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We attempt to lay the groundwork for applying the
recently-developed theory of models for the infinitary languages
L%, to analysis. It will be shown that within one of these
languages, axioms may be written whose class of models is
precisely the metric spaces. We show that two complete
separable metric spaces are elementarily equivalent in this
language if and only if they are isomorphic and obtain an
elimination of quantifiers for such spaces. A method is
developed for transferring results on metric spaces to struc-
tures with metrics whose relations are closed under the metric
topology. This class includes Banach Spaces.

When not otherwise indicated, definitions, notations, and model-
theoretic results used in this paper may be found in [5].

The paper will be divided into three sections, as follows: I. Axio-
matization of metric spaces, II. Theorems on metric systems, and III.
Metric algebraic systems. Model-theoretic results will be introduced
as needed.

I. Axiomatization of metric spaces. Our method of axiomati-
zation of metric spaces is chosen in order to make their definition
possible with one sentence in L7, (for the definition of L.., ,, and
w, see [5]). We begin with a definition of the rational numbers:

DeFINITION 1.1. Q= <@, +,-,0,1, <>, a structure of type
qg=<3,3,0,0,2> will be called a rational number system if and
only if:

(1) @ is an ordered field (see [9, pp. 77, 5]).

(2) (V)(0<v— Vico Vjcal¥or (L + +o« + 1) = 1 4 e + 1)),
4 factors 1 factors

THEOREM 1.2. FEach rational number system is isomorphic to the
rational numbers.

Proof. Each ordered field contains an isomorphic copy of the
rational numbers, and by axiom 2, each positive (thus each negative)
element of our field is the ratio of two “integers”.

DEFINITION 1.3. A structure A = <A, M, Q, +,-,0,1, <,d> of
type m = <1,1,8,8,0,0,2,3,> is a metric system if and only if
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<@, +,-,0,1, <> is a rational number system, and -+, ., < apply
only to members of @, and:

L) (Yo )(M(ve) V Qwe)) A (71 M(v,) V 71 Q(v0)))

(2) (Yv/3)(d(v/3) — M(v,) A M(vy) A 0 <v,)

(3)  (You/4)(d(v/3) N v, < v5— d(vy, vy, ¥3))

(4)  (Y/3)Fv)(d(v/3) — vy < v, A d(vy, v, V3))

(5)  (Yv/2)(@v)(M(v)) N M(v,) — d(v]3))

(6)  (Yo/3)(d(v/3) — d(vy, v, vs))

(Ty  (Yu/5)(d(v/3) A d(vy, vs, v,) — d(v,, Vs, v, + D))

(8)  (Vo/2)(Fv)(M(vy) N M(v)) A T(vo = 1) = 0< v, A T1d(v/3))

(9)  (Vv/3)(M(v)) A v, =01 A O < v, — d(v/3)).

The general idea of these axioms is to identify each real number
with the set of rationals greater than it. Axioms 1 to 4 simply pre-
pare the groundwork for the above interpretation. Axiom 5 says
that to each pair of points there corresponds a distance. Axiom 6
gives the symmetry of distance, 7 gives the triangle inequality, 8
yields the fact that any pair of distinect points differ by a positive
distance, and 9 says that the distance from a point to itself is 0. To
formalize the above discussion, we have the following representation
theorem for metric systems:

THEOREM 1.4. (a) Let A =<A, M, Q, +,+,0,1, <, d>be a metric
system. Then WA* =M, m) is a metric space, where m(x,y) =
inf {g/<x, y, ¢> € d} (for each pair x,y € M). This metric space is called
the associated space of the metric system A,

(b) Let .#7=<{M, my be a metric space. Then the associated
system _7*=<MUQ,M,Q,+,-,0,1, <,dy of 7 is a metric
system, where Q together with its relations and constants (+, -, 0,1, <)
18 the rational numbers, our union MUQ is disjoint, and

d =z, y, o/m@,y) < qgeQ}.

Proof, Consider the completion R of Q. If z,yeM, by 5
{g/{x,y, ¢>€d} is nonempty, and by 2, all its elements are positive
(thus 0 is a lower bound). Thus m(x,y) exists. It remains to be
shown that m is a metric. To show the triangle inequality we note
that axiom 7 gives us the fact that if <{x,y, ¢>ed and <y, z, r>ed,
then <w,%,q + ry)ed. Thus

inf {gKz, ¥, ¢ € d} + inf {rKy, 2z, r> e d} = inf {sKx, 2, s)ed},

in other words m(x, 2) < m(x, y) + m(y, 2). The other laws are checked
with similar case. This shows (a), and under the assumptions of (b),
axioms 1, --., 9 for metric systems can easily be shown.

LEmmaA 1.6, (a) If 2, B are meiric spaces or metric systems and
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N =B, then WA* = B* (where for metric spaces, isomorphism =
isometry).

(b) If WA is a metric space or a metric system, A = (A*)*,

(¢) For metric systems A, B, e Iso Sub (B) 1if and only if
W* = € for some subspace € of B*, (We write e Iso Sub (B) if
and only if W= = for some =B, Aelso Sub,(B) if and only if
WA e Iso Sub (B) and card (A) < e.)

The proof is routine, though somewhat long, and left to the
reader. We will now say that a metric system has property P if and
only if its associated space has that property. We will also say that
a metric system and a metric subsystem of it have property @ if and
only if the associated space and subspace have that property (for
example, the subspace may be dense). Often we will want to translate
these properties into our first-order infinitary language. A proof
similar to that of Theorem 17, [6] (with @ in place of 2, and ww
in place of ec) shows that completeness cannot be characterized by a
single sentence in L7T,. It is clear, however, that complete metric
systems are precisely those which satisfy the following sentence in

L’d’lllwlz Ct = (V/v/w)((v’uw) O < vw - Vi<wAi<j<wAi<k<wd(/vj) /vlu ,vw))
= (V) (VV0s0) 0 < Vi — (Vi<ml\i<j<wd('vw+1y Vjy Vyps2))))

since this sentence simply says that each sequence (v/w) which is
cauchy (i.e., such that for each v there is an ¢ < w such that for each
finite 7, k such that j and &k are greater than ¢, v; and v, are “closer
together” than v,) there is a limit (v,.,). It is also clear that separable
metric systems are simply those satisfying Sep, where

Sep = (Hv/w)(vvw)(vvw+l)(M(vm) /\ 0 < Vot+1 Vi<wd(va Vi /Uw-H)) .

Thus most of our future dealings with metric systems will take place
in L™

wyw*
II. Theorems on metric systems.

THEOREM 2.1. Let A<, ., B and let A or B be separable. Then
A =B. (For definition of <,, «, see [5], Definition 2.2).

Proof. Assume 2 is separable. Let € = < {n,, n,, ---}, m’ > be
a dense countable subspace of 2*, Then % = D[n,, ---], where

D = (V0 )(VVi1)(M(,) A O < Vi1 — Vicol(Vay Viy Vi) -

Thus € is dense in B*, since by our assumption, B = D[n, +--].
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Now let be M’, where B =B, M’,.-->. Since € is dense in B*,
there is a sequence n;,n,,--- of the m/s approaching b. Thus
B = (Fv,) L[Ny, + + -], where L= (V0,:1)(0< V011 =V ico Aicico@(Vuy Vj, Voir))e
Thus A = (3v,)L[n;, -], but since A* is a subspace of B* and limits
are unique in metric spaces A* =B*, If A={A4, M, ---> this implies
that M = M’, so A = B, thus 2 = B. This proves the theorem in the
first case, but if ®B is separable, then 2 must also be, from which the
theorem must follow in the second case.

It can be shown similarly that if A <,,,,B and A is dense in B,
then A= B, The following definition and results may be found in
Tarski,

DEFINITION 2.2, Let 2 be a structure of type ¢, Dom(¢) = ¢ < =,
and let @ be a well-ordering of A, Then

Des (W) = (A F) ACA F) A (Aewzd A F) A (Aewz(A F'L))
where
F={v, =v/a; = a;} U {v; = c;ja; = ¢;} U {e; = ¢;/e; = ¢},
F' = {1 v =v;/a; #a;} U {1 v; =cj/a; #c;} UA{T e = cj/e; # ¢l
F, = {R,(x"j/t(p))[b"j/t(p) € R,,
where b;, = a, if x;, = v, and b;, = ¢, ifx;, = ¢} and
F', = {71 R,(x"5/t(p)) b'j/t(p) ¢ R,, b defined as for F,}.

COROLLARY 2.3. Let U be a structure of type t. Then A e Iso
Sub (B) if and only if B = (3 X)Des (N), where X = FV(Des(2)).

Note that if ¢(A4) < w, then Des () and (3 X)Des (A) are both
formulas (the latter a sentence) of LZ..

DEFINITION 2.4, Let € be a countable metric system, ¢ a mapping
from @ one-one onto C. Then let
Dcc(@) - (gv/w)(v /Uw)(v vwﬁ'l)(DeSc(@) A (M(/vw) /\ O < vw"rl
- Vi<wd(viy Vo vw-H))) .

Note that 2 is dense in B for some A = € if and only if

B E De,(€) .

Thus De, should be viewed as a method of expressing within L7, the
fact that a countable space is dense in another space. If it is unne-
cessary to distinguish our well-ordering ¢, we simply write Dc¢(€) in
place of De¢,(€).
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LEmMA 2.5, If U is a metric system, 2 = Sep if and only if for
some countable metric system €, A = De(€).

The proof is left to the reader.

THEOREM 2.6. Let U be a complete separable metric system, B
a metric system. Then A =, , B if and only if A =B, (A defini-
tion of =,,. is found in 2.1, [5].)

Proof. Let <K, k) be a dense countable subspace of U*, where
A=<A, M, >,B3=(B,N,-->.

Then A = De({K, k>*) A Ct, so B = De((K, k>*) A Ct. By the remark
following Definition 2.4, ® is dense in B for some D = (K, ky. Thus
up to isomorphism, (K, k> is dense in B* and A*, two complete metric
spaces. It is well-known in the theory of metric spaces that if two
complete spaces have the same dense subspace (up to isometry), then
the spaces are isometric. Thus by Lemma 1.5, a, A = B.

We are going on to eliminate quantifiers for complete separable
metric systems. First we make the notation B(S) for all the boolean
combinations of a set of formulas S (see Definition 5.1, [6]), and
restate Theorem 5.2 of that paper.

THEOREM 2.7. Let S be a consistent set of sentemces (i.e., one
with models) im Lt,, E a set of sentences in L., such that there is
a set B'(E) with the property that for each ¢ € B(E') there is a ¢' € B'(E)
with S & ¢ — ¢'. For any consistent set of sentences T L, SC T,
assume there i1s an ACE such that Tc T,(SU A) (and SU A con~-
sistent). Then for any sentence ¢ € Lt, there is o 0 € B(E) such that
SE¢—80.

LemMA 2.8. Let Sc L, be a consistent set of sentences, E C LE,
a set of sentences such that (1) for any models A, Bof S, +of A =0,
B0, 0cE, then A =,,.B, and (2) for any model A of S there is a 0 € K
such that W= 6. Then (a) of T Lt is a consistent set of sentences
and S T, then there is a 0 € K such that TC T,.(S U {6}) and S U {6}
1s comnsistent, (b) if ¢ € B(E),SE¢ — VY A for some AC E, and (¢) for
any sentence { e Lt there is a ¢ < B(E) such that S E { — ¢.

Proof. (a) If A is a model of 7, then A is a model of S, so
there is a # ¢ K such that % = . Now suppose B is a model of S
such that B 6. Then A =,,.B, so B T. Thus Tc T.(SU{O}.
(b) ¢ = Vier Ajes,0is, 0is€ B or 7 6;;€ E for each 4, 5. Let ¢; = Ajes,0:;
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be a disjunct. If for some ¢, J, 4;, € B, we assert that either
Sk ¢, — 0y

or SE 7¢;. To show this, assume not S Eg¢; <8, Clearly,
St ¢,—8;;, thus not S = 6,; — ¢,. But then by (1), S = 6,;,— T14,,
therefore S Tlg,. If for each j, 710,€KE, ¢ = Ajes, 1( 10:).
Thus by 2) Sk ¢,V E — {0,;/7eJ;}). Thus in any of the above
cases SE ¢~V vex, O with each #,¢ E. Thus

SE ¢ VierV vex; 0 s

and eliminating repetitions, S £ ¢ — VY, which is condition (b) (note
that while YV A may not be in Lt it will be in L%, for some 7’ = =,
and all our statements have meaning in that language). (c) This is
immediate for (a) and (b) and Theorem 2.7, using

B(E)={V A/[ACE}.

THEOREM 2.9. Let pe Ly, be a sentence. Then if ¥ s the
conjunction of the axitoms for a metric system together with Sep and
Ct, (i.e., is an axtom for complete separable metric systems) then
2= ¢ 0 for some 0 € B(E), where K = {Dc¢(€)/€ a countable metric
system)}.

Proof. Let S = {¥}. Then S is a consistent set of sentences in
Ly .. E is also a set of sentences in L, , and S, F satisfy condi-
tions (1) (by the proof of Theorem 2.6) and (2) (by Lemma 2.5) of
Lemma 2.8, Thus our conclusion follows from (¢) of that lemma,

To eliminate quantifiers for all formulas in Lf, for the theory
of complete separable metric spaces, we shall need the following:

DEFINITION 2.10. Let ¢ be a type, 7 an ordinal, Then t+¢ is the
type defined by ¢ = ¢+4/Dom(¢#) and if j < 4, then #x+¢(Dom(t) + j) = 0.

DEFINITION 2.11. Let € = (C, K, ---) be a countable metric system,
@:' = <C, K, LI ej>j<(uy {ej/j < G)} = DCK .

Then if ¢ is a mapping of ® one-one onto C, DC,(€, D) is the sentence
of L5 defined as follows:

DC.(€, D) = (3v/@)(Vv,)(VV,1)(Des (€')
/\ (M(vw) /\ 0 </Uw+1 - Vi<wd(viy Vusy var!-l))) .

If distinguishing ¢ is unnecessary, we again leave it out and
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write DC(€, D) in place of DC.(€, D). DC(€, D) should be considered
as Dc(€) with some constants added.

THEOREM 2.12. Let U, B be m = w-structures such that A/m, B/m
are complete separable metric systems. If A ke DCE,D) and
B = DCE, D), then WA = B,

Proof. Let C = {¢, ¢, --+}, where € is dense in %A/m. Let
6 = DCC, Dy,

where ¢ = {¢,, ¢, --+> Suppose B = 0. Then there is a sequence
{b./n < w} satisfying 6 without the existential quantifier. The map
f: € — @ such that f(c,) = b, is an isomorphism because of Des (€).
In particular, it is an isomorphism from € to € preserving constants,.
Since € is dense in A/m, €' is dense in B/m, thus this isomorphism
can be extended to an isomorphism from U to B.

COROLLARY 2.13. Let 0ec L7: be a sentence. Then 3 = 0« ¢,
where ¢ € B(H), H = {DC (€, D)/€ countable, D C C, and ¢ a map from
@ one-one onto C}.

Proof. Clearly S = {X} is a consistent set of sentences in L7:,
and H is also a set of sentences in LJ7:. By Theorem 2.12, condition
(1) of Lemma 2.8 is satisfied. Condition (2) follows from the fact that
any separable metric space with a countable number of constants has
a countable dense subsystem containing those constants. If D is that
set of constants, and € is that system, then € = DC,(€, D) for any
mapping of @ one-one onto C. Thus our Corollary follows from (c)
of that lemma.

We now need the concept of substitution for free occurrences of
variable and for constants in a formula. Intuitively, by

Sbl{y:/i e I}, {w:/i € I}0

we mean the formula obtained by substituting y; for «. at each free
occurrence of x; or constant x,, and leaving unchanged other terms in
6. Somewhat more formally, we consider the function f: VUC— VU C
(see Definition 1.1, [5]) such that for each iel, f(x;) = v;, and if
z,eVudl,iel, fx;) = =;, and:

DerINITION 2.14. Sb0 is the formula defined inductively as
follows:

(1) Sbi(w; = w;) = flw;) = flay),

(2) If 5e (VU O™, then Sby(P,(x°j)) = P,(fowxoj),
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(3) Sbf(—| 0) = " Sbf(‘),

(4) Sb(V X) =V {Sb,0/0 € X},

(5) Sb (A X) = A {Sbs0/0 € X},

6) Sby(v W)§ = (v W)Sbs,0, where f'(x) = f(x) forxe VU C— W,
fl(x) =a if xe W,

(7) Sb,aW)o = (3W)Sh,.6.

We also define Sb({y;/i € I}, {x;/i e [})6 = Sb0 with f as constructed
in the last sentence before our definition.

An immediate consequence of the definition is the fact that if
A = Sb({y,/t € I}, {x;/i € I})(0 — ¢) and none of the wx; occur in ¢, then
A = 60— Sb({y;/i e I}, {x;/i e I})¢. Also, if a sentence 0 = ¢ and none
of the x; occur in 6, then 6 &= Sb({y,/i € I}, {x;/i € I})¢.

THEOREM 2.15, If FelL}, 1is a formula, then ¥ F—0 for
some 0 € B(E'), where ¢ € E' vf and only if

¢ = Sb({v:/i € ®}, {e;/i € w}) DC(C, D),
with €, D as in Definition 2.11, D = {e;/i € w}.

Proof. We can always put F in an equivalent form F” such that
{v;/1 € W} is the set of free variables of F’. Thus we lose no generality
in assuming {v,;/7 € w} is the set of free variables of F. Now consider
the sentence ¢ = Sb({e;/i € w}, {v;/i ¢ w}) F'e L. For some 0ec B(H),
2= ¢— 0. Since Y contains no reference to the e¢;, we also have
2 = Sb({v;/t € w}, {e;/i € W}) (¢ — 0), thus I = F — Sb({v;/7 € w},{e;/i € w})I.
But by (3), (4), and (5) of Definition 2.14, Sb({v;/i € w}, {e;/ € w})0 € B(E").

Thus we have an elimination of quantifiers in the theory of
complete separable metric systems for all formulas of L7, . This
elimination does not always take place within that language. We shall
proceed to universal equivalence for complete metric systems. Using
Corollary 2.3, Tarski has shown that two structures are universally
equivalent in L!_ (in symbols A =, B) if and only if Iso Sub.(€) =
Iso Sub.(®B). Thus if we allow U= Uy,, we have the fact that
A =4B if and only if Iso Sub,, (A) = Iso Sub, (B) for any two metric
systems,

DErINITION 2.16. Let K be a class of complete metric systems.
Then SC(K) = {B/for some Ac K, B A and B is a seperable complete
metric system}. ISC(K) = {D/D = B for some Be SC(K)}.

ISCH{A}) = ISC(X) .

THEOREM 2.17. Let U, B be complete metric systems., Then A= ,B
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if and only 1if ISCR) = ISC(B).

Proof. Assume first that Iso Sub, () = Iso Sub, (B) (i.e., that
A=,B). Let €eISCQA). Since € is separable and complete there is
a countable © — A such that ® is dense in an isomorphic copy of
€. By our assumption, there is a countable € B such that € = 9.
Since B is complete, the completion of € is contained in B (by pre-
vious remarks, this is isomorphic to €). Thus ISC() c ISC(D).
Similarly, ISC(8) c ISCXI).

Conversely, assume ISC() = ISC(B). Let € eIso Sub, (A). Since
A is complete, the completion of an isomorphic copy of € is contained
in A, thus another isomorphic copy of its completion is contained in B.
Thus an isomorphic copy of € is contained in B, This shows that
Iso Sub, () < Iso Sub, (B), and the reverse inclusion is shown similarly.

COROLLARY 2.18. Let A, B be complete separable metric systems,
Then A =B 1if and only if for some € B, A =€ and for some
DCUAB =D,

Universal equivalence, even for complete separable spaces, is not
as strong as elementary equivalence. The following example, when
formalized, provides a counterexample. Let

N = {f: 0 — R/ZZ,(f(1))* < o},

where R is the real numbers. Define m(f, 9) = 1/ 2.(f(1)—g(1)).
Then m can be shown to be a metric on N. Let

S={feN/0=/1)=1}.

Then Sc N and the following isometry takes N into S. Let F: N — S
by F(£)(i) = f(i —1),4i > 1 and F(f)(1) = 0.

If B is the metric system associated with N, % that associated
with S, then 2, B are complete and separable, A B, and B = € ¥,
but not A = B. If we take S’ = {f e N/f(0) € Q} (Q the set of rationals),
we have an example (using S’, N) of a sepable complete metric system
universally equivalent to a separable incomplete system. There are
also examples of separable systems universally equivalent to insepar-
able systems.

III. Metric algebraic systems. The theory of Banach Algebras
(see Naimark) has been one of the most important in analysis during the
past twenty years. The theories of metric groups (see Montgomery-
Zippin), Banach Spaces (see Dunford-Schwartz), normed spaces (see
Day), and many others have been essential to functional analysis.
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Measure theory can, in many respects, be reduced to the theory of
certain metric Boolean algebras, c.f. [4, pp. 165-174]. All these
theories contain a common feature: they are theories of algebraic
structures with metric topologies. Most of them share a second fea-
ture: they are defined in terms of a norm rather than a metric. A
metric, however, can easily be defined by allowing m(a, b) = ||a — b]].
In this section we will extend the results obtained for metric spaces
to algebraic structures with metric topologies.

DEFINITION 3.1. A metric algebraic system is a structure

A = <Aa M, Q, +, Oy 1y <ydy Rp>p<0

with o < w and:
(al) A/m is a metric system,
(a2) If o = #(p), we have: M(c,). If 0 < t(p), we have:

(V o[t (B,(v/H(D)) — AicernM(v2))

(ad) (¥ v/t(D)) A0V E(p)/v/2U(D))(R,(v/E(D))
V = [0 < vy A (B (E(0)/v/28(p))
A (A<t @iy Vepy i) Vaem)))])

(For notation used here see [5], discussion following Def. 1.1.)

In the above axioms, (a2) simply restricts the relations (and constants)
to the metric space, while (a3) closes all the relations (for the defini-
tion of a closed relation extend Dunford-Schwartz, p. 57, Def. 3 in
the obvious manner). Since continuous operations are closed as rela-
tions, it is clear that metric topological groups, etc. can be considered
by use of the above axioms. Banach Spaces can also be considered,
despite the fact that they are defined by use of two metric spaces,
rather than one. We simply work with the disjoint union of the
universes of the metric spaces involved, and define a metric on that
set by setting it equal to the appropriate of the two existing metrics
for two elements of the same set, and setting it equal to 1 otherwise.
Both sets now become closed and we proceed with the axiomatization
in the obvious manner. The remaining systems mentioned at the
beginning of this section can similarly be axiomatized as metric alge-
braic systems.

DErFINITION 3.2. Let U be a metric algebraic system, and let W
be a predicate defined in terms of the relations of %/m. Then U ig
said to have the property W if and only if 2/m satisfies W.



APPLICATIONS OF INFINITARY LANGUAGES TO METRIC SPACES 309

In the above definition, W ecould define the property of being
separable, complete, etc. Note here that any substructure of a metric
algebraic system is itself a metric algebraic system, provided it re-
mains a metric system.

DErFINITION 3.3. Let A’ R,. Then A’ is dense in R, if and only
if for any <a,, ++-, @y,_.» € R, and any ¢ > 0, there is an

<a’0y ct Y a"t(p)—-1> S A,

such that for each j < #(p),<a;, @';, ¢>ed. A metric algebraic sub-
system € of a metric algebraic system 9 is called dense in 2 if and
only if €/m is dense in A/m and the restriction of each R, to C is
dense in R,.

Thus a subset of a relation is called dense here if and only if it
is dense in the product topology. The above definition is the “correct”
one for density of subsystems, as shown by the following fact: we
can now make Definition, Theorem, Lemma, or Corollary 3.x(x = 4)
from the corresponding Definition, Theorem, Lemma, or Corrollary 2.x
by making the following alterations (where necessary) in their texts:
change “metric system” to “metric algebraic system of type ¢’ and
change “m” (the type of metric systems) to “#’. The proofs must be
altered somewhat, although only one (done below) creates any problem
in the new setting. Finally, the meaning of the words has been
changed somewhat. Our new DC,E, D), for example, now refers to
all the relations in our system, rather then only the metric relations. A
separable Banach Space, for example, is determined by the relation of
vector sum (as well as norm, i.e., our metric) and scalar product on
a dense countable subset.

LEmMmA 3.5. (Corresponding to Lemma 2.5). If A is a metric
algebraic system of type t, W = Sep if and only if for some countable
metric algebraic system of type t, €, A &= De(€),

Proof. First note that if N, is any countable subset of A!®,
then there is a countable C, c A such that N, c C,*» (for example,
let C, be the collection of all points which are any coordinate for any
point of N,). Since the domain o of ¢ is countable, we can take
C=U,<C,UQ, and let € be C together with the restrictions of all
the relations of 2. Then € is clearly countable and U & Dc(€).

A remark left implicit in §II is that two separable complete sys-
tems are isomorphic if and only if they contain isomorphic dense sub-
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systems. This remains true here only because our relations are
required to be closed.
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