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In this paper, a class of singular integral transforms of
the Calderόn-Zygmund type is constructed for the spaces
2r(Ψp, λ); Ψp is the p-adic or p-series field, λ is additive Haar
measure, r > 1. The transforms have the form

Lf(y) = lϊm

where m is the modular function for the field and

I w(x)dλ(x) = 0 .
J{mU)=l}

The fundamental result is the existence of the £r-limit and
the M. Riesz inequality | | Lf\\r < Ar | | / | | r . Several examples
of functions w defining transforms L are given. In particular,
subsets Φ of Ψp such that Φ n — Φ = 0 and Φ U — Φ = Ψp\{0}
together with functions w satisfying w(—x)= —w(x) yield
transforms which are analogues of the classical Hubert trans-
form. Multipliers for L are also discussed. A preliminary
theorem of independent interest states that the £2-Fourier
transform on certain O-dimensional locally compact Abelian
groups converges pointwise.

The construction of singular integrals is in § 3; the main result

is (3.13). Section 2 contains preliminary results and §4 gives examples

and calculations. Section 3 begins with a notational review for the

fields Ψp. Other notation is, generally, as in [5]. We also refer to

[5] for the required background material from abstract harmonic
analysis. For a locally compact Hausdorff space Y, K(F) is the com-
plex-valued continuous functions on Y; &0(Y) and &00(Y) denote, respec-
tively, continuous functions which are "small" outside of compact sets
and continuous functions with compact support. The symbol Z denotes
the integers, Z+ the positive integers, and R the real numbers. The
characteristic function of a set A is denoted by ξΛ; its complement by
A'. The Fourier transform of a function / on a locally compact Abelian
group G is denoted by /; / denotes the inverse Fourier transform,
defined on the character group X of G. For a given Haar measure
on G, we always assume that Haar measure on X is chosen so that

— f i f f G
 {

2* Three preliminary theorems. In this section, we single out
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three results ((2.1), (2.2), and (2.3)) which will be used frequently in
the constructions of § 3. The results are of some interest in themselves.

Let F be a nondiscrete locally compact field with additive Haar
measure λ and modular function m; hence,

f(xa)d\(x) = [m(α)]-1 f(x)d\(x)
F JF

for fe&iiF, λ) and a e F\{0}. The measure μ = λ/m is a multiplicative
Haar measure for F\{ϋ). For t > 0, let Vt = {xe F: m(x) ^ ί}. The
family {Ft}t>0 is a neighborhood base at 0 for the topology of F; see
[1], pp. 32-34. The equalities below are easily verified:

xVmiv) = Vm{xy) and m(x) = _L-λ(F m U ) ) .
λ( K i)

(2.1) THEOREM. The function m^ξ^ is in &r(F, λ) if and only
if r > 1; m~1ζVi is in 2r(F} λ) if and only if r < 1.

Proof. Since / (̂i77) = <*> (î 7 is not compact), at least one of m-1ζvi

and m " 1 ^ is not in S^λ). By the inversion in variance of μ, both
are not in S^λ). The "only if" statements follow from the inequali-
ties m(x) ^ 1 and m(x) > 1 for x e VΊ and xe V[, respectively.

Since Ύt = U {Vm{x): m(x) ^ ί}, we have

MVt) = sup{λ(Fm(X)): m(a ) ^ ί} = λ(Fi) sup{m(x); m(α ) ^ ί}:

thus, λ(Fί) ^ λ(Fi)ί. Using this inequality and supposing r > 1, we
have

S [ 5 T d\(x) = r ( f7l(a;) Γ-Lζ^

r S ^ λ ( F ί ) d ί

(Fubini's theorem applies because (x, t) —• ξVt{x) is product-measurable.)
The result for 0 < r < 1 follows from that for r > 1 by inversion

invariance; if r <; 0, then m~r is bounded on the compact set Vλ.
We will use the following theorem of Edwards and Hewitt [3]

on differentiation of indefinite integrals.

(2.2) THEOREM. Let G be a locally compact group with left
Haar measure λ. Suppose that there is a sequence (Un)ζ=1 of Borel
subsets of G satisfying the following conditions:



HILBERT TRANSFORMS FOR THE p-ADIC AND p-SERIES FIELDS 331

( i ) Every neighborhood of e contains some Un, and Un+1 c Un

for n = 1, 2, . . . .
(ii) There is a constant C such that

0 < X(UnU^) < CX(Un), ^ = 1, 2,

Then the equality

(iii) l i m T777τ(

holds l.a.e. for each fe2uloc (G) and a.e. for each fe21 (G).

For the proof of (2.2), see [3]; we will apply it to certain O-dimen-
sional, locally compact, Abelian groups. If such a group is first coun-
table, the conditions (2.2. i) and (2.2. ii) are met; in fact, the Z7/s can
be taken as subgroups.

If / is a function in S2(iϊ), then the functions fn = /£]_*,Λ [ converge
pointwise and in the S2 norm to /. Thus the S2 Fourier transforms
fn converge in the 82 norm to / . It is an open question whether fn

always converges pointwise a.e. [For a discussion see [9], p. 85. The
analogous question for the circle group has recently been answered
affirmatively by L. Carleson.] The following theorem asserts that
for certain locally compact groups [not Rl] the analogous question has
an affirmative answer. We recall that every neighborhood of the unit
β in a O-dimensional, locally compact group contains a compact open
subgroup; ([5] Th. (7.7), p. 62). For a subset Φ of the character group
X of a locally compact group G, A(G, Φ) denotes the annihilator of Φ
in G. Throughout this paper, convolution (*) is taken with respect
to Haar measure.

(2.3) THEOREM. Let G be a locally compact Abelian group with
first countable and O-dimensional character group X, and let{Φn}ζ=1 be
a basis at ee X consisting of compact open subgroups such that
Φn+1 c Φn. Suppose λ and μ are normalized Haar measures for G
and X, respectively. 7//eS 2 (λ) and fn = fζA{G,Φn), then

f(χ) = limΛ(χ) a.e.
n—>oo

Proof. The subgroups A(G, Φn) of G are compact as the groups
Φn are both compact and open (see [5], p. 369); we have

If χeΦn, then χ(x) = 1 for all xeA(G, Φn); and so the value of the
above integral is X(A(G, Φn)). If χ g Φn, then χ | A{Q,Φn) is a non trivial
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character of the compact group A(G, Φn). A Haar measure on this
group is simply λ restricted to it, and so in this case the integral is
zero ([5], (23.19), p. 363). Thus we have proved that

Using the identity {φ*ψT = φ^ψ^ (valid for φ e 2λ(X, μ) and ψ e 22(X,μ))
and the inversion formulas, it is easy to see that (gf)~ = g*f whenever
g e Si(G) is such that g e 21(X). Taking g = ζA{QiΦn) and using (1), we obtain

fn = (ξAlθ.*n)fr = L«.Φn)*f = MA(G, Φn))ζΦn*f

By PlanchereΓs theorem, we have || ξA{G,Φn) \\ I = \\ ζAia,Φn) II I; thus,
λ(A(G, Φn)) = [λ(A(G, Φn))]*λ(Φn). Hence we have λ(A(G, Φn)) = l/μ(Φn),
and it follows that

}{τ)dμ(τ).
μ(Φn)

The sets {Φn}ζ=i satisfy (2.2. i) and (2.2. ii) for X, and the function / is
in S1)loc(X) as it is in 82(X). Thus, by (2.2), we have l i m ^ / J χ ) = /(χ)
for almost all χ e χ.

We will apply (2.3) when G = (Ψp, + ) .

3* Hubert transforms for Ωp (p-adic field) and Γp (p-series
field). As a set, ΨP{ΩP or Γp) is all doubly infinite sequences
% — (%n)7=-oo of integers such that 0 fg xn ^ p — 1 for each n and such
that xn = 0 for almost all negative n. (The fields Ωp and Γp differ in
the definition of multiplication and addition; see [5], § 10 and [7], §26.)
The mapping

(3.1) x -> χy(x) = exp (iσ(xy))

where

0

(3.2) σ(x) = 2π X x p3'-1 on Ωp and σ(x) = 2πxop~1 on JΓP

is a topological isomorphism of Ψp onto its character group. (The
character group of Ωp is computed in [5], pp. 400-402, but the func-
tion σ is not used there. Minor modifications show the role of σ as
described above. With modifications in that computation, the result
for Γp can also be obtained. The result is also in [4] and in [6].)
We will usually identify the character group of Ψp with Ψp; thus, χy

will be written as y. For a nonzero x e Ψp, s(x) denotes the unique
integer such that xs{x) Φ 0 and xn = 0 if n < s(x). We use the nota-
tions

(3.3) Ak = {x: s(x) ^ k}; Δh = [x: s(x) = k}) uk = (δfcn)"=_oo ,
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keZ. The family {ΛA}~=-« °f compact open subgroups of Ψp forms a
neighborhood base at 0. The multiplicative identity of Ψp is u = uQ.
We also record the following identities:

(3.4) m(x) = v~s{x) and Vm{x) = As{x)

Άϊι = A_k; xAk = Ak+S{x]; xAk =

s(xy) = s(x) +

(3.6) A(ΨP1 Ak) = Λ_k+1 .

(We note that the function m is a valuation for Ψp and that s is a
logrithmic valuation. We will not use any valuation theory in this
paper.)

Normalization of Haar measure λ on Ψp so that the companion
Haar measure on the character group (= Ψp) is the same requires
(by the proof of (2.3) and (3.6)) that λ(A) = IMA)]"1. Since λ(Λ0)
= p λ ^ ) , we must have X(Aλ) — p~1/2. It is then immediate that
χ(An) — -p-n+(1/2) for all integers n. With these notational preliminaries,
we can give the definition of singular integrals.

First, w will denote a bounded λ-measurable function on Ao

satisfying

(3.7) \ w(x)dX(x) - 0;
J JO

w is extended to all of Ψp by letting w(x)(x* = xu_six) e Ao) if x Φ 0,
and w(0) = 1. The kernels ψ which define the transforms are defined
by

(3.8)
m{x)

we let ψk = ψζA>k9 keZ. (The function m on Ψp is a precise analogue
of the function x—>\x\ on R. The real number analogue of AQ is the
two-element set {— 1,1}; and, the condition (3.7) for w is like demand-
ing that w(l) + w(— 1) = 0, if w were a function on {—1, 1}. Such
a function defines the classical Hubert transform.)

If r > 1, the convolution /*^ Λ is in Ko for all fe$>r; and, if
/eSx, it is defined a.e. and is in S r for all r > 1. (ψke2ri r > 1, by
(2.1).) In either case, we let

(3.9) L f c/ - /*t/< = ψfc*f

We will show that, under an additional restriction on w, the linear
operators Lk carry 2r(Ψp) boundedly into %r{Φv) for every r > 1; and,
furthermore, that the sequence of operators {Lk)k^λ converges to a
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bounded operator L from S r into S r. The properties of the 82 Fourier
transform (PlanchereΓs theorem; inversion) make the S2 case easy, and
we begin with it.

(3.10) THEOREM. Suppose that w(x) = w(xo,xu •••,#<,); i.e., that
w(x) depends only on a finite number of the coordinates of x. Then
for every fe 22(ΨP)1 the functions Lkf, k = 1, 2, , are in %2(¥p) and
converge in the S2 norm to a function Lf. The mapping L so defined
is a bounded linear operator from 22(ΨP) to 22(ΨP). The linear oper-
ators Lk are uniformly bounded: there is a constant A2i independent
of /, such that

(i)

for

(ii)

k = 1, 2, . We

LJ\\2

also have

| |L/ll s;g

Ξ S Λ I I / I

A 2 | | / | | 2 .

Proof. Lett ing ψktn = ^ Λ ^ w for w = - 1 , - 2 , - 3 , ••• and k =
1,2,3, •••, we have limw_>_oo^A.,n = ψk both pointwise and in the S2

norm. The functions ψk>n are in Sx(λ), so t h a t

[— ίσ(xy))d\(x) .

By the invariance of the multiplicative Haar integral, we can write
this, for y Φ 0, as

ψk,n(y) = \ w(y~~

where S = Λ'k+s{y) Π ̂ W+S(2/) and the missing integrands are as in the
previous expression. (When we use multiplicative invariance in this
way, we make strong use of field properties of Ψ9. We have used
(3.5) in obtaining the set S.) Theorem (2.3) applied to the functions
ψk9n (take Φn = Λn+1 and use (3.6)) gives the equality limw__ββ^A.,n(i/) =

ψk(y)a.e.; thus, ψk(y) = X ^ i l ΐ " 1 1 a.e. The equality
j A j

\ w{y~'1x)[m{x)Yι exp (— iσ(x))dλ(x) = \ w{y*~ιx) exp (— iσ(xuά))dX(x)

and (3.7) show that \ = 0 for j > 0. For any y Φ 0, there are ft's

such that k + s(y) — 1 > 0; hence,

( 1 ) <p(y) = lim^fc(i/) = X I ^(^/"^[m^)]"" 1 exp ( - i

exists a.e. A calculation like that given above shows that ψkfn(0) = 0
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for all n and k.
We will show that the convergence of ψktn to ψk and of ψk to φ

are actually everywhere and that the sequences (ψk) and (ψk — Ίjrktn)
are uniformly bounded. The hypothesis on w implies that the range of
w is finite; say w(ψp) = {au α2, , aH}, with α's distinct. Each y Φ 0
defines a partition Π(y) = {πh(y)}ξ=1 of Λ09 where

Since /7(#) is determined by the first g + 1 coordinates of #, there are
at most (p — l)pq distinct partitions; call them {77J. For a given y Φ 0,
we have

mίw(0»ΛH s(y)~ 1) Γ i f [ ~j

(2) fkΛv)= Σ Σ«» \ exp(-Mr(%£))cte .

Each of the sets {y Φ 0; Π(y) = 77^ has infinite measure. Therefore
each of these sets contains a point y for which ψk,n{y) converges in
n for all k > 0. If Π(z) = /7(τ/), then ^ ( s ) = l i m , ^ . ^ ^ ^ ) must also
exist; it differs from ψk(y) by the sum of a finite series. Thus, fk,n{y)
converges to ψk{y) for all y. It follows also that Ίjrk(y) converges
to φ(y) for all y. Letting n—> — oo in (2), we see that | ψk(y) \ has a
bound depending only on Π(y). Therefore, since there are only finitely
many /7(τ/)?s, (| fk(y) |)Γ=o is uniformly bounded, say by M. The bound

I miniO,n + s(y)— 1) H Γ

( 3 ) I $k(y) - $kt%(y) i = Σ Σ«»
I j=-oo h=l Jπh

<M

also holds.
Let /eS 2 (λ). By the bound (3) and the dominated convergence

theorem, the sequence {ψkinf)ήΞ~ι converges in S2 to ψkf. Hence
ψk,n*f(= (ψk,nfD converges in^S2 to {ψkfY. But ^Λ f Λ*/also converges
uniformly to ψk*f; hence, (ψkfV — Ψk*f a.e. In particular, we have
proved that Lkfe22 for all keZ+. Applying dominated convergence
and taking inverse Fourier transforms again, we see that

Lf=limLkf
kk-

exists in S2 and that (Lf)~= φf. We have

Taking A2 = sup^f \φ(%)\> we get (i) and (ii). The linearity of S is
an immediate consequence of the linearity of each Lk.

λ

To prove the analogue of (3.10) for r Φ 2, we require some pre-

1 The equality (L/Λ) = φf means that ψ is an 22-niultiplier for 2. We will see
later (3.14) that it is also an 2r -multiplier if 1 < r ^ 2.
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liminaries on equimeasurable functions and a O-dimensional covering-
lemma.

(3.11) PRELIMINARIES ON EQUIMEASURABILITY. For an extended
real-valued ^-measurable function / on a measure space (X, Λf, μ),
we let /* denote a decreasing function on ]0, oo[ that is equimeasurable
with /. Such a function has the properties

(ϋ) \/dμ =

for B /^-measurable and λ Lebesgue measure. For feLr(X)(r^ 1),
we define, as in [3],

(ϋ) βf(s) = —\'f*(t)dt,8> 0 .
S Jo

The function βf is continuous, is constant on ]0, sQ[ for some s0 ^ 0,
and is strictly decreasing on [s0, oo[. Let yQ = \ims+^SQβf(s), and define
βf on ]0, oo[ as the inverse of βf on ]o, yo[, as 0 on ]yQ, oo[, and s0 at
y0. We have

(iii) βf(βf(s)) ^ s for all s > 0 and βf(βf(y)) ^ for all y ^ yo;

(iv) lim /^(s) = lim βf(y) = 0 and lim βf(y) = co .
S->oo 2/->oo ί/-»0

The properties of βf and /S1/ of course depend only on the proper-
ties of / # ; ΐ .e., that it is a decreasing function in Sί(]0, °o[), and not
on /. For X = ]0, oo[, the facts are contained in [3].

The following lemma is a O-dimensional analogue of Lemma 1 of

[31, P. 91.

(3.12) COVERING LEMMA. Let G be a locally compact Abelian
group having a neighborhood basis of the identity of the form
{JEΓWKΓ =-CO> where the Hn's are compact open subgroups of G satisfying
Hn+1aHnand\j:=-~Hn = G. Let kn = [Hn_i; Hn]. Forfe%ΐ(\)(r ^ 1, λ
Haar measure) and t > 0, there are a subset Pt of Z+ x Z and a
mapping (m,n)—+xm>n of Pt into G such that {xm,nHn: (m, n) e Pt)
is pairwise disjoint and the following inequalities hold:

( i ) ί ^ - J — ί fdx ^ tkn ((m, n) e Pt)

(ii) λ(A) £ βf(t) < oo, where Dt = \J xm,nHn
Ft

(iii) f(x) ^ t α.e. in Ώ\

(iv) ίλ(A) ^
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If kn <, C (C constant, n e Z), then

(v) tX(Dt)^\ fdX^CtX(Dt).

Proof. By (3.11. iv), we have βf(s) < t for all sufficiently large
s. If there are n's such that βf(X(Hn)) >̂ ί, let N be the largest
integer such that βf(X(H^)) < t. If βf(X(Hn)) < t for all n, let N = 0.
A countable number of disjoint cosets of HN cover G, say \j2=iVm,tfHN.
For each of these cosets, we have

I f 1 CMHN)

±— fdX <£ _ i _ f*(u)du = βf{HN) < t.
Hχ) Jvm>I?HN M-H-N) J O

Write HN = {J^ίi1 zJfN+1HN+lf where the cosets in the union are disjoint.
For each vm,N, we have

1
U
5 = 1

and the family {Vm^z^+iiftf+i} is pairwise disjoint. Relabel those sets in
{vm,Nzj>N+1Hκ+1} for which the average of / over the set is less than t as

fd\<t.

There are finitely many remaining cosets vmtNzjtN+1HN+1 (use Holder's
inequality to prove this, if r > 1), and these we label as

If eN+1 = 0, then the family {xmtN+1HN+iγjr^1 is void. If eN+1 > 0,
suppose that xmtN+1HN+1avlfNHN. We have

( fdX ^ L fax < X(HN)t = kN+MHN+1)t ,

so that

ί ^ XiH^r1 \ fdX < kN+1t .

We inductively define nonnegative integers en and sets {vm>n}Z=ι and
{»«,»}«Λ=i (w = iSΓ + 1, ΛΓ + 2, •) such that the families { a ^ J Γ X u and
{vm,nHn}Z=ι are disjoint for each nf each of these families is pairwise
disjoint for each n, and the following relations hold:

( 1 ) \Jv«.nHn - ( \Jvm,n+1Hn+ι) u
l \ l /



338 KEITH PHILLIPS

( 2 ) — — \ fdX < t for m = 1, 2, . and n = N, N + 1,

( 3 ) ί £ _ L - ί fdX< knt form = 1,2, •••
X(Hn) Jαm >?Λ

and w = JNΓ + 1, JV + 2, .

(If e% = 0, (3) holds vacuously.) The inductive step differs only in
notation from the construction above giving the sets {xm>N+ι} and
{vm,N+i} satisfying (1)—(3) for n = N + 1.

Denote by Pt the subset of Z+ x Z defined by the condition that
(m, n) e Pt if an element xmtn appears in the above construction. Note
that it is possible that Pt — 0 , i.e., eN+1 = eN+2 = = 0. If this is
the case, let Dt = 0 ; otherwise, let Dt = \Jptxm,nHn. We have seen
that {Xm^HnY^i is pairwise disjoint for every n, and it is also clear
that (xm,t n,Hn,) Π (xm,nHn) = 0 if n' Φ n. Thus the family

{xm,nHn: (m, n) e Pt)

is pairwise disjoint.

The function / is in Sr(G), and therefore also in 21Jl0C. Clearly

G is (7-compact, so that "ϊ.a.e." and "a.e." coincide. Hence, by (2.2)

we have lim%^ooλ(iί%)~1 1 fdX = f(x) for almost all x. If xe Dr

u then
)xHn

for every n ^ iV a? is in some vm,nHn; thus, a;i?"w = vm,nHn. By (2),

the inequality λ(IjΓ%)~1 \ /dλ < ί holds for n = N, N + 1, •; and
JxIIn

(iii) is established.
If Pt = A = 0 , the remaining assertions of the lemma are trivial.

For Pt Φ 0 and JP a finite subset of Pt, we have
?

Taking the inverse βf in this inequality (see (3.11. iii)) gives
ΣFX(xmιnHn) ^ βf(t) for all finite subsets F of P t ; (ii) follows.

The inequalities in (i), (iv), and (v) follow from those in (3).

We now prove the main theorem of the paper.

(3.13) THEOREM. Let w be as in (3.10); i.e., \ wdX = 0, and w(x)

depends on only finitely many of the coordinates of x. Suppose that
r > 1. For every fe2r(Ψp), the functions Lkf(keZ+) are in 2r(Ψp).
The linear operators Lk from 2r(Ψp) to 2r(Ψp) are uniformly bounded:
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there is a constant Ar, independent of f and of k, such that

(i) | | L A / | | r ^ A

for k = 1,2, . For every fe2r(Ψp), the sequence (Lkf)ΐ=1 converges
in the 2r norm to a function Lf. The inequality

(ϋ) | | L / | l r ^ Λ 11/11,

holds for all fe2r¥p).

Proof. The function w is bounded and tnr^Ak (k e Z) is in all 2S

spaces (s > 1). It follows that Lkfe&0 if / e S r , r > 1; and that
Lkfe2s for all s > 1, if feSλ.

We give the proof in three steps. In some portions of the proof
we will include the case r — 1.

Step I. Suppose for now that 1 <̂  r ^ 2, and let ke Z+ and
fe &ϊ be fixed. For t > 0, define φt = {χe ¥p: \ Lkf(x) \ > t}.

The heart of the proof lies in estimating the measure of Φt.
Following Calderon and Zygmund [3], we will prove that there are
constants c1 and c2, independent of k and t, such that

(1) HΦt) ̂ -p- ) J[/] ()
2dλ + c2βf(t)

where

f{x) if f(x) ^ t

The subgroups Λn (n e Z) of ^^ satisfy the conditions of the Hn's in
(3.12). Since kn = [^1Λ-1: J%] = p for all tie Z, we may take C = p
in (3.12. v).

Let

ίί i f xexm,n + ΛnaDt

if » e A' ,

and set g(x) = f(χ) - h(x); thus, f(x) = h(x) + g(x) for all xe¥p and
= 0 for x e D[. Define

ΦtΛ = {x: I Lkh(x) I > γ\ and Φtf2 = {x:

We obtain (1) by estimating X{ΦtΛ) and X(Φt2). The function
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is bounded on A by tp (3.12. i) and on D't by ί(3.12.iii). Since the
set A has finite measure and h = / on D't, it follows that h is in 8+.
Hence g is in S r . Furthermore, we have

( h2dX ^ sup I / φ ) 12~r \ hrdX .

Thus h e 82 and the inequalities

χ(φtΛ )L^ [ I L ^ \2dX s \ \Lkh \2d\ g At \ h2dx
4 J φ t , i }ψp hv

yield the estimate X(Φt j) ^ AA\t"~2 \ h2dX. Finally, we have

K
\ h2dX = \ h2dX + ( f2dX ^ pΨX(Dt) + ( ([f]t)

2dX .
}ψp JDt JD't JΨp

Thus we get our estimate for λ(0 ί a ) :

( 2) X(Φtfl) £ - § - ί ( [ / ^ ^ λ + 6λ(A) ,

where cλ and b are constants independent of k, t, and /.
To estimate λ(<?t,2), we write

( 3 ) x(ΦU2) ^ λ(A) + H$uz n A ' ) ,

and consider λ(0 ί ) 2 n A') F ° r e a c h ^ G ?ΓP, the functions

y -> g(y)Ψk(% - y)u{Xm n+Λn)(y)
F

converge dominately to the ^-function y -+ g(y)ψk(x — y)ζDt(y) as the
finite set F expands to Pt. We thus obtain

( 4 ) Lkg(x) - Σ ( 9(v)Ψk(x ~ v)d\(y)
Pt Jxm>n+Λn

for all x e Ψv. Consider a term of this series for x e D't. If (m, n) is
such that (xm,n + zίw) Π (x + Λ) = 0 , then a; — 7/ is in Λ'k for all
y e ίcWfM + ^ n . For these (m, w), we can replace ^ by i/r in (4). Thus,

using the equality \ gdX = 0 (valid for all (m, ^) by the defini-
Jχm,n+Λn

tion of g), we can write

x - y)dx(y)
/ p- \ Jχm,n+Λn

-L.
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Since x - xm,n $ An(x e D't), we have s(x-y) = s(x-xm>n) for y e xm>n +Λn;

hence,

( 6) I f (x - y) - f{x - xm>n) I -
w(x - y) - w(x - xm,n)

- xm,n)

If w(x) = w(x0, XU , xq)(x e ΔQ) and Mis a bound for wf let 7 = 2MζA,+ί.

The function 7 satisfies

(A) ^ -

(B) I w(x) — w(y) I <: y(x — y), all x, y e ΛQ

(C) 0 ^ sup l(Λj) ^ inf 7(-4J - 1), j e ^ . 2

Still supposing that 1/ e α;W)ϊl + An, we use (B) and (C) to write

I w(x - y) - w(x - xm,n) I ̂  j((x - y)* - (x - xm,n)*)

^ 7((« - XmJ'^n-l)

Using this estimate in (6) and the resulting inequality in (5), we obtain

( 7 )
- y)dx(y)

Ύ((X ~
m(x

- « ? » , » ) ^ 1 ) Γ \g(y)\dX(y)

for all xeD't and (m, n) such that (a; + Λk) Π (»»,« + Λn) = 0 . If

ajeDJ and (x + Λ) Π (»»,Λ Λ- Λn) Φ 0 , then n is larger than fe and

# — ̂ m,w is in Ak. This implies that x — y eAk and ^(α; — 2/) = 0 for

V e a;m,w + Λn; therefore, (7) is trivial in this case. Using (7) in (4)

and integrating over Ώ\ gives

m{x
'*)~lu*-J \\ \g(y)\dy]dx

xmtn) l)χm>n+Λn J

Σ

^
\\ g(y) = a ̂  | g | dx

2) We single out these properties of the trivial function γ because they are all
that is needed in the subsequent analysis. The hypothesis w(x) = w(%o, , xq) is not
used in any portion of the proof except to guarantee the results of (3.10) for the
£2 function h and to establish the conditions (A), (B) and (C) for the γ defined here.
Hence the results of this theorem can be proved by starting with any bounded w
for which the essential condition (3.7) is satisfied, for which the results of (3.10)
can be proved, and for which there is a function γ satisfying (A), (B), and (C).
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where a is a constant depending only on w. Since

hdX = \ fdX

and \g\^f+h, the inequalities

\ I g I dX ^ 2 ί /dλ ^ 2tpX(Dt)

hold; hence, we have

( I Lkg(x) \ dX(x) ^ 2aptX(Dt) .

The inequality X(Df

t f] Φt>2) ^ Aapλ(Dt) follows; and this combined with
(3) yields the estimate λ(0ί>2) <£ α1λ(Z)ί), «i independent of ί, A, and /.
This final estimate and (2) yield

HΦt) ^ MΦt.ύ + MΦt*) ^ %\ (\flfdx + cMDt)

(1) follows from (3. 12. ii).

Step II. Using the measure estimate (1) and the equality

[ I LJ \rdX = r ["xiΦJP'-'dt (r > 1) ,
JΨp JO

the proof of (i) for 1 < r < 2 is essentially as in [3], pp. 97-99. The
case r > 2 is obtained by a duality argument from the result for
r < 2; this, too, is in [3]. We omit these details.

Step III. It remains to show that the sequence (Lkf)ΐ=1 converges
in the Sr-norm, for every fe 2r. We begin by showing that the family
X = [z: τ(x) = Σ/=i 0j£e/#)}> where the α/s are complex numbers and
the Θ/s are compact and open is dense in 8 r and that each Lτ con-
verges. The family @ obtained by demanding that the Θ/s be mea-
surable of finite measure is dense in S r, so it suffices to show that £
is dense in @. If Φ is λ-measurable of finite measure and δ > 0, then
there is a compact open set Θ satisfying

( 8 ) λ(0' ΠΦ)<δ and X(Θ Π 0') < δ .

To prove (8), let Γ and ^ ~ be compact and open sets, respectively,
such that Γ c ^ c / " , X{Φf n / ) < ί , and X(Γ ΓίΦ)<δ. For each
xeT, there is an wβ such that x + Λ Λ j B c ^ \ A finite union, say ©r

of the sets x + ^%a; covers Γ: Γ c δ c y . The set © is clearly com-
pact and open. We have X(Θ' Π Φ) ̂  λ(Γ' n Φ) < δ and X(Θ Π Φ') ^
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') < δ; thus (8) holds. For a given λ-measurable set Φ of
finite measure and a positive ε, select a compact open set such that
(8) holds with δ = (l/2)εr. Then we have || ζφ - fθ | | r < e. For a func-
tion ζ = Σ i ^ i ^ ί φ j i n @> select compact open sets #,- (i = 1, 2, , J )
such that \\ζφό~ ξΘj \\r < ε/J\a,31. Letting τ = Σi=i α;f<9,> w e h a v e

|| ζ — τ | | r < ε. Hence, £ is dense in S r.
If © is compact and open, dominated convergence shows that

?M& - y)dx{y) = ψ Λ(a? - y)dx{y)

for every &. Using the equality

lim I fk{x - y)dk(y) = 0 ,

and translating, we can thus write

( 9 ) Lkζθ(n) = lim ί ^(-y)Ld-y)[^(x + y) -

There is an integer n0 and finitely many disjoint cosets {xι + ^^Jlii
with union Θ. lί yeAnQi then y + xeΘ if and only if xeΘ. Thus,
(9) shows that LkξΘ(x) = Lnoζθ(x), for & ̂  w0. It follows easily that
for every τ e % there is an integer no(τ) such that Lfcτ = L%oτ, when-
ever & ̂  ^ 0. Thus Lfeτ converges to a function Lτ both pointwise
and in the S r norm. Finally, let / e δ r and suppose ε > 0. Select
τeZ such that \\f - τ | | r < (2Ar)-1e. We have

| | L f c / - L w / | | r < | | L , τ - L % τ | | r + ε,

and so || L A / — Lnf\\r < ε for kyn^ nQ(τ). Let L/ = limr Lkf. The

inequality (ii) is immediate.

(3.14) THEOREM. The function φ = lim^̂ oo $k is an 2r-multiplier
for L (1 < r ^ 2).

Proof. We first show that S2 and 2r (1 < r < 2) Fourier trans-
forms agree on 82 π S r . Thus, suppose that Λ e S r Π S2 and let hr and
^ denote its 2r and S2 transforms, respectively. The functions hn =
hξΛ% (n = — 1, —2, •) are in 21 and l i m ^ ^ ^ = h a.e. (2.3). Thus,
we have

\ \hr - h\r dX = \ lim | hr - hn \r dX ^ lim ( | hr - hn \r dX = 0

and so, hr = h a.e. We can now drop the r on Λ r without fear of
ambiguity.
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Let / e 8 r . Since the functions ψk,n (see the proof of (3.10)) con-
verge boundedly to ψk, we obtain

(1) I™ || ψktnf- tJ\\rt = 0,
n—>—oo

as in the 82 case. We now know (3.13) that ψk*f is in 8r, so the
Hausdorff-Young inequality implies

(2) lim ||(^*/Γ-(f,*/ΠU = 0.

Since (f fc,n*/Γ = #*. /(τK.» e SJ, (1) and (2) give the equality (ψ f c*/Γ =
ψkf. The functions (ψk*fΓ converge in £r, to (L/) by the Hausdorff -
Young inequality; and, the functions ψkf converge in the Sr, norm to
φf because ψk converges boundedly to φ.

4* Examples* We give some examples of w's defining Z/s.

(4.1) Φ-Kernels. Suppose Φ<zΨp satisfies Φ{j -Φ = Ψp\{0} and
φ π — φ = 0 . Let w b e a bounded λ-measurable function on Ao such
that w( — x) = —w(x) for all xeA0; the condition (3.7) is immediate
for such Si w. By additive inversion in variance, we can write

( i) Lkf(y) = - \ ψ(x)[f(y + x ) ~ f(y - x)]dx(x),

where Φk = φ f] Λ[. If there is a q e Z+ such that every w(x) depends
on only the first q + 1 coordinates of x, then the hypothesis of Theo-
rem (3.13) is satisfied for w. We call the corresponding kernel Ί Γ a
Φ-kernel. If Lk is generated by a 0-kernel, the functions Lfc/ as
given in (i) converge in the Sr norm to a function Lf (f e Sr (r > 1)).
In particular, we can let w(#) = sgnφ (x) ( = 1 it xeΦ and — 1 if x e ~Φ).
If there is a g such that a knowledge of x0, , xq determines whether
x is in Φ or —Φ, then (sgnφ)m-1 is a Φ kernel and

(ii) Lf(y) = limr -
fc-*oo

The limit in (ii) giving the transform L is a precise analogue of the
limit defining the classical Hubert transform for R; and, Theorem
(3.13) is an analogue of corresponding results for R. The set Φ cor-
responds to the positive real numbers and the sets Φk to the sets
](l/k), oo[ ( i e n

For a 0-kernel i/r, the multiplier φ can be written as

(iii) φ(y) — lim lim ( — 2i)\ ψ(x) sin ( — σ(xy))dx.
k-*oo w-*-oo JΦ&nΛw
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If w = sgnφ, then

(iv) φ(y) = lim lim (-2i)J sm(-σ(xy)) ^

The limit in (iv) is like the limit

lim lim ( — 2i)π"1\ y—^-dx — —isgny ,
k->oo m^co Ji/fc X

which is a multiplier for the classical Hubert transform. See, e.g.,
[9], pp. 119-120.

(4.2) A calculation. There are many sets Φ satisfying the condi-
tions in (4.1). We now consider one of these in more detail. Suppose
that p is odd and define

Φ =

then

(Another natural Φ is {x: xs[x) is odd}.) Letting w = sgnφ, we know
that the limit (4.1.ii) exists for fe 2r. We compute Lf for / = ζΛ'Qm~ι\
the result is given in (4), infra. Let

= φ n Δj = {x e Δf. l ^ X j ^ p ~ 1 \ .

Using (4.1.i) then translating, we can write

ί i m ^ + x) m(y -

X)

If s(?/) > j , then we have s(ίc + y) — s(x — y) — s(x) = j for all a; e Δ3 .
In particular, a; + y is in ^ if and only if x — y eΛ'Q; and hence the
first expression for Lkf(y) in (1) shows that the j t h term of the sum
is zero. If s(y) < j , we have s(y + x) = s(?/ — x) = s(y) for all xeΔj9

and again the i ι h term of the sum is zero. Thus, if k > s(y), we
have

= Lkf(y)

cte - ( g ^ ( y + X) dx]
J ( ) J

cte (
Ĵ sc )̂ m(y + a?) J^ (y) m(?/ + x)

If s(ί/) ^ 0, then the equality ξΛ'0(y + x) = ξΛ>0{y — x) = 0 holds for all
x e Δs{y), and hence Lf(y) = 0 for 7/ e Λ For the following calculations,
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we suppose that y is fixed, put s(y) = S, and define

Z3+j = {xe As\ s(x + y) = S + i}

£k+y = {α; e As: s(x + j/) > S + i} (i = 0,1, 2,

We have

=\ +
jEg

)
p - 1

- 2) + p - 1 ' 2 ^ - 1) +

If s(x -\- y) > —l(x + yeΛQ), then \ = 0; the other integrals in the

last line above are p~ll2(p — 1). We thus obtain

( 3 )
χ)

m(y + x)
dx = p-ll2[(p - 2) + (-S - l)(p - 1)1 .

It remains to calculate the first integral on the right side of (2).
If y 6 ̂ jg, then y + x is As for all x e ̂ ^ . In this case, we have

s m(y + x)

If ye—^~s, then there exists an x e J7~s such that s(x + y) > S.
Computing as above, we have

m(y + x)

- 1
- / 8 T - 1

Σ
l

yίP - 3) + (-S -

Using the two above equalities and (3) in (2) gives

= ί-p*~ ( 1 / 2 ) ( ( p- 1) - ( P ~ 2 ) + (S + l ) ( p - I))ξ4(y) if yeΦ

( _ p*-<i/i)((p _ 3 ) - (p - 2) + ( - S - l)(p - 1))^(?/) if ye-Φ.

This in turn can be written

( 4 ) Lf(y) = f{y)p~ll\-l - s(y)(p - 1)) sgnΦ (y).

(4.3) Kernels from additive characters. For a character χ̂  of
Wp, we have

S
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If y e Ao, then χy \ΛQ is a nontrivial character of the group Ao and

χy \Λi = 1. Hence I χy(x)dx = 0, I xy(x)dx = λ(A), and

S J Λ 0 J 7 ί i J ^o

Img χy(x)dx = 0; and setting
wy(a?) = Img χ y (a), 1/ e Λ , % e Λ ,

we obtain a w satisfying the hypothesis of (3.13). Note that wy(x) ~
sin(-σ{xy)).

If y e Λ'Q, then χy \ΛQ and χy \Λi are nontrivial character of Ao and
Al9 respectively. It follows from (i) that the function χy \JQ defines a
generating function w. In this case, each of the functions x —> Re χυ(x)
and x—>Imgχy(x) (xeA0) is also a generating function.

(4.4) Kernel1 s from characters of Ao. If τ is a nontrivial charac-

ter of the multiplicative group Jo, then I τ(x)dX{x) = 0. Continuity

requires that τ(u + Jq) = 1 for some q > 0. We can write any $ e Ao

in the form a? = x'(u + #")> where x' e AQ, x'k = 0 if k ^ g, and $" e ̂ .
Hence, τ(x) is determined by the 1st q coordinates of x, and so τ
generates a singular integral for which the results of (3.13) are valid.

Both the author and Professor Mitchell Taibleson have extended
the results of this paper in several directions. These extensions will
be published in due time.
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