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In earlier papers of this author and D. S. Passman, some
properties of finite groups with r.b.n were discussed, where
we say that a group G has r.b. n (representation bound =) if
all the absolutely irreducible characters of G have degree =nu.
In the present paper, the situation where p||G| is a prime
which in some sense is large when compared with % is explored.
An earlier result of this nature to which we refer states that
if G has r.b.(p — 1) then an S, subgroup of G is normal and
abelian. Here we get a weak result of this general type for
groups with r.b.(p?— p —1). For smaller representation
bounds, more information can be obtained. Our main result is:

TuEOREM. Let G have r.b. (2p — 3) for a prime p. Then
either

(i) An S, of G is normal and abelian,

(ii) G is solvable and has p-length 1
or

(iii) G = P X H where Pis an abelian p-group and »p*} | H|.

We begin in this section with some preliminary observations and
results. Let G be a group of order # and let ¢ be a primitive uth
root of unity. Put F' = Q[e] where @ is the field of rational numbers.
If ¢ is an automorphism of F over @, then since the values of any
character y are in F', we may define y°(g9) = [x(9)]’. By a theorem of
Brauer (see [2], Th. 41.1) F' is a splitting field for G and y is the
character of some representation X over F. Therefore, y° is the
character of X° and ¢ permutes the characters of G, taking irreducible
characters into irreducible characters. Furthermore, if y = x° then
X is similar to X° and hence ¢ permutes the eigenvalues of X(g) for
each gegG.

Now fix a prime p # 2 dividing % so that % = p*m and p}m.
Then if ¢, is a primitive mth root of unity, the Galois group & of F
over Q¢ = F, is isomorphic to that of Q] over @ where d is a
primitive p“th root of unity. Since p s 2 this group is cyclic and we
let ¢ be a generator of &. Now ¢ fixes every root of unity in F
which has index prime to p and any two roots which have the same
power of p as index are conjugate under ® = {¢)>. We have o(c) = ¢"
where r is an integer with 7' = 1mod % and since ¢ = d(s,) = ¢,
r = 1 mod m.

The group @ may also be allowed to act on the elements of G by
o.% =a" for xeG. Since »'® = 1mod |G|, this is really a group
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action. Since the action preserves the conjugacy classes in G, we may
regard @ as acting on the classes. If y is any irreducible character
of G then y°(x) = y(x") = y(o-x) and thus the hypothesis of the fol-
lowing lemma of Brauer (see [1]) hold.

(1.1) LeEMMA (Brauer). Let & be a group which acts to permute
both the classes and the irreducible characters of a group G in such
a manner that y’(x) = y(o-x) where 0€®,ze G and o-x is any ele-
ment of o-K, K being the class containing x. Then the numbers of
orbits in the two actions of & are equal and if & is cyclic, the
numbers of fized points are also equal.

In the present situation, if x is a p-regular element of G then
o.x =2" = since 2™ = 1 and » = 1 mod m. Therefore, if G isnot a
p-group, there are at least two classes fixed by the action of G. Thus
in this case there is some nonprincipal irreducible character y with
% = ¥°. This observation is especially useful in connection with the
following.

(1.2) LEMMA. Let G be a group with a faithful irreducible
character y = y°. If (1) < (k + L)(p — 1) for somek, 0 <k <p—1,
then G has an elementary abelian S, subgroup of order <p*.

Proof. Let P be an S, of G. If P is not abelian, let 1 =
ze P’ N 3(P). Since z is in the kernel of every linear constituent of
the restriction y | P, the restriction must have some irreducible con-
stituent + of degree =y such that +(z) = 4+(1)0 where ¢ is a root of
unity of index a power of p. There are no less than p — 1 roots of
unity of index equal to that of 6 and they are all conjugate under
the action of {¢)>. Since o permutes the eigenvalues associated with
x(z) we have y(1) = v(1)(p — 1) = p(p — 1). This contradiction shows
that P is abelian.

If ) is a linear constituent of y | P and « € P#, suppose that Mz) =4,
a root of unity of index p” > 1. Then 6 has p"(p — 1) distinct
algebraic conjugates under the action of {¢> and all of these are
eigenvalues associated with y(x). Thus ' (p — D) Z (1) < p(p — 1)
and hence v = 1. Since this is true for all the linear constituents of
x| P,« has order p and P is elementary abelian,

Now M has exactly p»p — 1 conjugates under the action of (o> and
each has the same kernel of index p in P, The number of distinct
kernels of constituents of y | P is therefore <y(1)/(p — 1) < k. Since
the intersection of the kernels is the identity, we have |P| < p* and
the result follows.

As has been observed by W. Feit, what is essentially the case
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k=1 of (1.2) may be used in place of his own very much deeper
theorem in the proof of Theorem E of [4].

We next apply these results to groups with r.b. [(k + 1)(p — 1) — 1]
where 0 < k < p — 1. We remark first, however, that if G has r.b. n
then so does every homomorphic image, and by a simple application
of Frobenius Reciprocity, ([2], Th. 38.8) so does every subgroup.

(1.3) ProposiTION. Let G have r.b.(k + 1)(p — 1) — 1 where
0<k<p-—1. If Pis an S, of G and O,(G) is the maximum normal
p-subgroup of G, then P/O,(G) is elementary abelian of order =<p*.

Proof. We suppose the statement is false and let G be a counter-
example of minimal order. Certainly p == 2 and G is not a p-group
and thus some nonprincipal irreducible character ¥ of G is fixed by o.
Let N = Kery.

If O,(G) > 1, then by minimality the proposition holds for G/9,(G)
and we get a contradiction. If N is a p’-group then P = S,(G/N)
which is elementary of order <p* by Lemma 1.2 and again there is
a contradiction and thus p||N|. If x(1) =1 then by Lemma 1.2
pk|G:N] and PS N < G. By minimality, P/O,(N) is elementary of
the appropriate order and since O, (N) S O,(G) =1, we have a con-
tradiction. Therefore ¥(1) > 1 and G/N is nonabelian. Since the
S, PN/N of G/N is abelian, U = PN < G. By minimality we can
conclude that O,(U) = 1. Since O(U)NNZESO,N)ESO,(G) =1,
L£,(U)N N =1 and since both are normal in U, O,(U) centralizes N.

Put M =C@y«N) and Z = M N N. Since Z is central in both M
and N, if either M/Z or N/Z has a normal S, then so does M or N
respectively. Since p divides both | M| and |N| and G has no normal
p-subgroup this cannot happen. Therefore both M/Z and N/Z fail to
have normal S, subgroups and by Theorem E of [4], each of M/Z and
N/Z have some irreducible character of degree =p and thus MN/Z =
{M|Z) x (N/Z) has an irreducible character of degree =p* which con-
tradicts MN having r.b. o(p — 1). This proves the result.

2. In this section we present some results which will be used to
prove our theorem. We begin with some character theoretic obser-
vations.

If HA G and y is an irreducible character of G then y | H =
a S, 6, where the 6, are distinct and form a complete orbit of irre-
ducible characters of H under the action of G. This action is defined
by 6°(h) = 6(ghg™) for ge G and he H. Clearly, all 6,1) are equal
and thus each divides y(1). If T; is the subgroup of G fixing 6, we
call it the dnertia group of 6; in G and [G: T;]=¢. If y|H is
irreducible and B is any irreducible character of G/H, viewed as a
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character of G then by Proposition 1.1 of [3], By is an irreducible
character of G.

(2.1) LeEMMA. Let G have a normal p-complement H and suppose
that for every irreducible character of H, the inertia group in G is
all of G. Then G has a nmormal S,.

Proof. G/H is a group which acts both on the irreducible charac-
ters and on the classes of H and the hypotheses of Brauer’s Lemma
(1.1) are satisfied because of the definitions of the actions. In the
present situation, all of the characters are fixed and thus the same
is true of all the classes.

Suppose that P, P,, ---, P, are the S,’s of G and that he H. In
the action of P, on H, the class containing % is fixed and since its
cardinality is prime to p, some element in the class is centralized by
P, and hence % centralizes some P; and H = |J%_, €,(P;). Since all of
the P; are conjugate by elements of H, the subgroups €,(P;) are all
conjugate in H, Since no group is a union of conjugate proper sub-
groups, H = €,(P) and thus P, A G.

(2.2) LEMMA. Let G have r.b.(2k — 1) and let HA G have an
wrreductble character 6 of degree k. Then G/H is abelian.

Proof. Let y be an irreducible constituent of the induced character
6¢. By Frobenius Reciprocity, ¢ is a constituent of y|H and thus
6(1) | x(1). Since (1) < 2k and is divisible by k&, we have y(1) =k
and y | H is irreducible. Let 8 be any irreducible character of G/H
viewed in G. Then By is irreducible and 2k > (8y)(1) = B1)k and

hence B(1) = 1 and all irreducible characters of G/H are linear. The
result follows.

(2.3) ProposITION. Let G have r.b. (2p — 1) and suppose that G
does not have a normal S,. If G is p-solvable, then it is solvable.

Proof. If the statement is false, let G be a minimal counter-
example. If G' has any normal p-subgroup U then G/U fails to have
a normal S, and being p-solvable it is solvable by the minimality of
|G|. Since U is solvable, this is a contradiction.

Suppose that K A G has a normal p-complement H and that p || K|.
Now K fails to have a normal S, since it would be normal in G and
thus by Lemma 2.1 we may conclude that K does not fix some irre-
ducible character 6§ of H. Let o be an irreducible constituent of 9%,
Then | H = a >\, 0; and ¢ > 1. Thus p |t because K/H is a p-group
and we have 2p > (1) = at 0(1) = amp 6(1). Hence ¢(1) =1 and
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(1) = p. By Lemma 2.2 applied to K, G/K is abelian and if K < @
then by minimality K is solvable and thus so is G. Therefore G con-
tains no proper normal subgroup which has a normal p-complement
and order divisible by p.

Now we let H = £,(G). Since G is p-solvable, O,(G/H) is not
trivial and thus its inverse image in G has order divisible by p. Since
it has a normal p-complement H, it is all of G and G and all its
subgroups have normal p-complements, Since H has the nonprincipal
linear character ¢, H' < H. Let P be an S, of G. Then PH' <G
and if H' is not solvable then P A PH' and P centralizes H’. There-
fore €4(H’') A G and has order divisible by p. Since it has a normal
p-complement € H') = G by the preceding observations and thus H’
is abelian. Hence in any case H’ is solvable and therefore so is G
and the result is proved.

3. In this section we prove the theorem. We begin with a pro-
position which when combined with Proposition 2.3 will yield the result.

(3.1) ProrosiTION., Let G have r.b. 2p — 3) and let U = O,(G).
If U is not an abelian direct factor of G then G is p-solvable and
has p-length 1.

Proof., 1If the statement is false let G be a counterexample of
minimum order. Certainly p == 2. If U is not abelian then it has an
irreducible character of degree p and by Lemma 2.2, G/U is abelian
and we have a contradiction. Thus U is abelian and therefore is not
a direct factor of G. Note that by Proposition 1.3, p*y[G: U].

Now suppose that H A G where H > 1 is a p'-group. Then G/H
is not p-solvable with p-length 1 and thus by the minimality of |G|,
0,(G/H) is a direct factor of G/H. Clearly UH/HZ O,(G/H) and we
must have equality since any larger normal p-subgroup than UH/H
would be a normal S, of G/H which does not exist. Thus there exists
KAG K2H with KU=G and KNUH = H. Hence KNU =
KNUHNU=HNU=1 and U is a direct factor of G. This con-
tradiction shows that H cannot exist.

Let C=€U)2U. If pf[C:U] then U is a central S, of C
which therefore has a normal p-complement which is a »’ group normal
in G and hence is trivial. In this case C = U. We show that this
is the only possibility, for if p |[C: U] then C contains P, an abelian
S, of G. Now PN B(N(P))2U and we must have equality or else
P< B(RN,(P)) and C has a normal p-complement which cannot occur.
Therefore, by a corollary of Grun’s theorem (13.5.5 of [5]), C has a
characteristic subgroup D with C/D= U. If DNU =+ 1 then DN U
is a central S, of D since p*t|D| and thus D has a normal p-com-
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plement, a contradiction. Hence DN U =1 and therefore O,(D) = 1.
Since p || D|, we may conclude from Proposition 1.3 that D has an
irreducible character of degree =p — 1. By Lemma 2.2 with k =
» — 1, G/D is abelian and the commutator [G, U] S D. Since [G, Ul U
and UND=1,U<=3(G) and C =G@G. Since UD = C = G, U is a direct
factor of G and we have a contradiction. Thus indeed U = C.

Suppose that K < G is any subgroup of index prime to p. Then
K contains a full S, of G and U=S K. If K contains a normal p’
subgroup then it would centralize U which is not the case and thus
if K is p-solvable of p-length 1 it has a normal S,. By the minimality
of G the only other possibility is that U is a direct factor of K which
again contradicts U = €4U). This shows that the normalizers of the
S,’s of G are the only maximal subgroups with index prime to p.

Now let VS U be a minimal normal subgroup of G. Let »#1
be a linear character of V and let T be the inertia group of A in G.
If ¥ is an irreducible constituent of \¢ then % |V =a >/ N\, and
@), y()<2(p—1). Ifp|[G:T]thent =[G:T]=p. Ifpk|G:T]
and T < G then TS NL(P) for some S,, P of G. In this case

o2p —1) >t =[G:T] =[G: NP)NP): T] = (kp + V|NR(P): T]

by Sylow’s theorem. Thus [JYP):T]=1=%k and ¢t =p+ 1= y(@).
The remaining possibility is 7= G. In that case, if M = Kery, V is
central mod M and |G, VIS M N V. Since VZ M, we conclude from
the minimality of V that M N V =1 and thus V< 3(G). We show
that this cannot occur.

Suppose then that V= 3(G). If U/V is a direct factor of G/V then
it is central and [G, U] < V. If x € G has order ¢, prime to p we have
for w e U, u® = vu for some ve V. Thus 4* =v'u and u = " = v and
v* = 1. Since the order of v is a power of p, v = 1 and #* = u. Since
we U was arbitrary, x e €(U) = U. This contradiction shows that G/V
is p-solvable of p-length 1. If L is the inverse image in G of O,.(G/V)
then L has the central S, V and therefore has a normal p-complement
which must be trivial. Thus £,(G/V) =1 and G/V has a normal S,.
Since V is a p-group, this is a contradiction and thus indeed V & 3(G).

We have now shown that all nonprincipal linear charaters of V are
permuted into orbits of size » or p + 1 by the action of G. There-
fore |V| =1+ Ap + B(p + 1) where A and B are nonnegative inte-
gers. Since p|| V|, B+ 0 and hence some orbit of size p + 1 does
exist and G has an irreducible character y with (1) = p + 1 and
V ZKery.

By the minimality of V it is elementary abelian and every non-
identity element has order p. If some ve V is in a conjugacy class
of G containing exactly p elements, then since C4v) = €4v') for all
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7, 1 <1< p—1, every nonidentity element in the group <{v)> has
exactly p conjugates in G. By a theorem of Burnside (see 12.3.1 of
[5]), either v is central mod Ker y or else y(v) = 0. The first possibility
cannot occur for otherwise [v, G]S VNKery =1 and ve 3(G) which
contradicts v having p conjugates. Thus y vanishes on <v)* and the
character inner product [y | <v>, 1(,;] = (1/p)x(1) which is not an integer.
This contradiction shows that no v ¢ V has exactly p conjugates in G.

No »e V is central in G since otherwise, by the minimality of V,
vy =V is central. Thus if ve V has exactly s < p conjugates in
G, €4(v) is a proper subgroup of G of p’ index and hence in contained
in the normalizer of some S, of G. Since the normalizer has index
p + 1 this contradicts [G : €(v)] = s and hence all ve V are permuted
into orbits of size =p + 1 by the action of G. There are therefore
<1 + (Ap -+ B(p + 1))/(» + 1) orbits and by Brauer’s Lemma (1.1) this
is equal to 1 + A -+ B, the number of orbits of characters. We con-
clude that each orbit has exactly p + 1 elements in both cases and if
1+ ve Vthen|G:€w)] = p + 1. Therefore, €uv) = N (P;) for some
S, P; of G. Thus V¥ = Ui} C,(Ne(P;))* and this union is disjoint. If
| V| = p*and | €,(N(Py)) | = p* then p* — 1 = (p + 1)(p* — 1) and this
implies that ¢ = 2 and | V| = p%

Put W=C(V)=ANeP;). Then US W< G, WAGand G/W
may be regarded as a subgroup of GIL(2, p) in its action on V. The
homomorphism ¢ taking each element of GL(2, p) to its determinant
in GF(p) — 1 may be applied to G/W. If its kernel is proper it is a
subgroup of index dividing p — 1 and yet would be contained in Ny (P;)
which has index p + 1. This shows that ¢ is trivial on G/W.

Since (p + 1) |[G: W], 2|]|G: W] and G/W has an element 7 of
order 2. Since §(7) = 1, both eigenvalues of t as viewed in GL(2, p)
are —1 and 7 is central in G/W. Thus a preimage x of = in G nor-
malizes each N(P;) and thus is in W. Since = # 1 this is a contradiction
and the result is proved.

We are now ready to give the

Proof of the theorem. If an S, of G is normal and abelian we
have (i). If it is normal and nonabelian then it has an irreducible
character of degree p and by Lemma 2.2 its quotient group is abelian
and thus G is solvable and we have case (ii). If G does not have a
normal S, let P = O,G). If P is not an abelian direct factor of G
then by Proposition 3.1, G is p-solvable and has p-length 1. By Pro-
position 2.3 then, G is solvable and again we have case (ii) of the
theorem. The remaining possibility is that P is an abelian direct
factor of G and since p*} |G : P] by Proposition 1.3 we have case (iii)
and the proof is complete.
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Since (ii) is the only case of the theorem in which an S, of G is
not abelian we get the following:

(3.2) CoROLLARY. If G has r.b.(2p — 3) and has a nonabelian
S, subgroup then G is solvable.

We also state another interesting consequence of the theorem,

(3.3) COROLLARY. If a p-solvable group has r.b. 2p — 3) then it
has p-length 1.
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