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The purpose of this note is twofold. Part I consists of
an example of an algebraic scheme which is the union of two
closed, quasi-projective subscheme, but which is not itself quasi-
projective., The main result of Part II is a structure theorem
for coherent sheaves over divisorial schemes and, as an appli-
cation, the proof that Theorem 2 of Borel-Serre’s paper ‘‘Le
Théorem de Riemann-Roch’’, which is stated only for quasi-
projective, nonsingular schemes, can be extended to arbitrary
nonsingular schemes. (See the Remark on page 108 of the
mentioned paper.)

The example given in Part I shows furthermore that, if 2~ is an
invertible sheaf over a noncomplete scheme X, which induces ample
sheaves over the irreducible components of X, .&© need not be ample.
That <~ is ample if X is complete is shown by Grothendieck in Theorem
2.6.2., Chapter III of “Elements de Geometrie Algebrique”. The ex-
ample we give consists of the union of two quasi-affine closed sub-
schemes (whence their respective sheaves of local rings are ample).
Since the union itself is not quasi-projective, its sheaf of local rings
is not ample.

The result obtained in Part II is but a first step towards Riemann-
Roch-type theorems for arbitrary nonsingular schemes. To the author’s
knowledge, no suitable definition of a ring structure for equivalence
classes of sheaves (i.e. a satisfactory intersection theory for equiva-
lence classes of cycles) has been found as yet over an arbitrary non-
singular scheme. (See [3] and the remark on page 143 of [4] “On
ne peut pas...”.)

The essential part of the proof of Theorem 3.3, in Part II was
communicated to the author by Steven Kleiman, to whom the author
is indebted for this and other conversations.

The notation and terminology we use are, unless otherwise spe-
cifically stated, those of [7] and [5]. We consider only algebraic
schemes, with an arbitrary, algebraically closed ground field. For
the sake of convenience we drop the adjective “algebraic” and speak
simply of schemes. Also, all rings we consider are understocd to be
commutative and with unity, and all ring homomorphisms to be such
that 1 —1.

When we refer to, say, Lemma 2.3 without further identification
we mean Lemma 2.3 of the present work, to be found as the third
Lemma of §2.
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218 MARIO BORELLI

ParT 1.

1. We begin with some simple preliminary results which are
included here for completeness sake.

DEFINITION 1.1. Let & be an arbitrary category, A, B, C three
objects of &, uweHom (4, C), ve Hom (B, C) two fixed morphisms.
The triplet (D, @, 4), where De &, o € Hom (D, A), v € Hom (D, B) is
called a “fibre product” of A and B with respect to 4 and v if the
following conditions are satisfied:

(1) uep=wvoqy

(2) For every D'e & the function

Hom (D', D) —— Hom (D’, A)X, Hom (D', B)

given by a — (poa, 4r o ax) is bijective, where Hom (D', A) X, Hom (D', B)
denotes the subset of Hom (D', A)X Hom (D’, B) consisting of those
pairs of morphisms (w/, v') such that wou' = vov',

It is easy to see that the category of rings and ring homomor-
phisms has fibre products, and that fibre products are unique up to
isomorphisms.

If (X, 0;) is a reducible scheme, it is always possible to find two
distinct sheaves of ideals of 0., say .4 and %, such that, if (X, Ox)
and (X, 05, denote the closed subschemes defined by .4 and _%4
respectively, we have

(i) X, #X, X=X UX,

i) AnA=0.

This is obvious when (X, 04) is reduced. Otherwise we use the
fact that, in a noetherian ring A4, (0) is the intersection of sufficient
powers of the minimal prime ideals of A. Since conditions (i) and
(ii) are in fact local, and X is compact, we are done.

LEMMA 1.2. Let A be a ring, I, I, two ideals of A such that
ILNI,=0. Let

u: A/I — A/l + I, @i A— A/l
v: A/, — A/l + I, @y A— A,

be the camonical morphisms. Then (A, ¢y, p,) is the fibre product of
A/l and A/l, with respect to w and v.

Proof. We have the commutative diagram
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AL -2 AL+ 1,

o e

which shows that the first property of a fibre product is satisfied by
(4, p1, ;). As to the second, let @; € A/I; be such that w(@,) = v(a@,)
and let a;€ A such that ¢;(a;) = @;. Clearly

(wop)(a, — @) = (vogpy)(a, — a,)
= (Uo@)(a) — (vope)(az;) = 0.

Therefore a, — a,¢ I, + I,, whence there exist elements b, b, in I, I,
respectively, such that ¢ = a, + 0, = a, + b,. Clearly ¢,(a) = a@;. If
be A is such that ¢;(b) = @;, then a —beI,N I, =0. The lemma is
proved.

Let now (X, 0,) be an arbitrary scheme, and let & be an in-
vertible sheaf over X, i.e. a locally free sheaf of rank 1.

This means that we have a finite, open cover of X, say % =
(U))jes, and isomorphisms

u/j:g[Uj”—qoxlUj.

We may also assume that the U,’s are affine. If (Y, 0;) is a closed
subscheme of X defined by a sheaf of ideals _# of 0, the exact
sequence

0 Va 0y " 0y 0

gives an exact sequence

O——».Sf@f—%..?f——?—»%@w——*o
whence a homomorphism
H(X, )— HY(Y, & R 0y) .
The homomorphisms
Wi . R0 U;NY —0-1U;NY
defined by
ui(g Q a) = (pouy)g)-a ge.&,aely

are easily seen to be 0y-isomorphisms, whence .77 ® 0y is an invertible
sheaf over Y., One can also immediately check that the diagram



220 MARIO BORELLI

H(U;, &) — H(U;, 05)

(1) j )
HYU; NY, % ® 0y) — H(U, N Y, 0y)

is commutative, where the vertical arrows are induced by ¢ and @
respectively, and the horizontal ones by w; and u/}.

We now extend Lemma 1.2, which is of a local nature, to a
global situation.

THEOREM 1.8. Let (X, 0x) be a scheme, 7, % two sheaves of
tdeals of 0y such that A4 N % = 0. Let (X;,0x,) be the closed sub-
scheme of X defined by 7,1 =1,2,(Y,0;) the closed subscheme
defined by _#4 + _%. Let &7 be an tnvertible sheaf over X. The
diagram

HYX, &) — H'(X, & ®Q0x)

| |

H(X, & Q0x) — H(X, & & Or)

tdentifies H (X, &) as the fibre product of the HYX, & Q0x)’s
over HY(X, ¥ ® 0y).

Proof. Let 7z = (U;) be an open affine cover of X such that
there exist isomorphisms

'U/j:,.(bﬂin—>0Xi Uj .
We let

w0y, | U; N X, 0r, 1 U; N X,
U 7 R0, U,NY—0,|U;NY

be the induced isomorphisms, as was explained above.

We need to show that, given sections s,e HY(X, & ®0x), 1 =
1, 2, which induce the same section tec H(X, &¥ ® 0;), there exists
a unique section se HX,.%”) which induces s; and s, respectively.

Let fi; = u{(s;) e H(U; N X;, 0g,). From (1) we see that f,; and
fe; induce the some element of H(U;NY, 0y). Hence, by Lemma 1.2
(since U; is affine and U; = (U, N X,) U (U, N X,)) there exists a unique
section f;e H(U;, 0,) which induces f;; and f,; respectively. We shall
show that the family {u;'(f;)};e, defines an element s of H°(X, &).
Let

bjr = (uour)(1) e HA(U; N Uy, Ox) .



SOME RESULTS ON AMPLENESS AND DIVISORIAL SCHEMES 221

Then f; — b,,f is an element of H(U; NU,, 05) and it induces the
zero element of HU,NU,N X;,0x,),7=1,2. This is seen by ob-
serving that the family {f,;},e; induces the family {f;;};e; over X,
1=1,2. By Lemma 1.2 we have f; — b;.f, = 0, which shows our
contention. It is now obvious that s induces s, and s,, and, by using
Lemma 1.2, that only one such s exists. The theorem is proved.

It is well known that, if the X,’s are affine, so is X. This is
in fact a consequence of a theorem of Chevalley’s (See [5], Ch. II,
Th. 6.7.1 and corollaries). Combining Theorem 1.3, Lemma 1.2 and
the uniqueness of fibre products, we obtain the same result, without
using the heavy machinery involved in the proof of Chevally’s theorem,
that is, Serre’s characterization of affine schemes. (|5], Ch. II, Th. 5.2.1),
(8], Th. 1).

The above points out that, to obtain an example of a nonquasi-
projective scheme with quasi-projective irreducible components, one
must consider components which are neither projective nor affine,
We exhibit such example in the next section.

2. We recall some of the properties of one of Nagata’s examples
of a nonquasi-projective surface, [6].

Let k' be the rational field, « and b two trascendentals over k&’
such that o® + b* =1,k the algebraic closure of k'(a, b). We let A,
denote the affine, three-dimensional space over k&, and let V be the
affine cone defined by

(3) X2 4 Y? + 3(aX® + bY)Z + 3(* X + 0*Y)Z* = 0.

We let 8 = k[, y, 2] be the coordinate ring of V, K = k(x, y, 2) its
function field. The function ¢: K— K given by

t = o(x) = (a*x + b*y)/b*x?
u = o(y) = [te — (a/b)’[t
v = 0(z) = {[te — (a/b)*] + 1}/3b%

i

defines an involution of K, and the point (¢, u, v) is the generic point
of a cone V° whose equation is again (3). For every closed subset
H of V we denote by H° the closed subset of V° whose defining
ideal in o(B) is a(A), A B being the ideal defining H.

We denote by F' the divisor of V associated to the ideal

& =2-B + (¥ + 3byz + 3b%H-B,

D the divisor of V associated to the ideal P =2-L + y-B. In [6]
Nagata proves the following three statements:
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(i) o defines a birational, biregular isomorphism of the two
open subsets V — F, V° — F° of V, V° respectively.
(4) (ii) k[z,y,z,t, u,v] is the coordinate ring of the affine variety
V- F=V°—-F°,
(i) PN o(P) = k.

For every element f¢ K and every open subset U of V (U° of V)
we denote by (f)y, ((f)ye), the divisor of f on U (on U°). For ex-
ample, we have (x), = F + D, (®)y_r = D. Also, when there is no
danger of confusion, we shall use the same symbol for an effective
divisor and its support. If fec K we have

((f))* = (@(f)yo .

Having introduced all the necessary notations we prove

THEOREM 2.1. There exist two elements fi, f, of ®& such that

(i) fuy, f. generate the unit ideal in k[x,y,z, t, u, v].

(i) If H is any prime divisor of V — F the following holds
ordy (f;) > 0 if, and only if ordy. (f;) > 0,47 =1, 2,

Proof. Take f, = w(a’x + b*y). In faect a’x + by = b*»*t whence
((*x + b*Y))y_r = 2D + D°
and
{0’z + b))y = 2D + D°,
Therefore
(x(a’x + b))y = 3D + D° + F',
To construct f, we start with any element gc ® such that

(a) (9)y =nF + mD’ n>0,m>0

5
(5) (b D'ND=D"ND° = the vertex of V.

For example, a simple computation shows that y* + 3byz + 3b%? satisfies
(a) and (b) above. Now we have

(w_")v =nD — mD’

g
< £ > =nD’ — mD'°
a(g)/ve
<tn> =nD° —mD'" + qF Qe Z.
o(g)/v
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Let
a = (@' + by)"(g/x")(o(g)/t") .
Then
(), = 2mD' + mD'" — qF .
Let r be a positive integer such that o — ¢ > 0. Then
(agy = m(r + 2)D' + mD'* + (rn — q)F .

Since V is normal f, = ag” e ®, and part (b) of (5) shows that
fi, f» generate the unit ideal in Fk[z, v, z, ¢, u,v]. The theorem is
proved.

COROLLARY 2.2. The elements o(f:), 1 = 1,2, of o(®) also satisfy
the requirements of Theorem 2.1.

Proof. It suffices to observe that by (ii) of the theorem, the
varieties of zeros of f; and o(f;) over V — F' are the same, ¢ = 1, 2,

We now proceed to construct a nonquasi-projective scheme which
has quasi-projective components.

We let A, A? denote two copies of three-dimensional affine space
over k. We let

X/ =A4,-F
X] = A — F°

and identify, using o, the two closed subsets V — F, V° — F° of
X!, X, respectively.

We obtain in this way a continuous mapping z of the topological
space X! Il X, onto a topological space X which, in the usual quotient
topology, consists of two irreducible components, X, X;, homeomor-
phic to X/, X] respectively, i.e.

X ILX —XUX,=X.

THEOREM 2.3. X can be given the structure of a scheme in
such a way that X, X, have induced structures isomorphic to X,, X,
respectively, and X, N X, ~V — F~V°* — F°,

Proof. Let g, g, be elements of k|X,Y, Z] which induce on V
the functions f,, f, respectively. Similarly, let h,, &, be elements of
E[T, U, V] which induce a(f)), o(f,) on V°. Finally, let

9= X*+ Y?+ 3(aX? + bYH)Z + 3(a’X + b*Y ) Z?
hy= T+ U?+ 3T+ bU»V + 3(’T + b*U)V* .
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It follows easily from Theorem 2.1 that the following are open
subsets of X, which form a cover of X

U, = [(X{),,]
U, = T[(Xz,)h3]
U, = 7[(X)),, U (X))
U, = 7[(X)),, U X

Furthermore, 7 |z7%(U;) is a homeomorphism for ¢ = 1,2 whence
U,(U,) can be given the structure of the affine scheme (X),, ((X7),).

We now show that U, and U, can be given affine structures in
such a way that X becomes a scheme. We do so for U,, the procedure
for U, being exactly the same. By Theorem 2.1 and Corollary 2.2 we
have that (V — F); = (V — F),;, and therefore the two rings

v
k[x9 y; Z, ty %, /U]fl and k[xy y) z, t! ’H/, ,U]a(fﬁ

are identical. Furthermore (V — F'); is a closed subset of (X{)
whence we have an epimorphism

g1?

kX, Y, Z], — k[, y, 2, t, u, v],,
and similarly an epimorphism
k[Ty U: V]h1 - k[xy Y, %, t, w, v]v(fl> .
The affine ring of U, is then the fibre product of kX, Y, Z], and
k[T, U, V], over klz,y,z,t,u, v],.
One now easily sees that U, N U, has as affine ring the fibre
product of k[X,Y,Z],., and KT, U, V),., over klx,y,z,t, u, v] .,

(=klx, v, 2, t, w, Vloisorry. Therefore, X is a scheme and the theorem
is proved.

THEOREM 2.4. X s mot quasi-projective.

Proof. Let ¢: X, IL X,— X be the canonical surjection, j;: X; —
X, UL X,1=1,2,75: X, N X,— X the canonical injections.

Assume that there exists on X an invertible ample sheaf _&°.
Let &7 = (poj)* (), i = 1,2, & = j*(<). Then, as in Theorem
1.3, we have the commutative diagram

H'X, &%) — H'(X,, &%)

| |

HX,, %) — HY(X, N X, &%) .

Since every divisor of A, — F, A; — F° is principal, we have
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%" ~ 0y, whence (6) becomes

H(X, &%) — H(X,, Ox)

| Ja

H(X,, 0z) —— H'X, 0 X,y O, x)

and, by Theorem 1.3, H°(X, &®") is the fibre product of H’(X;, 0x,)
over H°X,N X,,0x N X,). Now we have, with the notations of
Theorem 1.3,

H(X,, Oxl) = k[X,Y, Z]
HX,, 0x,) = k[T, U, V]
HO(XI m Xzy OX—_lﬂXZ) = k[w7 y! z, t, ’ll/, ’U]

and, by (4, iii), ay(H(X,, 0x,)) N @(H(X,, 0x,)) = k, which clearly con-
tradicts the ampleness of .&~. Hence X is not quasi-projective.

REMARK. As was mentioned in the introduction, the above ex-
ample shows that an invertible sheaf may induce ample sheaves over
every irreducible component of a noncomplete scheme X, and yet fail
to be ample. (See [4], Ch. III, Th. 2.6.2.)

Part II.

Let X be a scheme. As in [1], we denote by F(X) the free
abelian group generated over by the coherent sheaves over X. In
F(X) we consider the subgroup H generated by all elements of the
form ¢ — ' — ", where & ,. % ', & " are sheaves over X
such that 0 — ¥ '— % — & " — 0. We denote by K(X) the group
F(X)/H. We then repeat the above construction considering only
locally free sheaves, and we obtain another group, which we denote
by K,(X), and a natural homomorphism ¢: K,(X) — K(X). ¢ is induced
by the injection 1: F\(X)— F(X), where F(X) is the free abelian
group generated over Z by the locally free sheaves over X. In [1]
the following theorem is proved ([1], Th. 2).

THEOREM 3.1. If X is a nonsingular, irreducible, quasi-projective
scheme, then the homomorphism € is an isomorphism.

REMARK. Throughout the proof, as is pointed out in the remark
on page 108 of [1], the hypothesis of the quasi-projectivity of X is
used only in the proof of the following statement: If X is quasi-
projective, every coherent is a quotient of a locally free sheaf. To
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extend Theorem 3.1 to arbitrary nonsingular schemes it is then
sufficient to prove that, if X is a nonsingular scheme, every coherent
sheaf over X is a quotient of a locally free sheaf. More generally,
we shall prove that the above statement holds when X is a divisorial
scheme,

The essential steps of the proof of Theorem 3.3 are due to
S. Kleiman.

We review first the notion of a divisorial scheme. Let X be a
schme, % an invertible sheaf over X. For any element s of
HX, &) we define

Xy = {ve X|s(X)en,}

where 7, denotes the unique maximal submodule of .&7. In [2] the
author proved that Xy is an open subset of X. ([2], Prop. 2.1)

DEFINITION 3.1, The scheme X is called divisorial if, for every
x e X there exists an invertible sheaf .&~, an element sc¢ H%X, %)
such that X is affine and ¢ X,. Let

Xe ={xeX|we X se H(X, &%), affine, n =1,2, .-}

Then X is divisorial if, and only if, there exists a finite number
&, -+, & of invertible sheaves over X such that

X = Lij Xe, o (See [2], Corollary 3.1).
We now prove

LeEmMA 38.2. Let X be a scheme, % a coherent sheaf over X,
& an invertible sheaf woer X. For a suffictently high integer n,
the sheaf 7 Q %" | Xo is generated by a finite number of ele-
ments of HY(X, 7 & 7%

Proof. Since X is compact, there exists an integer d and sections
Sy, o0+, 5, € HY(X, %% such that

(1) Xg, is affine

(il) X = Ul X,

(i) | Xy, = 05| X,
Let M; = H'Xs,, &), A; = H" Xy, 05). The A,-module M, is finitely
generated, and we let s;;, j=1,..-,¢, be a set of generators. By
(9.8.1) of Chapter I of [5], there exists a sufficiently high integer n such
that the sections s;; @ s®" extend to sections s}; of HY(X, ¥ & .&®).
Since .o~ | Xy, = 0;| Xj,, the A-modules M; and H*(Xy;,, & ® ")
are canonically isomorphic. Hence the sections s},7=1,---,¢,
generate # ® " over Xg. The theorem is proved.
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We are now in the position of proving our main result.

THEOREM 3.3. Let X be a divisorial scheme, F a coherent
sheaf over X. Then & 1is isomorphic to the quotient of a locally
free sheaf over X.

Proof. Since X 1is divisorial, there exist a finite number of
invertible sheaves &7, .-, &7 such that X = |Ji-, X»,. By Theorem
3.2. there exist integers », m;, 1 =1, ---, p, and exact sequences

0y — 7 QHE — % —0
with Supp 27 X — X... Hence we have exact sequences

R0 — F —— G R T — 0.

=2y

Since U7, (X — X)) = @ we obtain an exact sequence

3 g Q00— F —— 0

%

which proves the theorem, since 578" 07 are obviously locally
free sheaves.

For completeness’ sake we state as a theorem the now immediate
generalization of Theorem 3.1.

THEOREM 3.4. Let X be a nonsingular scheme. Then the homo-
morphism e: K(X)— K(X) 1is an isomorphism,

Proof. Apply Theorem 4.2 of [2].
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