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The primary purpose of this study is to determine which
topological properties of a space are preserved by multivalued
functions, Among other results, the following are proved:

(A) Let F: X— Y be a perfect map from X onto Y, with
F(x) + @ for each x€ X, where X and Y are T-spaces whose
diagonals are Gs-sets, Then X is metrizable (stratifiable) if
and only if Y is metrizable (stratifiable)-see Theorem 3.2,

(B) If F: X— Y is a multivalued Y-compact quotient map
from a separable metrizable space X onto a regular first
countable space Y with a Gs-diagonal, then Y is separable
metrizable (see Theorem 4.5).

(C) Every (usc-) Isc-function F' from a closed subset of a
stratifiable space X to a topological space Y admits a (usc-)
Isc-extension to all of X (see Theorem 5.2),

Multivalued functions have been extensively studied by Kruse [6],
Michael [7; 8], Ponomarev [12; 13; 14], Smithson [15] and Strother
[17; 18]. Choquet [2] and Hahn [3] have also considered multivalued
functions.

2. Preliminary definitions and results. Because there are many
conflicting terminologies in the theory of multivalued functions, we
find it necessary to attempt a terminology of our own, which is a
direct extension of the most natural and simple terminology of
Michael [10] and includes some of Ponomarev’s terminology:

DeriNiTION 2.1. For any sets X and Y, F': X — Y is a multivalued
function provided that, for each xe¢ X, F'(x) is a subset of Y(F(x)
need not be a closed or nonempty set as required by Ponomarev and
others).

Clearly, single-valued functions are just special cases of multivalued
functions and indeed a multivalued function from X to Y can obviously
be thought of as a single-valued function from X to .o/ (Y)—the
family of all subsets of Y (including the empty set).

DeriNiTION 2,2, Let F': X — Y be a multivalued function. Then

(a) F(A)= U {F(x)|xec A} for each 4 C X,

by F(B)={xeX|F@)nB=+ @} for each BC Y (clearly F—
is a multivalued function from Y to X).

It is quite easy to construct a multivalued function F from a
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topological space X to a topological space Y such that F~'(U) is open
for each open UC Y and yet F~'(B) is not closed for each closed
B Y and vice versa. Hence on immediately realizes that the various
equivalent definitions of continuity of (single-valued) functions have
to be considered separately for multivalued functions:

DEFINITION 2.3, Let F': X- Y be a multivalued function. Then
we say that (the terminology of (e)—(g) was first developed by
Ponomarev [13])

(a) F is a usc-function (i.e., upper semi-continuous function)
provided that F-'(B) is closed for each closed BC Y,

(b) F is a lsc-function (i.e., lower semi-continuous function)
provided that F~-'(V) is open for each open VY,

(¢) F' is a continuous function provided that F' is a usc-function
and a lse-function,

(d) F is a closed (open) function provided that F'(B) is closed
(open) for each closed (open) BcC X,

(e) F is Y-compact (Y-separable) (X-compact: X-separable)
provided that F'(x) is compact (separable) for each x¢ X(F~'(y) is
compact for each ye Y; F~'(y) is separable for each yc Y),

(f) F is Y-perfect (X-perfect) provided that F is a closed, Y-
compact, usc-function (F' is a closed, X-compact, usc-function),

(g) F is perfect provided that F' is X-perfect and Y-perfect.

Our terminology compares with others as follows (where “=”
means “the same as”):

1. usc = strong upper semi-continuity (Choquet [2]) = upper semi-
continuous (Michael [7]) = continuous (Ponomarev [12]) = lower con-
tinuous (Hahn [3]).

2. lsc = strong lower semi-continuity (Choquet [2]) = lower semi-
continuous (Michael [7]) = skew-continuous (Ponomarev [12]) = lower
continuous (Hahn [3]).

DEFINITION 2.4. Let F: X — Y be a multivalued function. Then
(a) The graph of F is
grF ={(z,y)e X X Y|ye F(z) and v X} .
(b) The functions py: grF — X and p,: grF — Y are defined by
Dx(e, y) = « and py (2, y) = ¥y

for each (x, y)cgrF.

We now state, without proof, some straightforward results of
crucial importance which were first observed by Ponomarev and
Smirnov.
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LEMMA 2.5. Let F: X— Y be a multivalued function from X
onto Y. Then

(@ (F)"'=F,

(b) F(x) = pypz'(x) for each ze X,

() F(y) = pyp7'(y) for each yeY,

(d) the maps py and p, are always continuous (since they are
restrictions of the projection maps To: X X Y—->Xand 7y X X Y—Y).

We now prove two very useful results which determine the rela-
tionship of a multivalued map F: X— Y and the maps p, and p,.
The proof of the first result is essentially due to Smirnov.

THEOREM 2.6. Let X and Y be topological spaces and F: X — Y
be a multivalued function. Then

(a) F 1is a usc-function and Y-compact if and only if the map
py 18 perfect,

(b) F s closed and X-compact tf and only if the map py is
perfect,

(¢) F is perfect if and only if py and p, are perfect.

Proof. The proof of the “only if” part of (a) appears in the
footnote of page 123 of Ponomarev [13]. The proof of the “if” part
of (a) follows easily from Lemma 2.5 and Definition 2.4(a). The proof
of (b) is the same as the proof of (a) if one considers F~! instead of
F. Part (c) is an immediate consequence of parts (a) and (b).

REMARK 2.7. The appealing conjecture that py(py) is closed even
though F' is not Y-compact (X-compact) is false: Let R be the real
line with the usual topology, I be the closed unit interval and
F:R— R be defined by F(x) =1 for each xe¢ R. Then F is not
X-compact (F'(0) = R) and p, is not a closed map (p,({(x,v)]|y = ¢*
and x < 0}) = [0,1]). Furthermore, F' is Y-compact, continuous and
closed.

THEOREM 2.8. Let F: X— Y be a multivalued function. Then
(@) if F is a lsc-function then py is an open map,
(b) <f F is open then py, is open.

Proof. 1t suffices to prove (a), since (b) is an immediate con-
sequence of (a), due to Definition 2.4(b) and Lemma 2.5(a): Therefore,
let us assume p, is not open. Then there exists a closed A c grF
such that the set B = {rxe X|p7 () C A} = X — py(grF — A) is not
a closed subset of X. Let weB~ — B. Then p7(w)¢Z A. Let
(w, z) € py'(w) — A. Since A is a closed subset of gr¥ there exists an
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open neighborhood N = U x X of (w,2) in X x Ysuchthat NN A =
@ . Letting

C=X—-F'(V)={weX|F@nV=0}

we get that C is not a closed subset of X, since we U—C(ze F(w)N V),
weUNB~ and @ = U N Bc C (Suppose there exists v (U N B) — C.
Then V c F(x) + @ and thus

U xV)n{a} x F) =(UXx V)Npik)cNNA =g,

a contradiction). Hence F~' is clearly not an open function (i.e., F
is not a lIsc-function), a contradiction which completes the proof.

Finally we prove a rather interesting result (even though we
cannot find it in the literature, it appears to be known).

THEOREM 2.9. The relation between spaces X and Y expressed
by “there is a perfect multivalued function F from X onto Y such
that F(x) = @ for each xe X" is an equivalence relation.

Proof. The only difficult part of the proof involves showing that
the composition of a Y-compact use-function F: X — Y and a Z-compact
usc-function G: Y— Z is Z-compact; but this is an immediate con-
sequence of Corollary 9.6 of Michael [10] (see also 7.7 (p. 60) of
Kruse [6], Th. 1 (p. 104) of Ponomarev [12] and 21.3.4 of Hahn [3]).

3. Preservation of topological properties. First we will prove
necessary and sufficient conditions for the preservation of metrizability

and stratifiability’ by multivalued functions, for which we need the
following lemma:

LEmMMA 8.1. Let X and Y be topological spaces with Gs-diagonals.?
Then X x X has a Gs-diagonal.

Proof. Suppose that U, and V, are open in X x X and Y x Y
respectively, and M-, U, and Y-, V, are the diagonals of X x X
and Y X Y respectively. Let

W, = {((®y, Y1), (@, ¥2)) | (21, @) € U, and (0, ¥2) € V) .

Then W, is open in (X x Y) x (X x Y) and Uy, W, is the diagonal
of (X XY)x(XxY).

1 A summary of the properties of stratifiable spaces appears in the introduction
of [1]. The most relevant results about these spaces which should be mentioned
here are (a) Every CW-complex of Whitehead is stratifiable, (b) metrizability implies
stratifiability which implies paracompactness and perfect normality.

2 A topological space X has a Gs-diagonal if {(x, ) |z€ X} is a Gs-subset of X X X.
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THEOREM 3.2. Let F: X— Y be a perfect multivalued function,
with F(x) = @ for each xe X (1.e., F7(Y) = X), where X and Y
are Ti-spaces with G-diagonals. Then X 1s metrizable (stratifiable)
if and only if Y is metrizable (stratifiable).

Proof. We will first prove the “only if” part: Let X be metrizable
(stratifiable) and Y have a Gs-diagonal. Then grF has a Gs-diagonal
(a subspace of a space with a Gy-diagonal clearly has a Gs-diagonal)
and hence grF is metrizable (stratifiable) because of Theorem 8.1
(Theorem 8.4) of [1].

Since p, is perfect, due to Theorem 2.6(c), we get that Y is
metrizable (stratifiable) due to Theorem 1 of Stone [16] (Th. 3.1 of
[1]). The “if” part follows immediately from Theorem 2.9.

We will now turn our attention to the preservation of various

other topological properties by multivalued maps, for which we will
need the following definition:

DEFINITION 3.3. Let F: X— Y be a multivalued map. Then F
is said to be Y-monotone (monotone) provided that each F'(x) is con-
nected (each F~'(y) is connected).

THEOREM 3.4. Let F: X— Y be an onto (i.e., F(x) = Y) multi-
valued function such that F(x) + @ for each x€ X. Then

(a) if F is a lsc-function, F(x) is separable for each xc X and
X s separable then Y 1is separable,

(b) of F is a Y-monotone lsc-function and X 1s connected then
Y is connected.

Proof. (a) By Lemma 2.8(a), p, is an open function and hence
grF is easily seen to be separable. Hence Y is separable (p, is con-
tinuous).

(b) Clearly, it suffices to prove that grF is connected: Assume
not. Then grF is the union of two disjoint nonempty open subsets
U and V. Since P, is clearly monotone we get that p7'(x)N U = @
if and only if pz'(x) c U. Hence {p,(U), px(V)} is an open disjoint
cover of X, because of Lemma 2.8(a), a contradiction.

As pointed out by the referee, both parts of the preceding result
become false if the hypothesis that F(z) + @, for each xe X, is
removed (Example (a). Let Z be a countably infinite discrete space,
Y = (BZ) — Z (BZ denotes the S-compactification of Z) and define
F:BF—Y by F(x) ={z} N Y. Clearly F is a perfect Y-separable
map. However, while 87 is clearly separable it is well-known that
Y is not separable (see, for example, exercise 60(1,2) of [4] for an
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easy proof of the fact that Y has 2% mutually disjoint open subsets
which clearly implies that Y is not separable). Example (b). Let
X=00,2], Y = X — {1} and define F': X—Y by F(z) ={z} N Y).

As a final comment of this section, we note that the requirement
that X and Y be completely regular in the statement of Theorem 3
(page 127) of Ponomarev [13] is much stronger than needed, as the
ensuing result indicates:

THEOREM 3.5. Let X and Y be regular spaces and F: X — Y be
an onto perfect multivalued function. If X is paracompact (locally
compact; countably paracompact; star-paracompact) them so is Y.
The converse is also true if F(x) + @ for each xe X.

Proof. Since F is a usc-function then F~(X) is a closed subset
of X. Hence the “if” part follows immediately from Theorem 2.2 of
[5] and Theorem 1 of [11], whose proofs clearly depend only on the
fact that X and Y are regular spaces, and Theorem 2.6. The converse
follows from Theorem 2.10,

4. Multivalued quotient maps. Since multivalued functions
behave very much like single-valued functions, it seems imperative
that one consider the extension of a quotient map for single-valued
functions to multivalued functions. In so doing, one is immediately
compelled to consider two distinct concepts of multivalued quotient
maps in the same manner as with the continuity of multivalued maps.
However, it turns out that the situation is not as simple as it seems.
Therefore, let us first prove some results which will justify our
Definition 4.2.

LEMMA 4.1. Let F: X— Y be a multivalued function and let
X be a topological space. Then

(@) {UcY|FU) is open} is not necessarily a base for a topo-
logy on Y.

b) {UcY|FYY — U) is closed} is a base for a topology on Y.

Proof. It is easily seen that

(1) F~(Ueer A = Unes F(A)

(i) F(Uawes Ax) C Uwer F(A,), and equality does not necessarily
hold, for any collection {A,}.e, Of subsets of Y,

In order to prove (a) let X be the real line with the usual topology,
Y the set of all real numbers, and let F': X — Y be defined by

F1) =11,2],
F(x) =Y —[1,2] for all x =1,
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Then F*{ye Y|y = (8/2)}) and F'({ye Y |y < (3/2)}) are open sub-
sets of X, but F~'({3/2}) is not an open subset of X. Hence
{Uc Y| F~(U) is open} is not a base for a topology on Y.

Finally we prove (b): Let ye UN V such that F~4(Y — U) and
F-(Y — V) are closed subsets of X. Since

FNY-VnU)=F'((Y-U0)uY-—-YV)
:F_I(Y— U)UF—I(Y_ V)y

due to (i), one easily sees that {Uc Y| FF-(Y — U) is closed} is a base
for a topology on Y, which completes the proof.

While Lemma 4.1 dashes all hopes of developing a concept of
“multivalued quotient topology,” nonetheless one can define a multi-
valued quotient map F:X— Y in such a way that F is either a
usc-function or a lse-function.

DEFINITION 4.2. Let X and Y be topological spaces and F';: X — Y
an onto multivalued map. Then F is said to be a wus-quotient (ls-
quotient) map provided that a subset U of Y is closed (open) if and
only if FF~'(U) is a closed subset of X (F~(U) is an open subset of X).
F is said to be a quotient map whenever F' is both a us-quotient map
and a ls-quotient map.

We will now study the relationship between a multivalued function
F: X— Y and the maps p, and p,, as well as other relations.

ProrosiTiON 4.3. Let X and Y be topological spaces and F';: X— Y
a multivalued function. Then

(a) if py is closed and F is a wus-quotient map then p, is a
qguotient map,

(b) if F is a ls-quotient map then p, is a quotient map, and p,
is an open map,

(¢) if F is a Y-compact us-quotient map then p, is a quotient
map, and p, is a perfect map.

Proof. Part (a) is straightforward by use of Lemma 2.5(c). Part
(b) is straightforward by use of Lemma 2.5(¢) and Theorem 2.8(a).
Part (¢) is an immediate consequence of (a) and Theorem 2.6(a).

Now we generalize Theorem 3 and the Corollary on page 695 of
Stone [16] to multivalued quotient maps.

THEOREM 4.4. Let F: X— Y be a multivalued Y-compact quotient
map from the locally compact separable metrizable space X onto a
Hausdorff first countable space Y with a Gs-diagonal. Then Y is a
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locally compact separable metrizable space.

Proof. By Proposition 4.3, p, is a quotient map and p, is an
open perfect map. Hence grF is locally compact (due to Theorem 3.5),
metrizable (due to Theorem 3.2), and separable (because p, is open
and each p3z!(x) is separable-indeed each p3'(x) is compact metrizable),
Since p, is a quotient map, we get that Y is a locally compact
separable metrizable space, by Theorem 3 of |16].

Similarly one can prove the following result, by using the Corollary
of page 695 of [16]:

THEOREM 4.5. Let F: X— Y be a multivalued Y-compact quotient
map from the separable metrizable space X onto a regular first
countable Ti-space Y with a Gs-diagonal. Then Y is a separable
metrizable space.

Finally we generalize Theorem 4 of Stone [16] to multivalued
open maps.

THEOREM 4.6. Let F: X — Y be an open, Y-compact, X-separable
continuous function from a metrizable and locally separable space X
onto a regular Ti-space Y with a Gs-diagonal. Then Y is metrizable
and locally separable.

Proof. Similar to the proof of Theorem 4.4 except that we use,
respectively, Theorem 2.8(b), Theorem 2.8(a) and 2.6(a), and Theorem 4
of [16].

5. Continuous extensions. We will now generalize Theorem 4.3
of [1] to multivalued functions. Throughout this section, we let
CY, ZWC\(Y, Z); C(Y, Z)) be the space of all usc-functions (Isc-
functions; continuous functions) from Y to Z, for any topological
spaces Y and Z.

Before stating our main theorem we state the following straight-
forward but crucial result:

LEMMA 5.1. Let F: X— Y be a multivalued function. Then

(a) F 1is a usc-function if and only if for each xe X and
neighborhood V of F(x) there exists a neighborhood U of x such that
FU)c V.

(b) F is a lsc-function if and only tf for each xe X and open
VCY such that F(x) NV # @ there exists a neighborhood U of
such that F(R)N'V = @ for each z€ U.
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THEOREM 5.2. Let X be a stratifiable space, A a closed subset
of X and E any topological space. Then there exist mappings

P: Cy(4, E) — C(X, E)
"Alr: CZ(A: E) - Cl(Xy E) ’

satisfying the following conditions:

(a) each o(f) and P(f) is an extension of f,

(b) range o(f) = range f; range y/(f) = range f,

(© ()@ * @ (v(9)(x) = @) for each x € X whenever f(x) + &
(9(x) = @) for each x e A.

Proof. Without further comment we will frequently use the
terminology of Definition 4.1 of [1] and the crucial results of Lemma
4.2 of [1}, since our proof parallels that of Theorem 4.3 of [1], to a
large extent. Let W =X — A, and let W' = {xe W|x e U, for some
ye A and open U containing y}. For each ze W', let

m(xz) = max {n(U,y)|ye A and xc U,}.

It is easily seen that each m(x) < m(W, &) < o=,

Using the paracompactness of W, let 2° be an open locally finite
(with respect to W) cover of W such that {V-| Ve and V- is
the closure of V with respect to W} is a refinement of {W,|xe W}.
For each Ve 7", pick 2, ¢ W such that V- W,,. If a,e W', pick
ay € A and open S, containing a, such that x, € (S,),, and n(S,, a;) =
m(z,); if x,¢ W', let a, be the fixed point a,<€ A.

We now define two functions ¢g: X — K and h: X— E by

g(x) = fl@) = h(z) if zed,
g(@) = U{flay) |xe V} it wew,
h(z) = U{flay) |ze V) if xeW.

It is easily seen that g is a usc-function on W (Let x € W and let V
be a neighborhood of g(x). Then U= W — U{V-| Ve andwe¢ V}
is a neighborhood of z, and clearly ¢(U)C V; indeed, for each ze U,
9(2) C g(x)). Similarly, one easily sees that % is a lsc-function on W
(Let x € W and let U be an open subset of E such that k(x) N U = &.
By the definition of h(x) there exists some Ve~ such that
flay)NU # @ and € V. Then h(z) N U %= @ for each ze V).

To show that g is a usc-function at b€ A, whenever fe C, (4, E),
let 0 be any open subset of E containing f(b). Since f is a usc-
function, there exists an open neighborhood N of b such that
fLANN)cO.

Now it is not hard to see that
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(a) If ze[(N,), — ANV~ with Ve%~ and V- the closure of
V with respect to W, then a,e N. (A detailed proof of (a) can be
found in the last paragraph of the proof of Theorem 4.3 of [1].)
Consequently, g((V,),) <0, due to (a), and thus g is a usc-function.

To show that A is a lsc-funetion at be A, whenever feC,(4, E),
let 0 be any open subset of E such that /(b)) N0 = . Since f is a
Isc-function, there exists an open neighborhood N of b such that
f@®N0=g for each ze NN A, It is easily seen that x e (NV,),) — 4
implies h(x) N 0=~ @, due to (a) and the definition of k(x). Consequently,
Mx)N 0= @ for each x e (V,),, and thus % is a lse-function.

To complete the proof, we simply let o(f) = g and ¥(f) = k.

REMARK 5.3, It is easily seen that the function g is not neces-
sarily a lsc-function on W (Let U be any subset of E and suppose
fla) N U = @ for some Ve . Then gx) N U = @ for eachxe V-,
since x ¢ V-~ implies f(a,) C g(x) by the definition of g(x). Hence

9g7(U) = U{V' [ fle) N U+ 2}

is a closed subset of W for any subset U of E (since %" is locally
finite with respect to W)). Thus ¢ is not a Isc-function, unless g~(U)
is clopen® for each open subset U of E. We have thus essentially
proved the following result:

THEOREM b5.4. Let X be a stratifiable space, A a closed subset
of X such that dim (X — A) = 0 (covering dimension). Then there
exist mappings

P: CulA, E) — CX, K)
Vi C4, B) — CuX, E)
0:C(A, E)— C(X, E)

satisfying the following
(a) FHach @(f), ¥(f) and 0(f) is an extension of f,
(b) range @(f) = range (f) = range ¢(f) = range f.

Proof. The same as the proof of Theorem 5.2 except that we
choose the open cover ##” of X — A so that each Ve " is a clopen
subset of X — A (see Proposition 2(b) of [9]).

We end this section with the following two questions:
1. Does Theorem 5.2 remain valid if X is a paracompact space?
(We conjecture a negative answer.)

3 A subset U of a topological space X is said to be clopen provided that Uis an
open and closed subset of X.
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2. In Theorem 5.4, does the existence of the mapping ¢ imply
that for some single-valued quotient map ¢ from X onto X, say, ¢
maps A homomorphically onto a closed subset of X, ¢(A) and ¢(X — A)
are disjoint, and dim (¢(X - A)) = 0?
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