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Let A denote a finite-dimensional (associative) algebra over
an algebraically closed field K. It is well known that A has
global dimension zero if and only if A is the direct sum of
a finite number of full matrix algebras over K. In this paper
a specific representation is given for those algebras A which
have global dimension one (or less) and have only a finite
number of (two-sided) ideals. It is shown that every such
algebra is isomorphic to a (contracted) semigroup algebra K[S]
over a subsemigroup S of the semigroup of all n X n matrix
units {e;;} U {0} which (i) contains ¢;,, ---, €., and (ii) contains
e;; or e;; whenever there are h and k such that e, e;, and
i, ¢;; are in S, Conversely, if S satisfies (i) and (ii) then
K[S] has global dimension one or less and has a finite ideal
lattice.

We use the definitions and notation of Cartan-Eilenberg ([2], VI,
2) and Jans ([11],4). If A is a finite-dimensional algebra then A is
Noetherian and therefore 1. gl. dim. 4 = r. gl. dim. A. In this case one
writes gl. dim. A for this number. It is perhaps worthwhile to point
out that if A is over an algebraically closed field, then gl.dim. A is
precisely dim. A, the so-called Hochschild dimension of A (see [2],
p. 176) and [8]). In [10] Hochschild proved that dim.A4A <1 if and
only if A is segregated in every extension, i.e., every exact sequence
of (finite-dimensional) algebras B— A — 0 splits. In [12] Jans gives
a structure theorem for this class of algebras. By the above comments,
for algebraically closed fields Jans’ theorem is in fact a structure
theorem for algebras of global dimension one or less. Unfortunately,
however, we are unable at this time to relate the results of this paper
to those of Jans.

Harada [9] has also given a characterization of semiprimary rings
of global dimension < 1 which is in spirit somewhat related to the
methods of this paper. But again we are unable to deduce our results
from Harada’s.

On the other hand, Barry Mitchell has pointed out to the author
that part of the main theorem of this paper is an immediate corollary
of his work on the global dimension of abelian categories, see [15],
pp. 229 ff. Specifically, one infers immediately from Mitchell’s results
that if S is a subsemigroup of {e;;} U {0} which contains all e;;, then
gl. dim. K[S] < 1 if and only if whenever ¢,;, ¢;, and e,;, ¢;, are in S
then either e;; or ¢;; is also in S. In this paper, however, we prefer
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464 W. EDWIN CLARK

to retain our original proofs since they require no special knowledge
of category theory.

For convenience we define a semigroup S of matric wnits (of
degree m) to be a subsemigroup of the semigroup of all » x » matrix
units {e;;} U {0} which contains all e¢;. If K is a field, K[S] will
denote the algebra of all n X n matrices over K which is spanned by
S. If n=1and S = {ey}, then K[S] = K is the semigroup algebra
of S over K; in all other cases S contains e, and e, and therefore
contains 0 = e, ¢,. In this case K|[S] is the so-called contracted semi-
group algebra of S over K, i.e., the semigroup algebra of S over K
modulo the ideal generated by the zero of S(cf. [6]).

In general K[S] has global dimension greater than one. The
smallest K[S] which is not of global dimension < 1 is the algebra of
all 4 x 4 matrices

2, 0 0 0

Ty X 0 0 .
, %, In K,
Zy 0 x, O

Ly Lyp Lyz Ty

Ignoring the zeros above the main diagonal, we note that the zero
in the (3, 2)-position is “surrounded by nonzero positions”. To des-
cribe this situation more precisely we introduce the graph

G(S) ={(1,9): e;;€ S}

of a matrix units semigroup S. Clearly there is a one-one correspon-
dence between transitive, reflexive (directed) graphs on = vertices and
matrix units semigroups of degree n. We say that S (or G(S)) sur-
rounds no zeros if whenever (h, 1), (¢, k) and (h, 7), (4, k) are elements
of G(S), then either (¢,7) or (j, %) is also in S§. This is equivalent to
the existence of unique paths of maximal length joining any two
vertices., Mitchell ([15], p. 236) calls such a graph a decision free
graph,
We now state our main result:

THEOREM. Let A be a finite-dimensional algebra with identity
over an algebraically closed field K. Then A = K[S] for some semi-
group S of matrix units which surrounds no zeros if and only if
gl. dim. A <1 and A has only a finite number of ideals.

The remainder of the paper will be devoted to a proof of this
theorem,

LemmaA 1. If A = K[S] where S is a semigroup of matrix units
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which surrounds mo zeros, then gl, dim A <1,

Proof. Let e; = ¢;;, and let N denote the radical of A, Since
1 = Je; and the e; are primitive, each simple A-module has the form
Ae;/Ne;, |7]. It therefore suffices by ([11], p. 56) to show that Ne,
is projective for each 7.

As in the introduction to [4], we may assume that the vertex
incidence matrix C = (¢;;) (¢;; = 0 if ¢;;¢ S and ¢;; =1 if ¢;¢S) has
the block triangular form

Cu \

Cu Cn 0
(1)

le sz * * * Cmm /

where the diagonal blocks are square matrices each entry of which
is 1 and each of the blocks below the diagonal is either a zero block
or else has all entries equal to 1.

Let J be the set of 4 such that e;,e Ne,. Clearly, Ne, is the
vector space direct sum of the Ke,;,,tcJ. Let G = G(S). Set n, =
min J and define

J, = {i: (1, n) € G} .
Since n, € J, (n,, p) € G; hence for teJ, we have e;, =¢; ¢

Thus J, & /J.

Having defined integers =, < m, < --- < n, in J and subsets
Ji, ++-, J, of J such that foreach t <k n,=minJ — (J,U --- U J,_)
and J, = {i: (¢, n,) G}, if J=J,U---UJ,, let us define

np € NE,.

ey =Min J — (J, U +++ U Jp)

and Jy, = {i: (4, n,,,)€G}. As in the case above for m, we have
Jyw & J. By the way we chose », for ¢t < k, clearly n,., > n,. Since
J is finite this process must end, and so, there is an integer m such
that J = J,U---Ud,.

We now show that the J, are pair-wise disjoint. Assume that
for s >t,J,NJ, contains a nonzero element ¢. Then (i,n,) and
{1, n,) e G. Since u,, n,cJ we also have (n,, p) and (n,, p) in G. But,
(n,, n,) ¢ G since s >t implies that »n,¢J,. Now since S surrounds
no zeros we must have (n,, n,) in G. This implies that the vertex
incidence matrix C has a diagonal block (not necessarily one of the
C;;) of the form:
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1..-1

0..-1
where the three ones correspond to the edges (n,, n,), (n,, n,), (n,, n,)
and the zero represents the fact that (n,, n,) ¢ G. But this contradicts
the fact that C has square diagonal blocks with all entries 1. Hence
we have J,NJ, = &

Let now M; = 3{Ke;,:5€J;}. We claim that M; is a left ideal
of A. To show this it suffices to show that if e¢,;€ S where jeJ,,
then keJ;: Note that jeJ;, if and only if (7, n;)eG; hence if
(k,7)e G and j e J;, by transitivity (k, n;)e G and so k€ J,. Since the
J, are pairwise disjoint we have Ne, = M, P --- G M,,.

Observe next that Ae,, =23{Ke;, :jeJ}. Now one easily verifies
that the mapping @: M; — Ae,, defined by p(Ja,e;,) = Zaje;,, is an A-
isomorphism, It follows that Ne, is isomorphic to the direct sum of
the projective A-modules Ae,,, and is therefore itself projective. This
completes the proof of the lemma.

One easily verifies that every ideal I of a matrix units semigroup
algebra K[S] is generated by INS and so K[S] has only a finite
number of ideals. This fact with Lemma 1 proves one half of our
theorem,

Recall that a ring R is called hereditary if every left ideal is
projective. It is well known that [.gl.dim. R <1 if and only if R
is hereditary (see [2], p. 112). If XS R, let I(X) denote the left
annihilator of X in R. After Kaplansky [13], we call a ring Baer
if it has an identity and the left annihilator of every subset is gen-
erated by an idempotent.

LEMMA 2. A hereditary, Artinian ring (with identity) is a Baer
ring.

Proof. If aec R, then, Ra is a left ideal of R and therefore pro-

jective. Hence R —%, Ra — 0 splits where @(r) = ra. This says that
ker @ = [(a) is a direct summand of R. If ;R=L@Bla),l=f+¢
where feL,ec L,ecl(a), then l(a) = Re and & = e.

By an argument due to Maeda [14](which we include for the
convenience of the reader) we can extend this to two elements: Let
a,beR. If l(a) = Re and l(b) = Rf where ¢* = ¢, f* = f, then l(a) =
(1 —e¢) and I(d) = I(1 — f). As shown above there is an idempotent
g such that l(e(1 — f)) = Rg. It is now straightforward to show that
(ge)? = ge and that l(a,b) = (1 — ¢,1 — f) = Rge.

Now gince R is Artinian one show easily that {(X) = Ae for any
subset X of R.
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DEFINITION. Let S be a semigroup of matrix units. By a twisted
matrix units semigroup algebra of S over a field K we shall mean
an algebra K, [S] which has a basis {a,;: (¢, ) € G(S)} which multiplies
as follows: a;,0;, = @(t, 7, k)a;, where @(1, 7, k) is a monzero element
of K; all other products are zero.

In case ¢ = 1 (when defined), we clearly have that K,[S]= K[S]
where K[S] is the (contracted) semigroup algebra of S over K.

The following lemma follows immediately from results in [5],
however, for the sake of completeness we give a proof here.

LEMMA 3. Let A be a finite dimensional algebra over an alge-
braically closed field K. If A is Baer and has a finite ideal lattice
then A is a twisted matrix units semigroup algebra over K.

Proof. First we note that if A is Baer and if ¢ is an idempotent
in A, then eAe is Baer (see [14]). Hence, if e is primitive then eAe
has only one idempotent and therefore the left annihilator of every
nonzero subset is zero. This implies that the radical of eAe is zero
and that ede is a divisor ring. Since K is algebraically closed we
have then that eAe = Ke.

Now let 1 = Ye, where {e¢;} is a family of pairwise orthogonal
idempotents. Let us first show that if e,xe;ye, = 0, then e;xe; = 0 or
eye, = 0: Suppose e;ye, =+ 0 and let Af, f* = f, be the left annihilator
of e;ye,. Now fe;ye, = 0 and hence ¢;fe;ye, = 0; since e;fe; € Ke; we
must have e¢;fe; = 0. On the other hand, exe; e Af and so exe; =
e;xe;f. Multiplying on the right by e; we obtain exe; = 0.

Now it is clear that to complete the proof of this lemma it suffices
to show that e;Ae; has dimension < 1 over K for all 4,j. Since ede
has finite ideal lattice for all ¢? = e, it suffices to assume that 1 =
e, + e,. First suppose that ¢, Ae, # 0 and e,Ae, = 0. Then, as shown
above, e,Ae,Ae, # 0 and therefore e,AeAe, = ¢,Ae,, Hence, there
exist e, e e,Ae, and e, ce e, such that e,e, = ¢, Now, if x, ce,Ae,
we have x, = e, = e€ye,%, = e,(xe,) = ae,. Thus, [ede:K]=1.
Similarly, [e,Ae,: K] = 1. In the remaining case assume that ¢, Ae, = 0.
It follows that A = Ke, + Ke, + e,Ae,. One easily shows that any
K-subspace of e¢,Ae, is an ideal of A. Since K is infinite and A has
only finitely many ideals we can only conclude that [e,Ae;: K] < 1.

Lemma 3 together with Lemma 2 tells us that a finite-dimensional,
hereditary algebra with finite ideal lattice over an algebraically closed
field K is isomorphic to a twisted matrix units semigroup algebra
K,[S]. Thus, to complete the proof of our main result we need only
show that such an S surrounds no zeros and that K,[S]= KI[S].

LemMMA 4. Let S be a semigroup of matrix units such that
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A = K,|S] is Baer. Then, S surrounds no zeros.

Proof. Let a,, (p,q) G = G(S) be a basis for A satisfying the
conditions in the above definition. Clearly we may choose a,, to be
idempotent. We write ¢, = a,,.

Now suppose that S does surround a zero. Then there exist
(h, 1), (¢, k), (B, 9), (4, k) e G, with (4,7) and (j,%) not in G. Let ¢ =
e, + e + e; + e, Since A is Baer, ¢Ae is also (see [13]). But ede
is not Baer. To see this observe that eAe has a basis consisting
exactly of the elements of the array:

Ay
Qi Ay
Qs Qjj

A Qps Qpy Qpp o

Note that (p,¢)eG if and only if e,4e, + 0. Now suppose that
e, Ae; # 0, then a,; is a basis element of A. But then

0 F Q0 € ejAe.,; .

Hence (7, i) ¢ G, contrary to our assumption. Similar arguments show
that the basis elements a,, in the above array are indeed the only
ones which survive in ede. It follows easily that eAe is isomorphic
to the algebra of all 4 x 4 matrices

2, 0 0 O

Ty Ty 00
r =
Ty 0 @y O

Ly Xy Tz Ty

where xz;;€ K. But the left annihilator of the element ® where
Zy = Xy = 1 and all other entries are zero is not generated by an
idempotent. This establishes the lemma.

LEMMA 5. Let S be a semigroup of matric units which sur-
rounds no zeros. Then, K,[S] = K[S].

Proof. Let A = K,[S]. As in the proof of Lemma 1, we assume
that the vertex incidence matrix C of the graph G of S has the
normalized form (1). If C,; is an n; X n,; block, then A/rad A is isomor-
phic to the direct sum of algebras K, [T;] where T; is the semigroup
of all matrix units of degree n,. One shows easily that

K, |T;] = K[T;]
and hence that
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Ajrad A = K[S]/rad K[S] .

We conclude from this that if the reduced (basic) ring of A is isomor-
phic to that of K[S], then A is isomorphic to K[S] (see [1]).

Now from the block triangular form of C, it is clear that the
reduced ring of A is of the form K,(S’) where S’ is a semigroup of
matrix units whose associated graph is strictly triangular (not just
block triangular). Thus, without loss of generality we may assume
that S = S’ and, hence that (7, j) € G(S) implies that 7 < <.

We now show that if {a;;: (¢, 7)€ G = G(S)} is a basis for A (which
satisfies the conditions in the above definition) then each a;; may be
replaced by a nonzero K-multiple a}; of a,; so that the basis

{ai;: (4, 5) € G}

together with zero is a semigroup (necessarily isomorphic to S).
First we choose af; so that a; is idempotent. Clearly this can be done
sinee a; = a(1, 1, 1) a;; and «(i, 1, 1) = 0. Now replace a;; by ala;;a};,
so that without loss of generality we may assume that a% = a;; and
Qisls; = Q05 = Gy

Let now m denote the degree of S and let n < m. Assume
inductively that we have replaced all a,; for ¢ < n by nonzero K-
multiples a); so that the set T of all a};, (4, ) e G and 7 < n, together
with zero is a semigroup. Let the “n-th row” of S consist of

a’nipy tt anily (L2

Assume that we have replaced the last s + 1 elements of this row by
Wiy ="y Gy Gy = Ay SO that T, = T U {ay;,, + -+, @y, 0,} satisfies the
following condition:

() If g, ke fiy, -+, 0, 0}, then @05 = ay .

Choose ay; . = andi, ., if there exists ¢e{i,, ---, %} such that
(t, 4,+.) € G. If there is no such ¢, let al; . = a,. .. We now claim
that T,., satisfies (*) with s+ 1 replacing s: Since (7, k) € G implies that
k < j, it suffices to show that for any j such that » >j > 1,., and
(j, 1, € G we have ay;a}; . = ayai; . @ (The case where a;; = a,;
is clear). This means that (%, ), (4, %,.,) and (n, t), (¢, %,.,) are in G.
Since S surrounds no zeros we must therefore have (j,%¢) or (¢,7) in
G. Assume that (t, j) € G then af; = ai,a}; , and hence by our induc-
tive hypotheses aj.ai; , = anaiaj;, . = a,af; .. A similar argument
takes care of the case (j,t)e G. This shows that T,., satisfies (*).
By induction T, satisfies (*) with s = p, i.e., T, together with zero in
a semigroup. Now it is clear that by induction on n, we can choose
{a!;} as desired. This completes the proof of the lemma and therefore

of the theorem.
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REMARKS. Examples show that the situation gets much more
complicated if one weakens any of the hypotheses of our main theorem.
On the other hand, the only place that the algebraic closure of K is
needed is in Lemma 3. That it is essential there is shown by the
real algebra of all 2 x 2 matrices of the form

z, 0

(zz t)
where z; are complex and ¢ is real.

A partial generalization in one direction may be obtained as follows:

Let A be finite-dimensional over an algebraically closed field K. In-
stead of assuming that A is hereditary assume the weaker condition
that gl.dim. A/N* < . Stephen Chase [3] has shown that this is
equivalent to the existence of a complete set of mutually orthogonal
idempotents e,, - - -, e, such that ¢;Ne; = 0 if 7 = 5. Now, if we assume
further that A has a finite ideal lattice, a slight extension of the
argument in the proof of Lemma 3 (above) shows that [e;de;: K| < 1
for all 4,j7. Thus, A has a basis ¢;; = e;;;e; such that

tity = (i, 7, k)t

where @(3, 7, k) is some element (possibly zero) of K. However, even
if we assume that (i, j, k) +# 0 (when defined) it is in general im-
possible to replace @(7, j, k) by 1 and get an isomorphic algebra (see
the example in [5]). It is, of course, quite possible that one might
be able to find reasonable necessary and sufficient conditions on the
graph G = {(1, j): ¢;4e; # 0} and the function ¢ in order that A have
global dimension < #.

We wish also to point out that Lemma 1 together with Lemma 2
yields a new and somewhat less complicated (modulo basic results on
the global dimension of Artinian rings) proof of our theorem in |4]
that for a divisor ring K, K[S] is a Baer ring if S is a semigroup of
matrix units which surrounds no zeros.

REFERENCES

1. R. Brauer, Some remarks on associative rings and algebras, National Acad. of
Sciences-National Research Council, Publication 502, Washington, 1957.

2. H. Cartan and 8. Eilenberg, Homological Algebra, Princeton University Press,
Princeton, 1956.

8. 8. U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J.
18 (1961), 18-25.

4. W. E. Clark, Baer rings which arise from certain transitive graphs, Duke Math.
J. Dec. (1966), 647-656.

5. ,  Twisted matriz units semigroup algebras (to appear in Duke Math. J.)
6. A, H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Math.
Surveys, No. 7, Amer. Math. Soc., 1961.




ALGEBRAS OF GLOBAL DIMENSION ONE 4171

7. C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associa-
tive Algebras, Interscience Pub., New York, 1962.

8. S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv,
28 (1954), 310-319.

9. M. Harada, Hereditary semi-primary rings and triangular matric rings, Nagoya
Math. J, 27 (1966), 463-434.

10. G. Hochschild, On the cohomology of an associative algebra, Ann. of Math. 46
(1945), 58-67.

11. J. P. Jans, Rings and Homology, Holt, New York, 1964.

12. , On segregated rings and algebras, Nagoya Math. J. 11 (1957), 65-T71.
13. L. Kaplansky, Rings of operators, Univ. of Chicago mimeographed notes, 1955.
14. S. Maeda, On a rings whose principal right ideals generated by idempotents form
a lattice, Jour. of Se. Hiroshima Univ. (1960), 509-525.

15. B. Mitchell, Theory of Categories, Academic Press, New York, 1965.

Received March 31, 1967.

UNIVERSITY OF FLORIDA






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. ROYDEN J. DuGuUNDJI
Stanford University Department of Mathematics
Stanford, California Rice University

Houston, Texas 77001

J. P. JaNs RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. Yosipa

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be
typewritten (double spaced). The first paragraph or two must be capable of being used separately
as a synopsis of the entire paper. It should not contain references to the bibliography. Manu-
scripts may be sent to any one of the four editors. All other communications to the editors should
be addressed to the managing editor, Richard Arens at the University of California, Los Angeles,
California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price
per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual
faculty members of supporting institutions and to individual members of the American Mathematical
Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal
of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi
2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics

Vol. 23, No. 3 May, 1967
A. A. Aucoin, Diophantine SYStems . .............oeuueuueeiuennninenuenneen.. 419
Charles Ballantine, Products of positive definite matrices. I...................... 427
David Wilmot Barnette, A necessary condition for d-polyhedrality ............... 435
James Clark Beidleman and Tae Kun Seo, Generalized Frattini subgroups of finite
QUOUDS « o o e ettt e e e e et e e e e e e e 441
Carlos Jorge Do Rego Borges, A study of multivalued functions .................. 451

William Edwin Clark, Algebras of global dimension one with a finite ideal
Latice . ..o 463
Richard Brian Darst, On a theorem of Nikodym with applications to weak

convergence and von Neumann algebras . .................c.ccciuiiiiiin. 473
George Wesley Day, Superatomic Boolean algebras ............................ 479
Lawrence Fearnley, Characterization of the continuous images of all

PSCUAOCIICLES . . . oot 491
Neil Robert Gray, Unstable points in the hyperspace of connected subsets. . . ... ... 515
Franklin Haimo, Polynomials in central endomorphisms......................... 521
John Sollion Hsia, Integral equivalence of vectors over local modular lattices . . . .. 527
Jim Humphreys, Existence of Levi factors in certain algebraic groups . ........... 543
E. Christopher Lance, Automorphisms of postliminal C*-algebras ................ 547

Sibe Mardesic, Images of ordered compacta are locally peripherally metric . .. .. .. 557
Albert W. Marshall, David William Walkup and Roger Jean-BaptistesR
Order-preserving functions: Applications to majorization ¢
R 7277 K 2 R

Wellington Ham Ow, An extremal length criterion for the paral]
Riemannian spaces. .............. ..o,
Wellington Ham Ow, Criteria for zero capacity of ideal boundd
Riemannian spaces.................... i i,
J. H. Reed, Inverse limits of indecomposable continua. . ... ...
Joseph Gail Stampfli, Minimal range theorems for operators wi
Roy Westwick, Transformations on tensor spaces............
Howard Henry Wicke, The regular open continuous images of ¢
SPUACES -« o e vt e e e e e e e e
Abraham Zaks, A note on semi-primary hereditary rings . .....
Thomas William Hungerford, Correction to: “A description of
by generators and relations” ........... ...
Uppuluri V. Ramamohana Rao, Correction to: “On a stronger
Jormula™ ... .
Takesi Isiwata, Correction: “Mappings and spaces” ..........
Henry B. Mann, Josephine Mitchell and Lowell Schoenfeld, Co
“Properties of differential forms in n real variables” .. ...
James Calvert, Correction to: “An integral inequality with app
Dirichlet problem” . ............ccci i
K. Srinivasacharyulu, Correction to: “Topology of some Kdihle


http://dx.doi.org/10.2140/pjm.1967.23.419
http://dx.doi.org/10.2140/pjm.1967.23.427
http://dx.doi.org/10.2140/pjm.1967.23.435
http://dx.doi.org/10.2140/pjm.1967.23.441
http://dx.doi.org/10.2140/pjm.1967.23.441
http://dx.doi.org/10.2140/pjm.1967.23.451
http://dx.doi.org/10.2140/pjm.1967.23.473
http://dx.doi.org/10.2140/pjm.1967.23.473
http://dx.doi.org/10.2140/pjm.1967.23.479
http://dx.doi.org/10.2140/pjm.1967.23.491
http://dx.doi.org/10.2140/pjm.1967.23.491
http://dx.doi.org/10.2140/pjm.1967.23.515
http://dx.doi.org/10.2140/pjm.1967.23.521
http://dx.doi.org/10.2140/pjm.1967.23.527
http://dx.doi.org/10.2140/pjm.1967.23.543
http://dx.doi.org/10.2140/pjm.1967.23.547
http://dx.doi.org/10.2140/pjm.1967.23.557
http://dx.doi.org/10.2140/pjm.1967.23.569
http://dx.doi.org/10.2140/pjm.1967.23.569
http://dx.doi.org/10.2140/pjm.1967.23.585
http://dx.doi.org/10.2140/pjm.1967.23.585
http://dx.doi.org/10.2140/pjm.1967.23.591
http://dx.doi.org/10.2140/pjm.1967.23.591
http://dx.doi.org/10.2140/pjm.1967.23.597
http://dx.doi.org/10.2140/pjm.1967.23.601
http://dx.doi.org/10.2140/pjm.1967.23.613
http://dx.doi.org/10.2140/pjm.1967.23.621
http://dx.doi.org/10.2140/pjm.1967.23.621
http://dx.doi.org/10.2140/pjm.1967.23.627
http://dx.doi.org/10.2140/pjm.1967.23.629
http://dx.doi.org/10.2140/pjm.1967.23.629
http://dx.doi.org/10.2140/pjm.1967.23.629
http://dx.doi.org/10.2140/pjm.1967.23.629
http://dx.doi.org/10.2140/pjm.1967.23.630
http://dx.doi.org/10.2140/pjm.1967.23.631
http://dx.doi.org/10.2140/pjm.1967.23.631
http://dx.doi.org/10.2140/pjm.1967.23.631
http://dx.doi.org/10.2140/pjm.1967.23.631
http://dx.doi.org/10.2140/pjm.1967.23.632

	
	
	

