Vol. 23, No. 2, 1967

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 307: 1  2
Vol. 306: 1  2
Vol. 305: 1  2
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Vol. 300: 1  2
Online Archive
The Journal
Editorial Board
Submission Guidelines
Submission Form
Policies for Authors
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
Other MSP Journals
Congruences on regular semigroups

Norman R. Reilly and Herman Edward Scheiblich

Vol. 23 (1967), No. 2, 349–360

For any regular semigroup S the relation 𝜃 is defined on the lattice, Λ(S), of congruences on S by: (ρ,τ) 𝜃 if and only if ρ and τ induce the same partition of the idempotents of S. Then 𝜃 is an equivalence relation on Λ(S) such that each equivalence class is a complete modular sublattice of Λ(S). If S is an inverse semigroup then 𝜃 is a congruence on Λ(S), Λ(S)∕𝜃 is complete and the natural homomorphism of Λ(S) onto Λ(S)∕𝜃 is a complete lattice homomorphism. Any congruence on an inverse semigroup S can be characterized in terms of its kernel, namely, the set of congruence classes containing the idempotents of S. In particular, any congruence on S induces a partition of the set ES of idempotents of S satisfying certain normality conditions. In this note, those partitions of ES which are induced by congruences on S and the largest and smallest congruences on S correspond ing so such a partition of ES are characterized.

Mathematical Subject Classification
Primary: 20.92
Received: 13 June 1966
Revised: 8 November 1966
Published: 1 November 1967
Norman R. Reilly
Herman Edward Scheiblich