinuous, NM(x,) — Mzx) on C(S).
Hence \(f) is continuous at = for all fe C(S).

Conversely if M(f)e C(T) for fe C(S) then for any compact set
Kc T {Mxz):2€ K} is weak-* compact as as ubset of the dual of C(S);
and, as Conway [3] has shown, must be B-equicontinuous.

Proof of Theorem 5. Suppose that A is continuous from C(S)s
to C(T)g or C(T)s. Then ||\ || < « by Theorem 3 and if K is a compact
set in T and V is the B neighborhood of 0 defined by some function
@€ Cy(T) identically 1 on K there is a B8 neighborhood of 0, U, such
that A(U)c V. That is, |Mf)(@)| =1 for all feU and xe K. Con-
sequently A satisfies condition E’.

Conversely, let us show A is continuous from C(S)s into C(T)
Let V be a B’ neighborhood of 0 in C(T) and r > 0. We show there
is a B neighborhood U of 0 in C(S) such that A~*(V)> B, N U thus
showing that A=(V) is a & neighborhood.

Let p =7r||M|l. There is a ¢ € C(T) such that

VOB, N{g:Py(9) =<1} and ¢=0.

Let K= {t:|¢(t)] =1/(p + 1)}. Since ) satisfies condition E’ there

is a B neighborhood U, in C(S) such that |M(f)(z)| <1 for all fe U,

and xe K. Let W= {feC(S):||¢||feU}. Then A (V)DB,N W for

if feB,NW then AfeB, and |[¢@)[Af](x)| < p/(p + 1) for x¢ K

ghile for ze K, [¢(@)[Afl®)| =gl |[Aflx)| =1 since [|¢]|fe ..
ence

AT(V)D A7 (B,) N A™g: Py(9) = 1}DB,N(B.NW)=B,.NW.

We then choose a B neighborhood U such that W > B, N U completing
the proof.
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REMARK 4. If A is continuous from C(S); into C(T), it follows
that A satisfies E.

The proof of Corollary 1 is almost immediate. As a consequence
of Theorem 3 and Theorem 5 continuity from C(S)s to C(T) is
equivalent to condition E’. If A’ is an extension of A to C(S) into
C(T) given by a kernel p then g =\ on Cy(S) and consequently p = A
on C(S) and A = A’. Since by Theorem 3 any 8 or A’ continuous
extension is given by a kernel this shows that A** is unique.

It should be noted that if S is paracompact and A is any operator
on C(S) into C(T) given by a bounded kernel A then by Theorems 4
and 5, A is continuous from C(S); to C(T)s.

We conclude with a brief remark on operators from M(T) into
M(S). Suppose B is such a linear operator and B* its adjoint on
B(S). Define n: T— M(S) by M) = B where & is the measure defined
in the proof of Theorem 3. If B is bounded and B*(C.S))c C(T)
then B*(B(S)) c B(T) by Theorem 1, By Theorem 2,

(BeEB) = | (BHE)u(d)

If \ satisfies condition E’ then by Theorem 5 B is the adjoint of the
continuous operator B* from C(S); to C(T)z;. Thus B is completely
determined by its action on the point measures {#:x ¢ T}.

REMARK 5 (added January 13, 1967). One can amplify Remark 4
by observing that if, moreover, ) satisfies F then Theorem 5 remains
true with 8’ replaced by 5. For then A is continuous from C(S)s to
C(T); and using condition E, [3], part (2) of Theorem 3 and [9, p.
39] it foliows that A* takes B-equicontinuous sets of M(T) into 5-
equicontinuous sets of M(S) making A continuous on C(S); into C(T),.

REMARK 6. It has recently come to the author’s attention that a
version of Theorem 2 can be found on page 176 of the recent book
by P. A. Meyer, Probability and Potentials, Blaisdell, Waltham,
Massachusetts, 1966, under the conditions that S be o-compact,
NS — M(S)Y, M(f) be continuous for all feC,(S)* and that v have
compact support.
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