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If the resolvent of a (not necessarily bounded) self-adjoint
operator H,. converges strongly to the resolvent of a self-
adjoint operator H, and if 2 is an isolated eigenvalue of H
of multiplicity m < oo, then although H, need not have an
eigenvalue near A, the spectrum of H, will in some cases be-
come ‘“‘concentrated’’ near 1 as « is reduced. In fact, there
exist sets C. with Lebesgue measure o(x?), p = 0, such that the
spectral projection assigned by H. to C. converges strongly as
£ — 0 to the projection on the Z-eigenspace of H, if and only
if there exist m pairs (L, @), 5 =1, -+, m, where 21— 1,
the ¢;« are nearly-orthogonal unit vectors converging strongly
to the i-eigenspace, and ||(H« — 4;)¢;c|] = o(x?). In this case,
C. may be taken as the union of intervals about the 2,., and
the 4;« are essentially the only numbers associated in this way
with ‘“‘pseudoeigenvectors’ ¢;. of H.. The result is applied
to the weak-quantization problem in the theory of the Stark
effect, where H is the Hamiltonian operator for the hydrogen
atom, and H, is the same for the atom in a uniform electric
field which vanishes with «.

In §1 the basic notions of spectral concentration and pseudo-
eigenvectors are discussed, and some simple lemmas are proved relating
the two. The theorem quoted above is proved in §2 (Theorem 2.7),
and the question arises how the pairs (\;, @;) can be constructed.
For a family of the form H, = H + £V, this construction is carried
out in § 3 by means of the formal perturbation process applied to the
unperturbed eigenvalue A. In §4, the special case is considered in
which X\ is stable, i.e. H, has m eigenvalues in a neighborhood of \;
asymptotic estimates of these perturbed eigenvalues follow easily.
Finally, in § 5, the theory is applied to the generic example, the family
of operators appearing in the Stark effect, Here the spectrum of H,
is purely continuous and covers the real line, and so technically the
perturbed system has no stationary states. Yet the lines in the
physical spectrum of hydrogen persist when a weak electric field is
applied, each one splitting into several quite sharp lines. These lines
can be traced to the existence of ‘‘almost stationary’’ states, which
are represented by the pseudoeigenvectors ¢, mentioned above. It is
stressed that there are many other vectors 4, which represent ‘‘almost
stationary’’ states, in the sense that the solution of the equation
of motion with initial state +, remains close to +r, for a long time,
It is the fact that no sequence ¢, converges weakly to zero (£, — 0)
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which distinguishes the ¢;,.

Perturbation problems of this sort, involving continuous spectra,
were considered in [3] and [4]. In [6], Kato proved for the operators
here considered in § 5 that the formal solutions of the perturbation
equations are essentially the only almost stationary states, although
in a somewhat different sense of ‘‘essentially’’ from ours. The notion
of spectral concentration originated with Titchmarsh [10], who proved
that the spectrum of the operator for hydrogen in an electric field is
concentrated on intervals of length o(«?), » < 2, centered on the first
order solutions X,, of the perturbation equations. Conley and Rejto
proved an abstract version of Titchmarsh’s result in [1].

Having completed a preliminary version of this article, the author
received from Professors Conley and Rejto a preprint [2] containing
similar results with different proofs. One such result was the ‘‘if”’
part of Theorem 2.7; the ‘‘only if’’ part was asserted for the case
m = 1 and posed as a problem for general m. Their condition that
the pseudoeigenvectors converge strongly to the unperturbed eigen-
space, less restrictive than the one originally used by the author,
facilitated the proof of the theorem in the reverse direction.

The author would like to extend cordial thanks to Professor T.
Kato for valuable suggestions and encouragement through the course
of the work.

1. Spectral concentration and pseudoeigenvectors. H will
denote a self-adjoint operator, in general unbounded, with domain
Z2(H) in a Hilbert space 5% J will always denote a Borel set of
real numbers, and the spectrum of H in J, that is, the intersection
of J with the spectrum of H, will be denote by 3(J). FE will denote
the spectral family of H, assumed continuous from the right: E(y) =
E(¢e+). The same symbol will be used for the measure induced by
E, with E[J] denoting the projection assigned by this measure to .J.
When J is the closed interval » — o0 < ¢ <\ + 4§, we shall write
E[x, 6] for E[J] = EMN+ 6) —E((x — 0)—). In case d =0, E[)\] =
Ex, 0] is zero unless \ is an eigenvalue of H, in which case E[\] is
the projection on the \-eigenspace.

Analogous symbols with a suffix £ will be used for a family of
self-adjoint operators {H,: 0 < £ < k,}. For instance, 3 (J) will denote
the spectrum of H, in J.

Convergence of vectors will always be strong convergence, unless

marked — for weak convergence. Landau symbols o(k?) for vectors

will be used in the sense of strong convergence. The symbol ~,
will denote strong convergence of bounded operators. Limits of func-
tions of £ will always be taken as £ — 0+.
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Our basic notions are made precise in the following:

DermTION 1.1, Let {H} be a family of self-adjoint operators,
0 < k £k, and let {C.} be a family of Borel subsets of J. We say

S (J) is concentrated on C, provided EJJ — C.J—1 0.

DEFINITION 1.2. Let {p} be a family of unit vectors such that
@€ 2(H) and let {\,} be a family of real numbers. If, for a real
number p = 0, (H, — M@ = o(k?), then {p,} is a pseudoeigenvector of
{H} of order p and {\} a corresponding pseudoeigenvalue. For short
we shall say simply that {(\., #.)} is a p-pair for {H,}.

It is essential to realize that each of these definitions prescribes
the behavior of a certain function of £ in the limit as £— 0, and
that the quantities could be changed more or less at random for a
given £ > 0 without affecting this behavior. Thus it does not make
gsense to say that ¢, is a pseudoeigenvector of H,. Nevertheless we
shall do so, but only to avoid writing in the braces each time; the
reader will easily see where they belong.

Of course a p-pair for H, is also a g¢-pair for ¢ < p, and an
eigenvalue-eigenvector pair constitutes a p-pair for any p. The basic
connection between p-pairs and spectral concentration is made apparent
in the following elementary result, which asserts that a high-order
pseudoeigenvector is almost in the range of the spectral projector sup-
ported by a small interval about its corresponding pseudoeigenvalue.

LemmA 1.3. Let (N, @) be a p-pair for H,, and let 7. be an
arbitrary fomily of nmonnegative real numbers. Then

Nl = EdMey D) pe = 0(£7) .
Proof. Let K. denote the complement of the interval
/P G /P
Then
o(£°7) = || (He — M)pe|I?
=" (e = 2l By

2| (= wydl Bl

= i _dlEdpe.
2 70l (L = B, 7Depc
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It is a familiar fact that if (H — \)e is small in norm, then there
must be a point of the spectrum of H near A. The following result
can be regarded as a generalization of this to the case of a family
of operators.

LEMMA 1.4, Let J be an open set of real numbers, and suppose
that X(J) 1is concentrated on C.. Let (A, p) be a p-pair for H,
such that . is eventually in a closed subset of J and such that there
18 Mo sequence kK,— 0 for which go,cn—w—> 0. Then \. is within a
distance o(k?) of C..

Proof. Put %, = 1/2dist (., Ci). For those &£ for which ». =0
there is nothing to prove. If 7.+ 0 then the interval N, — 7. < ¢ <
M + 7. is disjoint from C,, and so Ef\., n] + EJC. < 1, the identity
operator. From Lemma 1.3,

o(&*) = 7| 1 — Efhg ned)pe I = 72| ELCllo: |

and it would follow that n. = o(«?) if || E[C]p|| = ¢ > 0.

To see this, we first use the hypothesis on A, to find a number
© > o such that A, — p < ¢ < M + o is contained in J, for £ small
enough, Then by Lemma 1.3,

1A = E{TDpell < | — Edr, 0.l = %oa) .

Now suppose that there is no € > 0 for which || E[C.]@.|| > . Then
there is a sequence £, — 0 such that || E| [C, ]p., ||— 0. Using this
and the convergence just proved, we obtain

Pr, = B [T1px, + 0(1)
= E.[J — C.lp., + o(1) + o(1) .

Let @ be any unit vector in 52 Then

(@, @) | = | (@, Ec [J — Ci lpc,) | + 0o(1)
= | (B[ — Cc lp, @e,) | + 0o(1)
S| E I — Clell + o(1) .

But E[J - C, ] —2,0, hence Pe, =, 0, a contradiction. Thus
|| ECdlo« || must be bounded away from 0, and the lemma is proved.

The hypothesis on @, cannot be done away with. For example,
if 27 = L,0,1) and H, is multiplication by the characteristic function

% of the interval (0, k), then E.—250 and it is easy to check that
the whole spectrum of H, is concentrated on C, = {0}. On the other
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hand, H, even has an eigenvalue .= 1, with unit eigenvector, e.g.,

@ = £7*; and this A, is nowhere near C.. Of course @KL 0.
It should be noted that no assumptions have yet been made con-
cerning the convergence of the operators H, as £ — 0.

2. Concentration at an isolated eigenvalue. We shall now
consider a family H, for which the resolvents R.({) = (H. — {)™* con-
verge strongly to the resolvent R({) = (H — &) of a self-adjoint
operator H, for each complex number { which is at a positive distance
from the union of the spectra of H and H,. This convergence holds
for all such ¢ if it holds for any, and it does hold if H, and H

are bounded and HK——S—>H (see [7], p. 429). Thus it is a reasonable
generalization of strong convergence to the case of unbounded opera-

tors. It will be denoted by I—IK—T—> H. We quote without proof the
following sufficient conditions ([7], p. 429, p. 453):

LEMMA 2.1. Suppose that there is a dense linear set
cCc2H)N 2(H,)

Sfor sufficiently small &, such that H.p — Hgp for each pe <. Then
HK——T—>H provided that either of the following holds:
(a) the restriction of H to < is essentially self-adjoint, or

(b) H.= H = constant, and the restriction of H to & has H
as its Friedrichs extension.

Condition (a) means that the closure of H| < is self-adjoint (and
hence equal to H), and it requires that H<r be dense in 5~ Con-
dition (b) is stronger in that it requires the operators to be semi-
bounded, but weaker in that only (H + const.)’?<> need be dense in 2~

Our aim is to study the spectrum of H, in the neighborhood of
an eigenvalue of H. First we notice that the hypothesis HK—L» H

guarantees a rather close connection between eigenvalues of H and
certain pseudoeigenvalues of H,.

LeEmMmA 2.2. Suppose that HK—r>H. If (M, @) ts a 0-pair for
H, such that ¢, does mot converge weakly to 0, then H has an
eigenvalue N with associated eigenvector @ such that N, — )\ and

w .
Pe,, —> @ for some sequence k,— 0. Conversely, if N and ¢ are an
eigenvalue and an associated unit eigenvector of H, then H, has such
a 0-pair (A, @.); 10 fact M and @, can be chosen so that N, =\, p.— @.

Proof. If ||(H. — M)pc|| = f(k) where f(k)— 0, then g(x) can be
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chosen so that g(k) — 0 and f(x)/g(k) — 0. Lemma 1.3 with 7. = g(x)
then gives ||(1 — EJr e, o(1)]ocl| = o(1). From this and the spectral
formula for H,, it follows easily that (R.«(?) — oJ)p. = o(1), where
0« = (M — 9)7'.  In particular, for any sequence £, — 0,

B (D)pe, — 0c,Px, 0.

Next, by hypothesis there is some open weak neighborhood N of
0 € 2~ and some sequence £, — 0 such that ¢, ¢ N. Since ||, || =1,
there is a subsequence, again denoted by ¢, , which converges weak-
ly; the weak limit ¢ is not zero. The numbers p., are all bounded
in absolute value by 1, and so o, (., — @) “s0.

Since R, ())* = R.(—1) —— R(—1%) and v, = ¢ — ¢, — 0, we
have for each + € 57~

= (Y [Be,(—1) — R(=D)]¥) + (¥, B(=2)9y) — 0,

that is, R, ())p — R (1)@, —— 0.

Finally, H, .H gives, in particular, that R(i)p — R, (i)p 0.

Adding the four sequences which have been shown to converge
weakly to 0, we obtain o, @ —— R(i)p. With 4 = || @ ||, this gives
Oc, = (Oc ¥, V) — (R(@)Y, ). Then (R(i)y, ) # 0, for otherwise
(H — i)'y = weak limit o, ¥ = 0, and = 0, impossible.

Set =1 + (R(@)y, v)™". Then (\, — )7 = oc, — (R()y, ) =
(M — %), and so A, —\. Moreover, (H — i)~y = weak limit o, =
(M — i), and so Hp = Ap, as required.

To prove the converse, let A be an eigenvalue of H with an as-
sociated unit eigenvector . Set . = R.(i}(H — t)p. Then f, "
gives .- @; moreover . € Z(H,) and

(He — M = (He — D — (W — ),
=H—-9)p - N—Dp + N — )@ — )
=\ — )@ — 4
= o(1)

since Hp = Av@. Thus (M =N\, @ = || 4 || ) 18 the 0-pair for H,
whose existence was asserted.

Turning now to concentration of the spectrum of H,, we note
that H. —— H implies E,((;e)—s—>E’(y) provided that g is not an
eigenvalue of H (see [7], pp.432-433; with the hypothesis (a) of
Lemma 2.1, this is a classical result due to Rellich). If J = [a, 8] is
an interval containing an eigenvalue N of H in its interior but other-
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wise disjoint from the spectrum of H (an isolating interval for \),
then this convergence gives Ex(a)i)E(a),E’(B)-—s—»Ex(B) and so
EJJ]—> E[J] = E[\], the eigenprojection associated with A. Of
course the same is true if J is replaced by any smaller isolating in-
terval J'; thus Y(J) is concentrated on any such J'<J. Our con-
cern is with the possibility that X.(J) is in fact concentrated on sets
C. whose Lebesgue measure v(C,) tends to zero with some definite
order of continuity in k. To settle this we shall have to assume that
A\ has finite multiplicity.

ASSUMPTION 2.3. HK—L»H, and » is an isolated eigenvalue of
H with finite multiplicity m; J denotes an isolating interval for
N, A the m-dimensional N-eigenspace, and P the eigenprojection
E[\] onto _#

DEFINITION 2.4. Under Assumption 2.3, if p is any real number
=0,2(J) is concentrated to order p provided that there are sets
C.c J such that E[C,] -, P and v(C) = o(kP).

It turns out that p-th order concentration of X.(J) hinges on the
existence of a certain family of p-pairs for H..

DEFINITION 2.5. (cf. [2], p. 6) Under Assumption 2.3 suppose
that (\je, @), 7 = 1, - -+, m, are p-pairs for H, such that (1 — P)p;—0
for each j and (@, pu) — 0 for j = k. Then {p., +++, P will be
called an asymptotic basis of order p for EJJ].

LEMMA 2.6, If {pi, +++, Puet 18 an asymptotic basis of order 0
for EJJ], then the operator P. = >™, (-, %’x)%x—s—> P, and the as-

sociated pseudoeigenvalues A,— A\.
Proof. The vectors Pp,. = ;. + o(1),5 =1, «++, m, satisfy
(Pg)jm P(,Dlm) = ajx + 0(1) y
and so can be orthonormalized to give a basis {P, +++, P} of A
such that ||p;c — $i|l = o(1). Then for each pc 5%
Pp = ,~2=1 () Pi)Pie = jz=‘1 (s Pi)Pic + 0(1)
= Lp + o1),

that is, P, —— P.
S

As we have seen, Assumption 2.3 guarantees that E[J']— P
for any isolating interval J' about A. Since ¢;. can be written, with
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an error o(l), as a linear combination of a basis of 7 = P27 it
follows that EJ[J'lp; = @i + 0(1),75 =1, ---, m. On the other hand,
Lemma 1.3 shows that (1 — E[\., o1)])@; = o(1),5 =1, +-+, m, where
the first o(1) is suitably chosen as in the proof of Lemma 2,2, Com-
bining these convergences, we obtain

E[I"p;c = E{hg oD@ + 0(1),5 =1, -+, m .

The norm of each side tends to 1, which is impossible if the two
projections EJJ'] and E[\., o(1)] remain orthogonal, that is, if the
interval N, — o(1) < ¢t < N\« + o(1) remains disjoint from J’. Hence A,
tends to J’, and since J’ can be any interval about X, this proves
e — N

We are now in a position to prove the main

THEOREM 2.7. Under Assumption 2.3, Z(J) is concentrated to
order p 1if and only if there is an asymptotic basis of order p for
EJlJ]. In either case, the concentration sets C. can be taken as the
union of intervals of length o(k*) centered onm the corresponding
pseudoeigenvalues Nj.

Proof. Suppose that {p, :--, @, is an asymptotic basis of order
p for E,|J], with associated pseudoeigenvalues \;. As in the proof
of Lemma 2.2, Lemma 1.3 gives

Pix — BNy, 0(67)]psc = 0(1),5 =1, «+-, m .
Then with C, = U7 {2 [N« — ] < o(k?)} and P = 37 (¢, @) Pic, WE
have P, — E.[C ] P, —,0. But from Lemma 2.6, P, —2, P. Hence if
PE A,
EJCdp = E{C]Pp

= EK[CK](PKQJ + 0(1))

= Pup + o(1) + o(1)

= Pp + o(1) + o(1) + o(1) ,
where the uniform boundedness of the projections E.[C.] has been
used. Thus E.JC.p — Pp = o.

Since A;c— N by Lemma 2.6, C.c J for small enough &, and so
EJC] < EJJ]. Hence, if v | 7,

NELCAv || = | EfTlw || — [| Py | = 0.

But any vector 6 € 57 is the sum of = P9 and + = (1 — P)§, and

we have shown that EJ[C.0 — @ + 0 = P9, Thus E/JC.]—— P, and
(C) = o(x?), as desired.
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Conversely, suppose that E.[C.] £, P, where v(C,) = o(k?). For
each k&, cover C, with an open set G, whose measure is within g7+
of v(C,). G, is the union of at most countably many disjoint open
intervals I, whose lengths are obviously o(x?). Let

P, =EJlI],
and note that

S\ P = EJG] = EIC .

The search for a p-pair (\,, @.) will proceed in several steps.

I. Fix £ >0. Let &= _7Z n{y:||v]| =1}; & is compact since
_# is m-dimensional. For each ¢ = 1,2, ..., the function || P}|| de-
fined on .&¥ is continuous and so achieves a maximum, say at .

We claim that || Piyi||—0 as 1~ o, For if not, there is a
number ¢ > 0 and an increasing sequence of integers j for which
|| Pivi|| > e. Since the sequence +/ lies in the unit ball of 7 it
has a convergent subsequence, which we might as well denote with
the same index j. Thus ) — 4 as j— co, With || || = 1, Py = ¥,
and

| Pivrell = [| PE(pi+ o) || Z | Pyl — o(1) > e >0

for large j. Hence 1 = ||+ [P = 3\51 || Pii|]* = o; absurd.
II. Since 1 = || Piyi||— 0 as ¢ — oo, there is for each & at least
one integer i(x) such that

Pyl = max (| Pyt |0 = 1,2, -}
= max (| Piap i = 1,2, -+, v €5} .

For each &, set Q, = Pi® = E[Ii] and +, = i,
III. Letting & vary, we claim that

1 1/2
(1) 1Qarell 2 (Gorrgy) = >0
for all sufficiently small £, For, if not, there is a sequence £, — 0
such that Q. . violates (1) for all » = 1,2, ..., Since the sequence
V. = ., lies in the unit ball of _#, it has a subsequence, again
denoted by +,, converging to some +c_# By the definition of
Vo = P, = Yien we have, uniformly in ¢ =1,2, -,

(2) | P [F = [ PL (¥ + o(1) |
= [[ PL v [I* + o(1)
1
< 2(m + 2)
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for n large enough. On the other hand, EJ[C.]+ — + by hypothesis,
so that {|E, [C. v |7 > (m + 1)/(m + 2) for sufficiently large n. Fix
any such n. We have || E, [C, |y | < lim... 3.7, || P} 4 |*; and so for
sufficiently large q, 3%, || Pi 4 | > (m + 1)/(m 4 2). Thus with » still
fixed we can define integers

3 ;= max{ Pi | J } ,
(3) q; q: ZII = o
for j=1,---,m + 1, and ¢, = 0. These integers satisfy

QO<q1< s <qm+1: for if q; = 441 = ¢

for some j, then

\ ' PR o
Piylr< >~ J+ 1
2P|l = 2 o

by the definition (3), and so || P ||* > 1/(m + 2), contradicting (2).
Thus we can set

Si = Z Pz,j 1,2, ..-.om+ 1.
i= =qj— —1+1
In view of the pairwise disjointness of the intervals I} for different
1, the Si,5=1,.-.,m + 1, are pairwise orthogonal projections for
each fixed n. Moreover,

(4) 1Syl >+ L
2 m

, ':1,...’m+1.
T2 J

For if, e.g., || Siv || =< (1/2)1/(m -+ 2), then using (2) we have

@t+1 )
2 PLy I = 1S5 |+ | P |
11 1 1 1

Em+2 ?m+2 m + 2

contradicting the definition of ¢, in (3). Hence (4) holds.

Now we have m + 1 sequences {v,, = Siy,n=1,2 ---},7=
1,.-.,m + 1, where ||y ||=¢>0 and (¢, Vi) =0 for J # k.
Moreover, +r;, = K [J]¥;, for each j, and since E,c%[J]—s—>P, this
means (1 — P)+r;, — 0. Then Lemma 2.8 (below) implies that dim _~ =
m + 1. This contradiction establishes (1).

IV. We assert that || Q|| — 1 as £— 0. For if not, then there
is a number ¢ > 0 and a sequence £, — 0 such that [|Q, v. || <1 -6
forall n=1,2,.... Let Q, =@, ¥, = 9.,. The sequence
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(5) Y = PQuir,,
lies in the unit ball of _#Z and so by passing to a subsequence we
can assume that , — some «'. Since Py, = o, and ||, | =1,
(6) [l = [ PQuvra |l = [ (PQurbray ¥) |
= ‘ (Q’I'qu[f’ﬂ7 ’l;/‘%) ‘

= [| Qv [* > >0

in view of (1), part III. Thus ' # 0.
On the other hand, @, < E [J] “2.p gives (1 — P)Q, LN 0, and
since the 4, are confined to the finite-dimensional space _# this gives

= PQ,y, + o(1),

that is,
(8) Q. = ¥+ o) = 4" + o(1) .
Hence

Q.0 = Qu(Q.v, + o)) = @i, + o(1)
= Qui, + o(D)
=" + o) + o(1) .

Since ' = 0 we may set 4 = ||v'||™y’, and now

Q| =llv+oD)=1+01)>1-09
> [ Qv ||

for large n. But € .5 and the last inequality contradicts the max-
imality of || Q. ¥, |l (part I). Thus [[Q«||— 1 is proved.

V. Let o= ||Q|"Q« Then | @] =1. Recalling that
Q.= EJI"], we choose N\, = midpoint of Ii¥., Since the measure
generated by || E(u)p,. | is supported in [i®, an interval of length
o(k"), the spectral formula yields the estimate || (H. — M), || = o(x?); and
we have a p-pair (\., ¢,) for H, with (1 — P)p.— 0.

VI. To find another p-pair we repeat the whole procedure. First
put Ay = N, P = Py, Ve = ¥ and @ = Q,, and note that, since
| ¥ || = 1, part IV gives

(9) le“lfln = ql’lK + 0(1) .

For each &, let _ 7. = {yve Z, v Ly} and S = {ye A ||| = 1.
Since ., is compact for each &, the arguments of I, II, and III apply
without change, to show that || Q.|| > ¢, where now
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Q]| = max{|| Pip[l: 4 =1,2, -, €4},

Note that +. | +,. but that Q. may be the same as @,. for some or
all .

The argument in IV must be adjusted slightly. Denote by P, the
projection on _#., and put P, = P, where £, — 0 is the sequence
in IV. Instead of (5), set

(5) v = PQui.

and put ' = limit (subsequence) +r, as before. Since P,vy, = ¥,
inequality (6) holds with P, in place of P. Relation (7) holds without
change, but in order to get (8) we need in addition that (P — P,)Q,v, =
0o(1). This follows from (9) together with the fact that PI1 P] for
1 £ g
B {0 +o(1) if Q, = Q,,
(Q},f'n, Q%nq/fln) = (’l/fn! Ql%’l/fl%) if Qn i an
B {0(1)
("l’/\'m qyln) + 0(1)
Thus the projection of Q,v, along +,, i.e. (P — P,)@,¥.,, tends to 0.
Hence (8) holds with +, given by (5'), and it follows as before that
Q. = ¥ + o(1). Again we set + = ||+’ |"’, and it follows that

Q. = v + o(1). But 4 is, like ', the limit of vectors in .7, and
8o P,¥ = 4 + o(1). Hence

} = o(1) .

QP[] = [|Quv + o) || = [I¥ + o(1) + o(1) ||
>1—=0> Q|

for large n, contradicting the choice of +, as a vector where || Qv ||
is a maximum among € %, . Thus [|@,v,|| <1 — 0 is untenable,
and || @y, || —1 as befere.

Part V goes through without change, and we have constructed a
second p-pair (A, ¢.) with (1 — P)p,— 0. Denoting this second batch
of quantities A, s, ¥« and Q. by Ao, Puc, Vo, and Q,., and bearing in
mind that || Q.|| — 1, we see that

(9) Qectrae = Yo + 0(1) .
Hence
(11) (@2»(; g)lK) = (szq;f2m leq;’fln) + O(l)

= (Yaey Vi) + (1) + 0(1)
= o(1)
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since ¥, L4y by construction.

It is clear that this procedure can be repeated m-2 more times.
At the kth stage, steps (10) and (11) can be verified with the index
1 replaced by each j < k and 2 replaced by k. After m iterations we
have constructed the required asymptotic basis (P, « -+, P, for E[J].
Note that the procedure halts here since there are no unit vectors in
# perpendicular to all of 4y, +-+, ¥

Of course it follows from the first part of the theorem that X.(J)
is concentrated on the union of the (at most) m intervals I{* whose
midpoints were chosen as the \,. This completes the proof of the
theorem.

In the proof, the following fact was used:

LEMMA 2.8. Let P be a projection of dimension m. Let

“/flny"'ynub\dnynzlyzy"'

be sequences of wectors satisfying (1 — P)y;,, — 0, L = ||, || = ¢ >0,
and (¥ju, Yim) — 0 for j = k. Then d < m,

Proof. P, is a sequence in the unit ball of the m-dimensional
space P5# By passing to a subsequence, we can therefore assume
that Pvr,, — 4, for some vector +, with Py, = o, Since (1 — P)yr,, — 0,

Vi = P“;”ln + (1 - P)“/’ln = + 0(1)

as n— co, Moreover |4y, || = ¢ gives v, = 0. Looking at the corre-
sponding subsequence of +,,, we can apply the same argument to find
W, # 0 with Py, = +, and 4, — .. Also,

(s, ¥2) = (P1n + 0(1), Y2 + 0(1)) = 0(1) + 0(1) ,

whence +r, L4,. In this fashion we can construct pairwise orthogonal
nonzero vectors «r, -+, 4y, in P5# Hence dim P = d.
The “only if” part of Theorem 2.7 will not be used in what follows.

COROLLARY 2.9. Under Assumption 2.3, &f {Pu, *+, Pu ond
{0, + -+, @, are two asymptotic bases of order p for EJJ], then
the corresponding pseudoeigenvalues N, and A; satisfy

Aj:c:)'jx_}“o(l‘:p)y .7: 1, e, M

(possibly after the A; have been re-indexed).
Proof. By Theorem 2.7, 3.(J) is concentrated on the union C,

of open intervals of length o(x?) about the \,.,. Further, in view of
Lemma 1.3, by lengthening the component intervals of C,. (still keep-
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ing them o(#?) in length), we may assume that (1 — EJI%])®.. = o(1),
where I: is the component subinterval of C,. containing \,. On the
other hand, for each j =1, -.-, m, since (1 — P)?;,,— 0 and P is m-
dimensional, there is no sequence &, — 0 for which @jkn—L 0. Then
Lemma 1.4 shows that each 4;. is within o(x*?) of C.. By again
lengthening the components of C, (still keeping them o(£?) in length)
we can assume that 4,,eC.,7 =1, ---,m, and (by Lemma 1.3) that
1 — EJIi})®;. = o(1), where I is the component interval of C, con-
taining 4,,.

Let the distinct open component intervals of the adjusted C. be
numbered I, ---, Ii, s, <m. Kach I is still of length o(k?), so the
asserted relabelling of the 4, could be carried out provided the same
number of 4,’s as A;’s belong to I%.

To see that this must be the case, at least for sufficiently small
£, we suppose the contrary, i.e. that for some sequence x,— 0 the
component interval I}» contains ), for m(k,) different 7 and contains
A;., for M(k,) > m(k,) different j. Then for each =, the M(k,) dif-
ferent pseudoeigenvectors @, , together with the m — m(k,) different
pseudoeigenvectors @, not associated with the \;. in I, make up a
family {vr,., +-+, ¥4.}, where d =m — m(k,) + M(k,) > m. By the
construction of the intervals I® it is clear that ||+;,||— 1 and

("/fjm "S’fwc)__)o if ’Lij,

and of course (1 — P)vy;,,— 0 by definition. Thus d > m contradicts
Lemma 2.8, and the asserted relabelling can be carried out.

COoROLLARY 2.10. Under Assumption 2.3, X(J) is concentrated
to order 0.

Proof. Let {®, ++-, ®,} be an orthonormal basis for _# Applic-
ation of Lemma 2.2 to each @, in turn yields an asymptotic basis of
order 0 for E|J], and the assertion follows from Theorem 2.7.

It should be noted that Corollary 2.10 can fail if A has infinite
multiplicity.

3. Construction of asymptotic bases of order p > 0. Corollary
2.10 required nothing beyond Assumption 2.3, but to obtain higher-
order asymptotic bases we shall apply the formal perturbation method,
and this requires that H, have a certain form.

Suppose that V is a symmetric operator in 57~ such that some
linear set 2 c Z(H)N =2(V) is dense; then H + £V is defined and
symmetric on < We shall suppose that for sufficiently small
£, (H + £V)| & admits a self-adjoint extension. Then H, is taken to
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be one such extension. Specifically, we consider two cases:

ASSUMPTION 3.1. At least one of the following holds:

(a) H, is any self-adjoint extension of H + £V, and the restric-
tion of H to <7 is essentially self-adjoint; or

(o) (Hp,9) = (@, ?) and (Vo,p) =0 for all pe =, H, is the
Friedrichs extension of H + £V, and the restriction of H to <7 has
H as its Friedrichs extension;
and 1t 1s still assumed that N is an isolated eigenvalue of H with
multiplicity m.

In view of Lemma 2.1, either (a) or (b) guarantees that H, L H ,
and so Assumption 2.3 is satisfied and all the results of §2 follow
under Assumption 3.1.

We consider numbers A\, and vectors ¢, of the form
A':c =X + Ek(l) + PR + A:PA}(]J)
(12)
"/fx - ’I/’P(O) -+ I\I’l[f(l) 4 e ﬁ;pq/f(p)

where p is an integer =1 and +‘” is an eigenvector of H associated
with N, If 4@ 4@ oo e & then (H, — M)Y can be computed
from the formulas H«r™ = Hy™ + £V, We find

(He = My = 3, CUR + O+,
(13) €% = (H — )y + B,
() — N 1) S (rk ()
B = (V — aoyyey - Sonehgn,

where in B® the formal term 3;!, is to be suppressed. In order that
Moy P = || ¥ || 7) be a p-pair for H,, it is necessary and sufficient
that C” =0,»=1,2, .-+, p.

For simplicity we consider first the case where A is simple, i.e.
m = 1. Then Pp = (@, vy for any pe 2. If A® and +* have
already been chosen for k# < r, then

PB™ — <[(V — >\:(1)'Il/‘(r_l)) — Ti‘jx('f—k)w(b]ﬂ,(o))v(m
k=1
_ X(”Q/f(o)

(14)

can be made to vanish by choosing
(15) AT :<[(V — N”)w{r”_l) — ;ij(wk)q/f(k)], ”‘/f(o)> .

Since (H — \)P = 0 as well, we now have

(16) C" = (H—\(1— Py +(1—P)B",
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Recalling that the reduced resolvent S = S (g — N dE(p) of H at
offd

M\ is bounded on 57 and satisfies (H —A)S=1—-P,SP= PS =0,
we choose ™ by

an 1 — P)y™ = —SB™, Py'" arbitrary ,

so that (16) vanishes, as desired.

Formulas (15) and (17) are meaningful if and only if Vo is
defined. By induction, then, these choices can be made for » =1, .-+, »
if and only if ' lies in the domain of each of the composite opera-
tors T «-. T?, where each T7 is either S or SV.

This condition guarantees that X" and @ are defined and
C"=0,r=1,-.-.,p, and that v"e =2, =0,--.,p — 1. However
it does not guarantee that ' ¢ <. Thus the computation leading to
(13) is not quite justified, and we must modify +* as in Lemma 2.2,
Letting

W = (H, — )7H — iy

(12’)
’l,lf‘; — ,l/f(o) + Il:’l//‘(l) A eee h;p—lq/f(p—ll + ,ﬂquy,;m ,

and using the fact that C" =0 for r =1, ---, », we find
(HK - )\'K)w:: = ’5”(7” - i)(q“'ﬁ(m - ,]p\fcl’)) + O(I‘:p+l) ’

which is o(s?) since @ — @, Hence (A, @ = ||V |7, is a p-pair
for H,, and since @, — ', the singleton {p,} is an asymptotic basis
of order p for EJJ].

If )\ is degenerate (m > 1) we seek numbers \;, and vectors ;.
of the form (12), for j =1, ..., m, such that the quantities C{” as in
(13) vanish for »r =1, ---, p. Now (14) no longer holds, and indeed
PB{" cannot be made to vanish merely by the choice of A,

Consider first the case p =1, Assume _# C<2(V). Since
e _#, we have

(18) PBY = P(V — M)W = P(V — M)PY .

The m-dimensional symmetric operator PVP has s < m eigenvalues
Yy < +++ < p, and corresponding orthogonal eigenprojections @, +++, Q,:

P=3Q, PVP=3Q; .

Put m,; = dimQ,, so that >\:.,m; =m. For each j =1, -.-.,m put
1(7) = least ¢ such that j < m, + -+« + m;; of course in general more
than one j will correspond to a given i(j). Let P{ = Q,;, and
choose
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A =
V= PP, (0, 1) = b

Then, with V® = V, we have

(20) P(V®O —3Mpp = PV — AP =20,

(19)

so that (19) causes (18) to vanish foreach j =1, ..., m. Now C{ is
given by (16) with » = 1, and +{ can be chosen as in (17) with » = 1
to complete the annihilation of C{. The nonuniqueness of the
with a fixed 4(j) in (19) and of the Py{" in (17) should be borne in
mind.

In the choices for » = 2, we shall need the reduced resolvent
S = S (¢ — AM)7Q; of PVWP at A", which satisfies

(21) P(V®H —AMS® = P — PP, SPPP = POSH =,

Passing now to the case p = 2, we assume that _»~ < 2(VOSVY),
This certainly insures that _# Cc < (VY), so it can be supposed that
the AP, 4, and +" have been chosen as above to make the C{
vanish. In studying the C? we treat simultaneously all the j with
a given 4(7), and for any such j we consider successively the com-
ponents PPB® and (P — PM)BY® of PBY., In view of (17) with » =1,
(19), and (20), the first of these components is

(22) PYBY = PPV ~ AP,

where V@ = (VO — AM)(=SYV® —AP) is, by our assumption, de-
fined at least on _#. Notice that this would not be true without
the second-order assumption on _#. Now the same arguments can
be applied to PPV PY as were used on PV®P following (18). We
are led to define, for each j, a projection PP < P!’ and a number
A® such that PP(VE — AP)PP = PA(VEP — AP)PP =0, Then the
choice

(23) P = PP, ) = O

is possible and causes (22) to vanish.
The second component of PB? is annihilated by refining the choice

of ¥, In view of (17) with » =1, (20), and the definition of V',
(P — P(}))B(_z) = (P — PPYVE — ANR)pl

24 J J J J J J

@) + (P — PPYVE — AP — PPy

Since Py is arbitrary in (17), we are free to make the adjustment

(P = PPW = =SP(VE =20,

25
(25) Pt arbitrary .
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Then (21) shows that (24) vanishes. Now C{ is given by (16), and
once again its annihilation can be completed by choosing +{* as in (17).

It should be observed that the adjustments (23) and (25) to ¢
and +" do not make sense without the second-order assumption
A Ca(VOSV®), However, the components adjusted in (23) and
(25) do not affect the first-order coefficients C ¥,

The situation with p = 3, 4, --. is analogous, and the details will
be omitted. Briefly, for any such p, we would suppose induectively
that the condition mentioned in the case m =1 (with p — 1 instead
of p) would permit the choice of N, ««« NP7V i «ov apP=D g0 that
CP=...=C¢p"=0,5=1,---,m. At this point we would have
defined projections P = PP = ... = P»" and operators V©, V¥,

, V{7V with properties analogous to (20). At this point, moreover,
the components P{’¢ P~ would be arbitrary, »r=0,1,---,p — 1,
save for the restriction (%, ) = d;,. Passing to the pth-order as-
sumption on <7, we could then substitute into B{ all the previous
choices ¥\, «-., 4?70 As in (22), this would lead to the definition
of an operator V", a projection P, and a number A}, for each j,
such that an adjustment to " analogous to (23) would kill PP B,
Next, adjustments like (25) to the components (P{7 — P{rb)qyplr—i-m
would kill (P — PY™)By+ » =10,1, ---, p — 2, leaving (16) in force
with » = p. Then the choice of +{ in (17) would kill C{, complet-
ing the induction, and at this point the components P[4~ would
remain arbitrary, » = 0,1, ---, p. Again it should be observed that

the adjustments to (", ---, ¥ made at the pth stage would re-
quire the pth-order assumption on <7 but would have no effect on
CP, e, CO ™,

Finally, if this process is carried out to the pth stage, the
can be adjusted as in (12') so that each (\,., @;x = || ¥ |7V ) Is & p-
pair for H,; and by the orthogonality of the +{, {®Pi, +++, P 1S an
asymptotic basis of order p for E.[J].

To summarize, we may state

LemMA 3.2. Under Assumption 3.1, the perturbation wmethod
yields an asymptotic basis of order p for EJJ), provided that _. is
contained in the domain of any p-fold product of operators, each of
whose factors is either V or SV.

In the degenerate case, were it not for the repeated adjustments
to components already chosen, much simpler closed expressions could
be written down for the A{” and +{’. The need for the adjustments
to ¥{" at stage r + 1 is evidently due to the appearance of several
distinet coefficients A", or equivalently, of several distinct projections
P < P, a phenomenon known as splititing. Further splitting, and
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hence further adjustments, might occur at any stage, since the only
restriction is that at most m — 1 of the inequalities P > P{" = PP = ...
can be strict. Thus, although there must in every case be some in-
teger ¢ such that P = PV = ... for j=1,...,m, it may be
difficult in any particular case to say just what ¢ is. Of course ¢ = 1
if it happens that all the A" are distinct, for then each P{ is one-
dimensional and perforce equal to all the P (» > 1,7 fixed); but this
instance is by no means typical. In some cases of practical importance,
H and H, (and hence all the V¢’) are invariant under the action of
some linear group G on £#7 Then the range of each P{” is the space
of some representation of G, and if for some » = ¢ this representation
is irreducible, we must have P{® = PV = ... (see |9], pp. 120ff.).
The example in §5 is of this type, where ¢ turns out to be 2.

Even under Assumption 3.1 it might happen that _~ is not con-
tained in =7 (V), so that L.emma 3.2 does not apply. In such a case
the following observation might be of use,

Lemma 3.3. Under alternative (b) of Assumption 3.1, EJJ]| has
an asymptotic basis of order 1/2, provided that _z 1s contained in
the domain of H!? for some & > 0,

Proof. Under these conditions N = 0 and A' is an eigenvalue of
H~* with eigenspace _»7, and it can be proved ([6], pp. 189-191) that,
for each unit vector e _~, (W™, ) is a 1/2-pair for H;'. Denoting
the spectral family of H;* by E. and applying Lemma 1.3, we get
(1 — EJ 7 o)y = o(1), where o(£"®) is suitably chosen as in
Lemma 2.2, Since E.(¢) = —E(1/x) and (A7 + o(£2)™ = A F o(£?),
this means that (1 — EJ\, o(&"*)])¥ = o(1). We put v, = ElN, o(8/%) ]y,
so that +.—+, and it follows from the spectral formula that
(He — M = o(6%).  Thus (A, @ = || v |7 is a 1/2-pair for H,,
and it is clear that an asymptotic basis of order 1/2 for FE.[J] can be
constructed in this way starting with a basis for _#.

The hypothesis + ¢ &7 (HY?) is equivalent with the existence of a
sequence 4, € &7 such that 6, — + and (H + £V){0, — 0,,), 0, — 0,,) is
Cauchy; it is weaker than ¢ & (V). If H,.| < happens to be es-
sentially self-adjoint for some £ > 0, then + ¢ < (HY?) follows from
the existence of V' (6], p. 189.).

4, The case of a stable eigenvalue. Under Assumption 2.3 it
may happen that EJJ]| is m-dimensional for sufficiently small £. In
this case A is called stable under the perturbation of H to H.: X.(J)
must consist of precisely m eigenvalues 4, ---, 4,. (counted with
their multiplicities) with associated orthonormal eigenvectors @,,, -+ +, @,...

Since EJ[J] —— P and EJ[J] is m-dimensional, it follows that E[J]— P
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in the uniform operator norm. Hence
11— Pl = [[(ELJ] — P)y || = | EJ{J] — P||—0,

and {®,, -+, ?,) is an asymptotic basis (of any order) for E.J[J].
Then 4, — 4 by Lemma 2.6, More precise estimates follow under
the hypotheses of Lemma 3.2,

THEOREM 4.1 Under the hypotheses of Lemma 3.2, let (N, P,.),
j=1, -, m, be the p-pairs for H, computed by the perturbation
method. If N is stable then XY (J) consists of m eigenvalues A, =
Nie + o(8?).  Each corresponding eigenvector @;. is within o(k”9) of
a linear combination of those @, for which N, agrees with \; up to
the gth order (i.e. A" =\ for » < q).

Proof. The estimate of the 4,. follows from Corollary 2.9.

For each j =1, ..., m, let S,(j) denote the set of all integers ¢
such that A, has the same coefficients as ;. up through the order
ke, If ¢ S,(j) then ) and );, have different coefficients of some power
& with » < q, and 80 | N — Njo | > Mg for some M > O and sufficiently
small £. Then the interval I, = {p: | ¢t — N | < Mk contains precisely
those ), and 4; for which ¢ e S,(j). Lemma 1.3 gives, for each such
1, (1 — EJI.))P: = 0o(£”79), so that the vectors

"/fi:c = EK[IK:I@'U( - goifc "I_ O("‘:p—q)! ’Z:G Sq(j) ’

are eventually linearly independent. But E[I] is the projection on
the linear span of the @, with 7€ S,(j), and so the v, also span the
range of EJIL]. Hence, in particular, @, is a linear combination of
the ¥, = @i + 0o(£779) with 7 e S,(j), and the theorem is proved.

Since in general all the A, agree at the zeroth order, each @,
can be written as a linear combination of all the @, with an error
o(?). Of course if m =1 then @, = @, + o(x?), But if m > 1, even
if N, splits away from all the other 1, at the first order (S.(j) = {j}),
the estimate in the theorem is only @;, = ®,, + o(s*"), and the coef-
ficient of £? in @, is not given any significance. Better estimates of
the @;, evidently require more careful choice of the ¢, than suffices
merely to make them pseudoeigenvectors of order p.

There is a more serious defect in the estimates of the 4, for
pth order assumptions on _#Z = E[A] & (see Lemma 3.2) actually
guarantee the existence of coefficients N\ for r =1, «++, p, +++, 2p, all
of which are significant in estimating perturbed stable eigenvalues
([6], pp. 182-184). Such estimates to within o(x**) cannot be based solely
on the theory of pseudoeigenvectors developed here.

The stability of N is a rather delicate matter, and there is no
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abundance of useful sufficient conditions. A well-known one is that
H.,= H = ¢ as in Lemma 3.1 (b), and that the part of the spectrum
of H lying to the left of )\ consist entirely of isolated eigenvalues of
finite multiplicity ([6], p. 181.).

5. The Stark effect in the hydrogen atom. We consider as
an example the quantum mechanical system of a hydrogen atom in a
uniform electric field. Here 57 = L,(R?. Regarding the electric field
as a perturbation, we consider a basic system governed by the Hamil-
tonian operator of the hydrogen atom in free space. With spin neg-
lected, this is formally

T=—4-—c¢/r,

where 4 is the three-dimensional Laplacian, ¢ is a positive constant,
and r is the distance to the origin. With <(T) = C3(R?Y), T is es-
sentially self-adjoint (see [5]), and we take the unperturbed Hamiltonian
H to be the closure 7. From the boundedness of ¢/r relative to 4 it
follows that < (H) is identical with <7(4) and is contained in < (c/r),
where the last two are the domains of the self-adjoint extensions of
4 and ¢/r defined by closure from Cg(R®). Thus it is meaningful to
write H+ = — Ay — (¢/r)y for e = (H); this will be useful later.

The spectrum of H is well known (e.g. [11] p. 133): the continu-
ous spectrum covers the nonnegative real axis, and the point spectrum
consists of countably many isolated negative eigenvalues A(n) = c¢*/4n?,
n=1,2,...-, where the multiplicity m(n) of N\n) is »* and each
eigenspace .7 (n) consists of functions which decay exponentially at
infinity ([11], p. 282).

If coordinates are chosen so that the electric field is parallel to
the wx;-axis then the perturbation of the Hamiltonian by the electric
field is formally wxx,, where & is a positive number proportional to the
field strength., We define the operator V to be multiplication by .,
on the domain

(V) ={peL(R*»:3IR = 0,3C 2 0,3n > 03 |p(x) | = Ce™"*!
for almost every xz with |z| = R} .

Then CP(RYc 2(H)N 2(V), and H + £V defined on CP(R?®) has a
self-adjoint extension (in fact a unique one [5]) which we take as the
perturbed Hamiltonian H,. By Lemma 2.1 (a), H -1 H,

For each £ > 0, H, has no eigenvalues, and the continuous spectrum
of H, covers the whole real axis ([11], pp. 134 ff.). However, by
Corollary 2.10 the spectrum of H, near each \(n) is concentrated to
order 0; and we shall now show that this concentration in fact holds
to any positive order.



398 R. C. RIDDELL

Clearly Assumption 3.1 (a) holds for each X\ = \(n); moreover,
A = _#(n)C (V) since the eigenvectors of H all decay exponenti-
ally; and V& (V)c &2(V) by inspection. Thus to verify the hypotheses
of Lemma 3.2 for all integers p, it suffices to show that S(V)c o7 (V),
where S is the reduced resolvent of H at A. For as soon as this is
known, it is clear that any composite of finitely many factors S and
SV can be applied to each pe (V).

To see that S(V)c =2(V), fixpe = (V). Since Ppe 7 c < (V),
it is enough to consider the case in which ¢ is orthogonal to _~, i.e.
(1—P)p=¢@. Now = Spec 2(H), and

H—-\y=H-NSp=(1—-Plp=09.

According to the remark after the definition of H, this equality can
be written

(=4 =N =2+ (¢/r)y .

The operator on the left has a bounded inverse, given by convolution
with the function (4mr)~'e~*, where —) = 2k* k& > 0. Applying the
inverse to the above relation, we obtain

~klz—~yl
(26) (x) = LS £
By —y|

L [ o) + v |ay

|y

for almost all x ¢ R®. Since our aim is to show that + decays ex-
ponentially at infinity, it suffices to estimate + in the exterior B’ of
some ball B = B(R) with center at the origin and radius R. To this
end we write (26) as

e—klx—yl

— _w(y)dy ,

@0 V@) = s + | S

4
where &(z) is the sum of the contributions of + and ¢ to the integral
in (26) over B and the contribution of ¢ to the integral over B’.
Treating each of these contributions separately, taking R sufficiently
large, and using the fact that ¢ 57 and v e <(V), together with

Schwarz’ inequality and various elementary inequalities on |z — ¥/,
one can show that &e o(V), i.e.

(28) [&(@) | = A(R)e™™!

for |z| = R, where 0 < v < (1/2)k, and A(R) is a constant which
grows with R. It should be noted that + is already a well-defined
item, namely S@, and that (27) expresses one of its properties; there
is no question of solving (27) for an unknown .

Now we regard the right side of (27) as defining a map K in
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LyB’). A straightforward estimate shows that this is true, and in
fact that K is a strict contraction map if R is sufficiently large.
Thus K has a unique fixed point given by « = lim K"@, where @ is
any element whatever in L,(B’). With &(z) = 0, K& = ¢ obeys (28),
and it can be shown easily by induction that, for R sufficiently large,
K"® is dominated by 24(R)e 7'*!, Hence so is the fixed point .

But (27) asserts in particular that + restricted to B’ is a fixed
point of K, and as such it must agree almost everywhere with .
Hence + decays exponentially, and we have shown that v = Spe (V)
if pe (V).

It follows from Lemma 3.2 that, for each eigenvalue \(n) of H
and each positive integer p, the perturbation method yields an asymp-
totic basis of order p for E.[J(n)], where J(n) is an isolating interval
for n(n). Theorem 2.7 then shows that X (J(n)) is concentrated on the
union C.(n) of intervals of width o(x*?) centered on the pseudo-
eigenvalues \;.(n) computed by the perturbation method.

In passing, we remark that these pseudoeigenvalues have been
calculated at least up to the second order (e.g. [8], p. 270). At the
first order, M\(m) splits into 2n — 1 distinct pseudoeigenvalues, the
different \{" being proportional to ni, —m + 1 <1 <n — 1, and hav-
ing multiplicities (as eigenvalues of P(n)VP(n)) equal to n — |¢|. At
the second order, further splitting occurs: if n — |7] is even, \{Y cor-
responds to (1/2)(n — |¢|) distinct AP all of multiplicity 2, and if
n — |4 is odd, A" corresponds to (1/2)(n — |¢| + 1) distinct AP, of
which one has multiplicity 1 and the rest have multiplicity 2. Alto-
gether, at the second order, M(n) has split into % “simple” pseudo-
eigenvalues and (1/2)n(n — 1) “double” ones. Now, the symmetry group
of H, is generated by all rotations of R® about the ux,-axis together
with reflections in a plane containing the x,-axis, and its irreducible
representations are all one-and two-dimensional. The #n*-dimensional
representation of this group in the eigenspace . (n) contains n copies
of the first kind of irreducible representation, and (1/2)n(n — 1) copies
of the second kind (see, e.g. [22], pp. 204-205). These correspond
exactly to the multiplicities of the A® and so A\(#) cannot split further
past the second order.

Returning to the concentration of the spectrum of H,, we can
write the negative real axis N = (— o, () as the union of closed in-
tervals J(n), each of which isolates Mn),n =1,2,---. By consider-
ing the dense family § of finite linear combinations of vectors in
Ur-1 4 (n) and using the uniform boundedness of the projections

E J(C.(n)], we easily see that E. [N — C,] —%,0, where C, = U Ci(m).
In other words, for any positive integer p, the negative spectrum of
H, is concentrated on the union of intervals of length o(k?) centered
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on the numbers ;. (n) computed by applying the perturbation method
to the unperturbed eigenvalues M(n) (cf. [2], p. 20).

This property distinguishes the \,.(n) from other negative points
of the spectrum of H,. It is frequently pointed out that, although
the system governed by H, has no stationary states in the strict sense
(since H, has no eigenvalues), nonetheless the \;, represent the energies
of “almost stationary” states (see, e.g. [8], p. 274 fn.; [12], p. 206).
Indeed, if (\,, ®.) is any p-pair for H,, then by estimating the spectral
formula in two parts, off and on the interval A, — &" < pt <\, + &7,
we obtain

lemrp, — e, " < 4| (1 — En, #7)pc I + (@67)° .

If ¢ > 0 is specified, Lemma 1.3 shows that x#, > 0 can be chosen so
that the first term on the right is <¢*2 for # < #,. Then the second
term remains <e*/2 for all t < T = (¢/V/ 2)k*. In other words, for
£ small enough, the state e **"r ¢, remains with in € in norm of its
original value @, for all times in an interval [0, T| whose length
wmereases with 1/k?,

It is stressed that this result holds for an arbitrary p-pair of H,;
and since H, has continuous spectrum everywhere, a p-pair (\., @)
can be constructed in which A, has any value whatever. Thus the
“almost stationary” property does not by itself characterize the pairs
Nje(m), Pje(m)).

However, in view of the concentration of Y.(IN) near the \;.(n),
we see by Lemma 1.4 that if (\,, ®,) is a p-pair whose @, has no

sequence @, 2, 0(k, — 0), then ), must be within o(£?) of the set of
all »;(n). We may conclude that the \;.(n) represent the only pos-
sible energies which are continuous in £ and whose corresponding
states @;(n) are both “almost stationary” and remain outside some
weak metghborhood of 0. The last condition rules out wave functions
which, though technically “almost stationary”, have supports which
shrink to a point or migrate to infinity as & is reduced.
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